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About QLMS derivations

Quentin Bartiklemy, Anthony Larue andé®me |. Mars

Abstract—In this letter, a review of the quaternionic least quaterniong € H is defined as:
mean squares (QLMS) algorithm is proposed. Three versions
coming from three derivation ways exist: the original QLMS q=qa + @t +qcj + qak, ()
[1] based on componentwise gradientsHR-QLMS [2] based . L . . '
on a quaternion gradient operator and IQLMS [3] based on With da, gs, ¢c, ga € R and with imaginary units defined as:
an involutions-gradient. Noting and investigating the differences .. . . . 9 9 2 ..
between the three QLMS formulations, we show that the original ~ */ = K+ Jk =1, ki =j and i* = j° = k" =ijk = —1. (3)

QLMS suffers from a mistake in the derivation calculus. ThuS, e o aternionic space is characterized by its noncommuta-
we propose to derive rigorously the criterion following the first

way, giving the correct version of QLMS. A comparison with the Vity: ¢1¢2 # g2¢1. The scalar part i9%(g) = ¢a, and the
other QLMS versions validates these results on simulated data. Vectorial part is3(q) = gi + qcj + qak. The conjugatey * is

: ook _ Cx * ok, k
Index Terms—Quaternionic signal processing; QLMS; adap- defined asy ™ = R(q) —3(q) and we have(gigz) " = ¢5'qy"-

tive filtering. The modulus is defined dg| = \/qq*.
Concerning quaternionic vectors)” denotes the transpose

I .
| INTRODUCTION operator and.)" the conjugate transpose operator.

In signal processing, the least mean squares (LMS) algo-

. . . 4 [1l. QLMS DERIVATION
rithm [4] is well-used for several purposes and in particula ) ] QLMS i ONS
for adaptive filtering. Filter weights are estimated to fit a I this section, the problem is presented and the three ways

least-squares criterion and are updated thanks to a stachd® derive QLMS are reviewed. For consistency, notations of
gradient descent. This algorithm has been extended to exmghe concerned articles [1]-[3] are kept.

in a first way in [5] by Widrowet al. who summed the

componentwise gradients to derive the complex LMS (CLMSA. Problem formulation

Later, a gradient operator was introduced by Brandwood]in [6 A jinear model linking an input signat € HY to an output

Assumingz € C, the complex derivation rules are: signald € HY is considered. We defined(n) € H as the
0z  0z" 1 d 0z 0z 0 1 instantaneous output data signal(n) € H” as the adaptive
9z  Oz¢ an 9z 9z @) weights vector of lengthl, and z(n) € H* as the lastL
Additionally, he showed that the direction of maximum ratgamples of the input data signal. The linear model, defined in
of change of a real-valued objective functioh = ||¢||> [1], is written as:
Wlth respect toz is 9J/0z*. Usmg'these results, Br.andwood d(n) = w(n)T z(n) + e(n) (4)
retrieved exactly the CLMS by this second way, give or take
a multiplicative constant. with e(n) € H the instantaneous error.

Recently, the LMS has been extended to the quaternionsThe goal of the QLMS is to estimate the optimal weights
by three different ways: the quaternionic LMS (QLMS) [1]vectorw which minimizes the least-squares criterig(n) =
the HIR-QLMS [2] and the iQLMS [3]. These algorithms arelle(n)||> = e(n)e*(n). Weights are updated thanks to a
well-used in many recent works. The problem is that theséochastic gradient descent as:
three ways give three versions which are different.

In this letter, we examine rigorously the first way to derive w(n +1) =w(n) —p-VJ(n), )
the QLMS, investigating the work of Took and Mandic [1]. Inwhere 1 > 0 is a constant defining the descent step. The
the first section, quaternions are presented. Then, the thpeoblem consists in calculatiny.J(n) with respect to the
versions of QLMS are reviewed in Section lll. The firsfuaternionic vectotw.
derivation way is detailed in Section 1V, giving a new versio
of the QLMS. A comparison on simulated data is made if The OLMS versions

Section VI to validate theoretical results. . N
The sum of componentwise derivations $fn) was the

first way to obtain a QLMS. It has been studied by Took and

Il. QUATERNION ALGEBRA Y ) A
. . . Mandic in [1], and the given expression is:
The quaternions algebra, denoted s is an extension

of the complex spac€ using three imaginary parts [7]. A w(n+ 1) = w(n) + p(2e(n)z*(n) — z*(n)e*(n)) .  (6)
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To give a mathematical foundation to this result, a quater- IV. QLMS COMPONENTWISE DERIVATION

nion gradient operator is given by Mandi al. in [2],  The proposed derivation is lengthy, but we choose to present
extending the complex gradient operator [6]. Consideringfe f| detailed version to avoid calculus mistakes. The
quaterniong € H, these new derivative rules are: criterion to derive is:

dq  Oq* dq*  0Oq
doq g+ and dq  Oq*

=—-1/2. (7) Vwd(n) =V, (e(n)e*(n)) . (11)

) ) ) ) ~Indicesn are suppressed from variables: andw to lightened
Using these rules, AIR-QLMS is derived fromJ(n) in [2]:  caiculus. The criterion/ is now derived with respect to:

1

w(n +1) = w(n) + ple(n)z*(n) - §x(n)6*(n)) . (8) Vuwl(ee") = Vi, (e€") + Vi, (e€”)i + Vi, (e€”)j + de(e(e*)l)C
12
These theoretical results have helped to derive for quiatesn = eV, (") + Vi, (e)e* + eV, (€*)i + Vi, (e)e*i
generqlized gradient desc_ent _[131, independ_ent Cgmponent eV, (€°)] + Vi, (€)€*] + Vi, (€°)k + Vi, (€)e* k.
analysis [14], kernel adaptive filtering [15], affine prdjea (13)

algorithms [16], etc.
A third way is proposed by Tookt al. in [3] using an To compute easily the derivations ef= d — w”z ande* =

involutions-gradient. A iQLMS is thus derived as: d* — zHw*, the expressions” z andz"w* are expanded:
3 N wle = waTxa — waxb — wchc — wdTa:d
w(n+1) = wn) + pSe(m)*(n) ©) (0T T b T )
o Ty + Wy Tq + W g — Wy Te) i
For consistency, this expression has been multiplied2by + (waT:Z:C —wpl g+ w L zq + wdeb)j
since Tooke_t al. min_imize the criterion% J in [3] and r_lot + (waTxd + wy T, — w. Tz +wdT%> k, (14)
J. To explain the differences between the three versions of
the QLMS, a generic form is proposed in [3]:
Q g prop 3] 2w =w, g — wp Ty — W T — Wq Ty
RIVJI(n)] = —vR [e(n)R[z(n)] + 7R [e(n)I[z(n)]] + (—waTxb — waxa — wchd + wdec) 7
S[VJ(n)] = —pS[e(n)R[z(n)] + ¢S [e(n)S[z(n)]] . (10) + (~waTze +wp T wg — wexg — waTy)
T T T T,
It allows to express the three updates in the same form, + (—wa' wa —wy' we +we @y —wa' x4) k(iS)

with only different values fow, 7, p, s. The different versions
are thus said to be "topologically similar” [17]. Remark thausing these expressions, the four componentwise gradieats
Jahanchahét al. [17] detail the work [3], but with a different now computed as:
definition of the problemd(n) = w(n)* z(n) + e(n), where
w is conjugated instead of transposed as in Eq. (4). Vi, (e€”) =e(—a") + (—z)e”

=—ex" —xe*, (16)

C. Some problems in the QLMS versions
. ) Vi, (ee™)i =e(xp + x4t — xaj + k)i
In this subsection, problems between these three nonasimil

o o ..
QLMS versions are notified. + (@ — Zal + 2aj — zck)e’d

1. In fact, a mistake has been made during the derivation =e(=q + Tyl + Tej + Tak)
of QLMS of Eq. (6): in [1], the unit imaginary has been + (xp — 2ol + xq) — xck)(ep + eqi — eqj + eck)
commuted withe*(n) in Eq. (43). The same mistake has been =—ex* + (a), (17)

done too withj in Eq. (44) and withk in Eq. (45).

2. QLMS in Eg. (6) andHR-QLMS in Eq. (8) are not - . _ .
identical, even give or take a multiplicative factar(n) is Vi, (€€”)j =e(c + zai +aj — 2ok)]
conjugated in the second member of Eq. (6) and not in Eq. (8). + (Te — gt — xaj + THk)E"]

3. Finally, the generic form (10) proposed in [3] to express =e(—xq + Tpi + Tcj + xak)
the three QLMS versions is artificial and does not suppress
the existing differences. A quaternionic scalar examgle=(

1) is chosen, withe(n) = z(n) = 1 + i (special case
where quaternions are reduced to complex). For the QLMS,
VJ(n) = —4 — 2i; for the HR-QLMS, VJ(n) = —1 and V,,,(ee* )k =e(xq — xci + ) + xok)k
for t.he.|QLMS, VJ(n) = —.3. The generic form is not ¥ (2 + Tei — xpf — Tak)e*k
convincing since it is not possible to pretend that thesetgxd . )

are "topologically similar”. =e(—%a + 2pi + zej + wak)

To conclude this section, we propose to study the first + (Ta + @i — 2 — Tak)(eq — €ci + €v] + €qk)
derivation way to compute rigorously the QLMS expression. =—ex" +(y). (19)

+ (xe — xgi — xaj + zok) (€ + €qi + eqf — epk)
=—ex" +(B), (18)



TABLE |

So, summing the componentwise gradients (16), (17), (18) an symmary TABLE FOR THE QLMS VERSIONS FORJ(n) = [|e(n)]|2.

(19), we obtain:

Vi (ee®) = —dex” —ze* + (a) + (B) + (7) - (20)
The three expressions are expanded:
() =xpep + Tpeai — Tpeqj + Tpeck — Taepi + Taeq
+ xqeqk + oo + Taepj — xgeqlk + ey
+ Taecl — Teepk — Toeqj — Teeqi + Teee,  (21)
(B) =xmeee + xelgi + Teeqj — Teepk — Tgeci + T4eq
— xgek — Tgep] — Taeej + Toeqk + Taeq
+ Taepi + Tpeck + Tpeqj — Tpeqi + xpey,  (22)

() =zgeq — xgeci + xaepj + xaeok + xeegi + xoee
+zeepk — xeeq] — Tpeq) — ek + wpey
— XTpeal — Tgegh + xgeej + Taepi + Taeq . (23)
Summing these three expressions, we have:
(@)+(B) + (7) = 3zpey — Tpeat — Tpeqj + Tpeck + Taepi
+ 3x4€q + Taeak + Toec] + xaepj — xaeqsk + 3xqeq
(24)

— xgect — Teepk — xe€q) + Teegl + 3xce .
Reordering the terms, we obtain:
(@) + (8) + () = 2(€aa — cati — eatief — eqvak
+ epxqt + epTy — epTek + epTq) + ecxqj + ecTpk

+ ecte — ecxql + eqrok — eqryj + eqret + edxd)

+ (acaea — Xgept — Tgee] — Taeagk + Tpeqat + xpep
— xpeck + wpeqj + veeqf + Tepk + Tl — Tl

+ zge k — xqepj + raeci + xded> . (25)

(a) +(B8) + (7)
=2(eq + epi + ecj + eqk) (s — Tpi — xej — xgk)
+ (o + xpi + xJ + xak)(€q — epi — ecj — eqk)

=2ex” + ze* . (26)
From Eg. (20) and Eg. (26), we finally obtain:
V(ee™) = —dex™ — xe™ + 2ex™ + ze™ = —2ex™. (27)
So, the QLMS expression is:
wn+1) =wn)+ pu2e(n)x*(n). (28)

V. REMARKS

QLMS version VJ(n)
QLMS original | —(2e(n)z*(n) — z*(n)e*(n))
HR-QLMS —(e(n)z*(n) — z(n)e* (n))
iQLMS -2 e(n)z*(n)
QLMS —2e(n)z*(n)

2. Considering Eq. (28), the iIQLMS of [3] expressed in
Eq. (9) is recovered too, give or take a multiplicative facto
In [17], QLMS, HR-QLMS and iQLMS are compared with
respect to their convergence speeds, and iQLMS was observed
to be the most rapid. After the presented derivation, it seem
normal that IQLMS has given the best results.

3. The differences between QLMS versions are not due to
guaternions noncommutativity, as explained in [18]. Thie di
ference with the original QLMS [1] is caused by a commuta-
tivity mistake in the componentwise derivation (SectidaG).

30
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— HR-QLME
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— QLMS true

20%I0g, ,(J(n) ) (dE)
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Fig. 1. Evolution of the criterion/(n) in dB as a function of the iteration
n, averaged 100 times, for the original QLMS, tHR-QLMS, the iQLMS
and the true QLMS.

VI. COMPARISON ON SIMULATED DATA

A comparison between the different QLMS versions is made
in this section. A signak ¢ H” is created withN = 1000
samples, and a filtew € H’ is composed of uniformly
distributed unit quaternions, with = 5 samples. The signal
d € HV is formed using the model defined in Eq. (4). The
different versions of the QLMS are used on these data: the

After this mathematical development, we give some coneriginal QLMS given in Eq. (6), thédR-QLMS in Eqg. (8),
ments about this exact derivative version. The differenM3L the iIQLMS in Eq. (9) and the true QLMS in Eq. (28). The

versions are summed up in Table 1.

descent step is the same for the four versions, with 0.01.

1. The expression of the componentwise CLMS [Skxs For each version, the criteriod(n) is computed at each
actly recovered by the QLMS given in Eq. (28). Consequentliteration/sampler. The error on the filtet|jw(n) — w(n)|| is
the presented QLMS is a valid generalization of the real casemputed too, withi(n) defined as the estimated filter.

(LMS [4] with ¢, = g. = g4 = 0) and of the complex case

(CLMS [5] with ¢, = gq = 0).

Results, averaged 100 times, are plotted in the following
figures, with the original QLMS in blue, tHER-QLMS in red,
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Fig. 3. Evolution of the estimation errgw(n) — w(n)|| as a function of the iteration, averaged 100 times, for the original QLMS, tH&R-QLMS, the
IQLMS and the true QLMS. A uniformly distributed unit quatemic noise is added at different SNBO dB (a), 20 dB (b) and10 dB (c).
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VII. CONCLUSION

After a review of the different QLMS derivations, the
componentwise way has been examined scrupulously. Since
a mistake has been done in the original version of Took and
Mandic [1], the derivation has been detailed and the correct
expression has been proposed. Comparisons on simulated dat

ent

[1].

0.8

1 1 1 1 1
A00  B00 VOO 8O0 500 1000
lteration n

1 1 1 1
100 200 300 400

Fig. 2. Evolution of the estimation errdjw(n) — w(n)|| as a function of
the iterationn, averaged 100 times, for the original QLMS, tH&R-QLMS,
the iIQLMS and the true QLMS.

(1]

(2]

the iIQLMS in green and the true QLMS in black. In Fig. 1, the
criterion J(n) is plotted in dB as a function of the iteration
We observe that the convergence of the true QLMS is faster
than the original QLMS and the iQLMS ones, themselve$4]
faster than thédR-QLMS one. In Fig. 2, the estimation error 5]
|lw(n) —w(n)| is plotted as a function of the iteration.
These figures show the recovery property of the algorithrss. A6]
previously, we observe that the convergence of the true QLMS
is always better than the original QLMS and the iQLMS onegy,
which have similar behaviors, themselves better thariiRe
QLMS one. (8]

Experimental protocol is now slightly changed since a uni-
formly distributed unit quaternionic noise is added to sign [9]
d. Different signal-to-noise ratios (SNR) are considera@l;
20 and10 dB. Results are respectively shown in Fig. 3(a), 3(plo]
and 3(c) and the curves are quite similar. The previous
observations about algorithms behaviors are still verifigt
the added noise.

To conclude, this comparison highlights the optimality o[flz]
the proposed QLMS, including the multiplicative factowith
respect to3/2 for the iQLMS.

(3]

(11]

have validated the theoretical results. Finally, this radthas
many applications, already cited in Section lll.
Prospects are to investigate rigorously the quaterniodigra

operator and thEIR derivative rules [2], which had been

written to support the incorrect formula of the original QM

Especially as the quaternion gradient operator has bee

observed to be invalid in [19] for the derivation of quatemit
sparse pursuits.
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