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About QLMS derivations
Quentin Barth́elemy, Anthony Larue and Jérôme I. Mars

Abstract—In this letter, a review of the quaternionic least
mean squares (QLMS) algorithm is proposed. Three versions
coming from three derivation ways exist: the original QLMS
[1] based on componentwise gradients,HR-QLMS [2] based
on a quaternion gradient operator and iQLMS [3] based on
an involutions-gradient. Noting and investigating the differences
between the three QLMS formulations, we show that the original
QLMS suffers from a mistake in the derivation calculus. Thus,
we propose to derive rigorously the criterion following the first
way, giving the correct version of QLMS. A comparison with the
other QLMS versions validates these results on simulated data.

Index Terms—Quaternionic signal processing; QLMS; adap-
tive filtering.

I. I NTRODUCTION

In signal processing, the least mean squares (LMS) algo-
rithm [4] is well-used for several purposes and in particular
for adaptive filtering. Filter weights are estimated to fit a
least-squares criterion and are updated thanks to a stochastic
gradient descent. This algorithm has been extended to complex
in a first way in [5] by Widrow et al. who summed the
componentwise gradients to derive the complex LMS (CLMS).
Later, a gradient operator was introduced by Brandwood in [6].
Assumingz ∈ C, the complex derivation rules are:

∂z

∂z
=

∂z∗

∂z∗
= 1 and

∂z∗

∂z
=

∂z

∂z∗
= 0 . (1)

Additionally, he showed that the direction of maximum rate
of change of a real-valued objective functionJ = ‖ǫ‖2
with respect toz is ∂J/∂z∗. Using these results, Brandwood
retrieved exactly the CLMS by this second way, give or take
a multiplicative constant.

Recently, the LMS has been extended to the quaternions
by three different ways: the quaternionic LMS (QLMS) [1],
theHR-QLMS [2] and the iQLMS [3]. These algorithms are
well-used in many recent works. The problem is that these
three ways give three versions which are different.

In this letter, we examine rigorously the first way to derive
the QLMS, investigating the work of Took and Mandic [1]. In
the first section, quaternions are presented. Then, the three
versions of QLMS are reviewed in Section III. The first
derivation way is detailed in Section IV, giving a new version
of the QLMS. A comparison on simulated data is made in
Section VI to validate theoretical results.

II. QUATERNION ALGEBRA

The quaternions algebra, denoted asH, is an extension
of the complex spaceC using three imaginary parts [7]. A
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quaternionq ∈ H is defined as:

q = qa + qbi+ qcj + qdk , (2)

with qa, qb, qc, qd ∈ R and with imaginary units defined as:

ij = k, jk = i, ki = j and i2 = j2 = k2 = ijk = −1. (3)

The quaternionic space is characterized by its noncommuta-
tivity: q1q2 6= q2q1. The scalar part isℜ(q) = qa, and the
vectorial part isℑ(q) = qbi+ qcj + qdk. The conjugateq ∗ is
defined as:q ∗ = ℜ(q)−ℑ(q) and we have(q1q2) ∗ = q ∗

2
q ∗

1
.

The modulus is defined as|q| = √
qq∗.

Concerning quaternionic vectors,(.)T denotes the transpose
operator and(.)H the conjugate transpose operator.

III. QLMS DERIVATIONS

In this section, the problem is presented and the three ways
to derive QLMS are reviewed. For consistency, notations of
the concerned articles [1]–[3] are kept.

A. Problem formulation

A linear model linking an input signalx ∈ H
N to an output

signal d ∈ H
N is considered. We definedd(n) ∈ H as the

instantaneous output data signal,w(n) ∈ H
L as the adaptive

weights vector of lengthL, and x(n) ∈ H
L as the lastL

samples of the input data signal. The linear model, defined in
[1], is written as:

d(n) = w(n)T x(n) + e(n) , (4)

with e(n) ∈ H the instantaneous error.
The goal of the QLMS is to estimate the optimal weights

vectorw which minimizes the least-squares criterionJ(n) =
‖e(n)‖2 = e(n)e∗(n). Weights are updated thanks to a
stochastic gradient descent as:

w(n+ 1) = w(n)− µ · ∇J(n) , (5)

where µ > 0 is a constant defining the descent step. The
problem consists in calculating∇J(n) with respect to the
quaternionic vectorw.

B. The QLMS versions

The sum of componentwise derivations ofJ(n) was the
first way to obtain a QLMS. It has been studied by Took and
Mandic in [1], and the given expression is:

w(n+ 1) = w(n) + µ
(

2e(n)x∗(n)− x∗(n)e∗(n)
)

. (6)

This recent algorithm is well-used in quaternionic signal
processing: for quaternionic adaptive filtering applied toim-
age denoising [8] or wind forecasting [9], for second order
statistics [10], [11], for gait recognition [12], etc.
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To give a mathematical foundation to this result, a quater-
nion gradient operator is given by Mandicet al. in [2],
extending the complex gradient operator [6]. Considering a
quaternionq ∈ H, these new derivative rules are:

∂q

∂q
=

∂q∗

∂q∗
= 1 and

∂q∗

∂q
=

∂q

∂q∗
= −1/2 . (7)

Using these rules, aHR-QLMS is derived fromJ(n) in [2]:

w(n+ 1) = w(n) + µ
(

e(n)x∗(n)− 1

2
x(n)e∗(n)

)

. (8)

These theoretical results have helped to derive for quaternions
generalized gradient descent [13], independent component
analysis [14], kernel adaptive filtering [15], affine projection
algorithms [16], etc.

A third way is proposed by Tooket al. in [3] using an
involutions-gradient. A iQLMS is thus derived as:

w(n+ 1) = w(n) + µ
3

2
e(n)x∗(n) . (9)

For consistency, this expression has been multiplied by2,
since Tooket al. minimize the criterion1

2
J in [3] and not

J . To explain the differences between the three versions of
the QLMS, a generic form is proposed in [3]:

ℜ[∇J(n)] = −νℜ [e(n)ℜ[x(n)]] + τℜ [e(n)ℑ[x(n)]]
ℑ[∇J(n)] = −ρℑ [e(n)ℜ[x(n)]] + ςℑ [e(n)ℑ[x(n)]] . (10)

It allows to express the three updates in the same form,
with only different values forν, τ, ρ, ς. The different versions
are thus said to be ”topologically similar” [17]. Remark that
Jahanchahiet al. [17] detail the work [3], but with a different
definition of the problem:d(n) = w(n)∗ x(n) + e(n), where
w is conjugated instead of transposed as in Eq. (4).

C. Some problems in the QLMS versions

In this subsection, problems between these three non-similar
QLMS versions are notified.

1. In fact, a mistake has been made during the derivation
of QLMS of Eq. (6): in [1], the unit imaginaryi has been
commuted withe∗(n) in Eq. (43). The same mistake has been
done too withj in Eq. (44) and withk in Eq. (45).

2. QLMS in Eq. (6) andHR-QLMS in Eq. (8) are not
identical, even give or take a multiplicative factor:x(n) is
conjugated in the second member of Eq. (6) and not in Eq. (8).

3. Finally, the generic form (10) proposed in [3] to express
the three QLMS versions is artificial and does not suppress
the existing differences. A quaternionic scalar example (L =
1) is chosen, withe(n) = x(n) = 1 + i (special case
where quaternions are reduced to complex). For the QLMS,
∇J(n) = −4 − 2i; for the HR-QLMS, ∇J(n) = −1 and
for the iQLMS, ∇J(n) = −3. The generic form is not
convincing since it is not possible to pretend that these updates
are ”topologically similar”.

To conclude this section, we propose to study the first
derivation way to compute rigorously the QLMS expression.

IV. QLMS COMPONENTWISE DERIVATION

The proposed derivation is lengthy, but we choose to present
the full detailed version to avoid calculus mistakes. The
criterion to derive is:

∇wJ(n) = ∇w

(

e(n)e∗(n)
)

. (11)

Indicesn are suppressed from variablese, x andw to lightened
calculus. The criterionJ is now derived with respect tow:

∇w(ee
∗) = ∇wa

(ee∗) +∇wb
(ee∗)i+∇wc

(ee∗)j +∇wd
(ee∗)k

(12)

= e∇wa
(e∗) +∇wa

(e)e∗ + e∇wb
(e∗)i+∇wb

(e)e∗i

+e∇wc
(e∗)j +∇wc

(e)e∗j + e∇wd
(e∗)k +∇wd

(e)e∗k.
(13)

To compute easily the derivations ofe = d − wTx and e∗ =
d∗ − xHw∗, the expressionswTx andxHw∗ are expanded:

wTx = wa
Txa − wb

Txb − wc
Txc − wd

Txd

+
(

wa
Txb + wb

Txa + wc
Txd − wd

Txc

)

i

+
(

wa
Txc − wb

Txd + wc
Txa + wd

Txb

)

j

+
(

wa
Txd + wb

Txc − wc
Txb + wd

Txa

)

k , (14)

xHw∗ = wa
Txa − wb

Txb − wc
Txc − wd

Txd

+
(

−wa
Txb − wb

Txa − wc
Txd + wd

Txc

)

i

+
(

−wa
Txc + wb

Txd − wc
Txa − wd

Txb

)

j

+
(

−wa
Txd − wb

Txc + wc
Txb − wd

Txa

)

k.
(15)

Using these expressions, the four componentwise gradientsare
now computed as:

∇wa
(ee∗) =e(−x∗) + (−x)e∗

=− ex∗ − xe∗ , (16)

∇wb
(ee∗)i =e(xb + xai− xdj + xck)i

+ (xb − xai+ xdj − xck)e
∗i

=e(−xa + xbi+ xcj + xdk)

+ (xb − xai+ xdj − xck)(eb + eai− edj + eck)

=− ex∗ + (α) , (17)

∇wc
(ee∗)j =e(xc + xdi+ xaj − xbk)j

+ (xc − xdi− xaj + xbk)e
∗j

=e(−xa + xbi+ xcj + xdk)

+ (xc − xdi− xaj + xbk)(ec + edi+ eaj − ebk)

=− ex∗ + (β) , (18)

∇wd
(ee∗)k =e(xd − xci+ xbj + xak)k

+ (xd + xci− xbj − xak)e
∗k

=e(−xa + xbi+ xcj + xdk)

+ (xd + xci− xbj − xak)(ed − eci+ ebj + eak)

=− ex∗ + (γ) . (19)
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So, summing the componentwise gradients (16), (17), (18) and
(19), we obtain:

∇w(ee
∗) = −4ex∗ − xe∗ + (α) + (β) + (γ) . (20)

The three expressions are expanded:

(α) = xbeb + xbeai− xbedj + xbeck − xaebi+ xaea

+ xaedk + xaecj + xdebj − xdeak + xded

+ xdeci− xcebk − xceaj − xcedi+ xcec , (21)

(β) = xcec + xcedi+ xceaj − xcebk − xdeci+ xded

− xdeak − xdebj − xaecj + xaedk + xaea

+ xaebi+ xbeck + xbedj − xbeai+ xbeb , (22)

(γ) = xded − xdeci+ xdebj + xdeak + xcedi+ xcec

+ xcebk − xceaj − xbedj − xbeck + xbeb

− xbeai− xaedk + xaecj + xaebi+ xaea . (23)

Summing these three expressions, we have:

(α)+(β) + (γ) = 3xbeb − xbeai− xbedj + xbeck + xaebi

+ 3xaea + xaedk + xaecj + xdebj − xdeak + 3xded

− xdeci− xcebk − xceaj + xcedi+ 3xcec . (24)

Reordering the terms, we obtain:

(α) + (β) + (γ) = 2
(

eaxa − eaxbi− eaxcj − eaxdk

+ ebxai+ ebxb − ebxck + ebxdj + ecxaj + ecxbk

+ ecxc − ecxdi+ edxak − edxbj + edxci+ edxd

)

+
(

xaea − xaebi− xaecj − xaedk + xbeai+ xbeb

− xbeck + xbedj + xceaj + xcebk + xcec − xcedi

+ xdeak − xdebj + xdeci+ xded

)

. (25)

(α) + (β) + (γ)

= 2(ea + ebi+ ecj + edk)(xa − xbi− xcj − xdk)

+ (xa + xbi+ xcj + xdk)(ea − ebi− ecj − edk)

= 2ex∗ + xe∗ . (26)

From Eq. (20) and Eq. (26), we finally obtain:

∇w(ee
∗) = −4ex∗ − xe∗ + 2ex∗ + xe∗ = −2ex∗ . (27)

So, the QLMS expression is:

w(n+ 1) = w(n) + µ 2 e(n)x∗(n) . (28)

V. REMARKS

After this mathematical development, we give some com-
ments about this exact derivative version. The different QLMS
versions are summed up in Table I.

1. The expression of the componentwise CLMS [5] isex-
actly recovered by the QLMS given in Eq. (28). Consequently,
the presented QLMS is a valid generalization of the real case
(LMS [4] with qb = qc = qd = 0) and of the complex case
(CLMS [5] with qc = qd = 0).

TABLE I
SUMMARY TABLE FOR THE QLMS VERSIONS FORJ(n) = ‖e(n)‖2 .

QLMS version ∇J(n)

QLMS original −
(

2e(n)x∗(n)− x
∗(n)e∗(n)

)

HR-QLMS −
(

e(n)x∗(n)− 1

2
x(n)e∗(n)

)

iQLMS −
3

2
e(n)x∗(n)

QLMS −2 e(n)x∗(n)

2. Considering Eq. (28), the iQLMS of [3] expressed in
Eq. (9) is recovered too, give or take a multiplicative factor.
In [17], QLMS, HR-QLMS and iQLMS are compared with
respect to their convergence speeds, and iQLMS was observed
to be the most rapid. After the presented derivation, it seems
normal that iQLMS has given the best results.

3. The differences between QLMS versions are not due to
quaternions noncommutativity, as explained in [18]. The dif-
ference with the original QLMS [1] is caused by a commuta-
tivity mistake in the componentwise derivation (Section III-C).

Fig. 1. Evolution of the criterionJ(n) in dB as a function of the iteration
n, averaged 100 times, for the original QLMS, theHR-QLMS, the iQLMS
and the true QLMS.

VI. COMPARISON ON SIMULATED DATA

A comparison between the different QLMS versions is made
in this section. A signalx ∈ H

N is created withN = 1000
samples, and a filterw ∈ H

L is composed of uniformly
distributed unit quaternions, withL = 5 samples. The signal
d ∈ H

N is formed using the model defined in Eq. (4). The
different versions of the QLMS are used on these data: the
original QLMS given in Eq. (6), theHR-QLMS in Eq. (8),
the iQLMS in Eq. (9) and the true QLMS in Eq. (28). The
descent step is the same for the four versions, withµ = 0.01.
For each version, the criterionJ(n) is computed at each
iteration/samplen. The error on the filter‖w(n)− ŵ(n)‖ is
computed too, withŵ(n) defined as the estimated filter.

Results, averaged 100 times, are plotted in the following
figures, with the original QLMS in blue, theHR-QLMS in red,
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(a) SNR:30 dB (b) SNR:20 dB (c) SNR:10 dB

Fig. 3. Evolution of the estimation error‖w(n)− ŵ(n)‖ as a function of the iterationn, averaged 100 times, for the original QLMS, theHR-QLMS, the
iQLMS and the true QLMS. A uniformly distributed unit quaternionic noise is added at different SNR:30 dB (a),20 dB (b) and10 dB (c).

Fig. 2. Evolution of the estimation error‖w(n)− ŵ(n)‖ as a function of
the iterationn, averaged 100 times, for the original QLMS, theHR-QLMS,
the iQLMS and the true QLMS.

the iQLMS in green and the true QLMS in black. In Fig. 1, the
criterionJ(n) is plotted in dB as a function of the iterationn.
We observe that the convergence of the true QLMS is faster
than the original QLMS and the iQLMS ones, themselves
faster than theHR-QLMS one. In Fig. 2, the estimation error
‖w(n)− ŵ(n)‖ is plotted as a function of the iterationn.
These figures show the recovery property of the algorithms. As
previously, we observe that the convergence of the true QLMS
is always better than the original QLMS and the iQLMS ones
which have similar behaviors, themselves better than theHR-
QLMS one.

Experimental protocol is now slightly changed since a uni-
formly distributed unit quaternionic noise is added to signals
d. Different signal-to-noise ratios (SNR) are considered:30,
20 and10 dB. Results are respectively shown in Fig. 3(a), 3(b)
and 3(c) and the curves are quite similar. The previous
observations about algorithms behaviors are still verifiedwith
the added noise.

To conclude, this comparison highlights the optimality of
the proposed QLMS, including the multiplicative factor2 with
respect to3/2 for the iQLMS.

VII. C ONCLUSION

After a review of the different QLMS derivations, the
componentwise way has been examined scrupulously. Since
a mistake has been done in the original version of Took and
Mandic [1], the derivation has been detailed and the correct
expression has been proposed. Comparisons on simulated data
have validated the theoretical results. Finally, this method has
many applications, already cited in Section III.

Prospects are to investigate rigorously the quaternion gradi-
ent operator and theHR derivative rules [2], which had been
written to support the incorrect formula of the original QLMS
[1]. Especially as the quaternion gradient operator has been
observed to be invalid in [19] for the derivation of quaternionic
sparse pursuits.
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