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Abstract—A Bayesian framework for 3D human pose estima-
tion from monocular images based on sparse representation (SR)
is introduced. Our probabilistic approach aims at simultaneously
learning two overcomplete dictionaries (one for the visual input
space and the other for the pose space) with a shared sparse
representation. Existing SR-based pose estimation approaches
only offer a point estimation of the dictionary and the sparse
codes. Therefore, they might be unreliable when the number of
training examples is small. Our Bayesian framework estimates a
posterior distribution for the sparse codes and the dictionaries
from labeled training data. Hence, it is robust to overfitting on
small-size training data. Experimental results on various human
activities show that the proposed method is superior to the state-
of-the-art pose estimation algorithms.

Index Terms—Bayesian learning, dictionary learning, Gibbs
sampling, Metropolis-Hastings algorithm.

I. INTRODUCTION

RECENTLY, 3D human pose estimation from monocular
images has attracted much attention in computer vision

community due to its significant role in various applications;
such as visual surveillance, activity recognition, motion cap-
turing, etc. Although many algorithms have been proposed
for estimating the 3D human poses from single images, it has
been remained as a challenging task due to the lack of depth
information and significant variations in visual appearances,
hunam shapes, lightning conditions, clutters, and the forth.
Existing methods for monocular 3D pose estimation can be
divided into three main categories. The model-based ap-
proaches which assume a known parametric body model and
estimate the human pose by inverting the kinematics or by
optimizing an objective function of pose variables [1], [2].
These computationally expensive approaches need an accurate
body model and a good initialization stage. Furthermore, due
to non-convexity of their objective functions, their solution
might be sub-optimal. On the other hand, the learning-based
approaches employ a direct mapping between the visual
input space and the human pose space [3], [4]. Despite the
superiority of these approaches, one of their major drawbacks
is that their pose estimation accuracy depends on the amount of
training data. Finally, the examplar-based approaches estimate
the pose of an unknown visual input (image) by searching
the training data (a set of visual inputs whose corresponding
3D pose descriptors are known) and interpolating from the
poses of similar training visual input(s) to the unknown visual
input [5], [6]. The problem with these methods is that their
computational complexity is high (because of searching the
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whole visual input database to find the similar sample(s) to an
unknown input).
Some researchers have recently utilized the sparce represen-
tation and dictionary learning (SRDL) framework to estimate
the human pose [7]–[9]. Huang et al. [7] proposed a SR-based
method in which each test data point is expressed as a compact
linear combination of training visual inputs. It is capable of
dealing with occlusion. The pose of the test sample can be
recovered by the same linear combination of the training poses.
Ji et al. [9] introduced a robust dual dictionaries learning
(DDL) approach which can handle corrupted input images.
An efficient algorithm is also provided to solve the DDL
optimization model.
Although the results of SRDL approaches are comparable
with the state-of-the-art methods, they suffer from two short-
comings. Firstly, since these algorithms only provide a point
estimation of the dictionary and the sparse codes (which might
be sensitive to the choice of training examples), they tend
to overfit the training data (especially when the number of
training examples is small). Secondly, none of these methods
can use the information of the pose training data. Precisely
speaking, all of the SRDL-based methods learn the dictio-
nary and sparse codes without considering the fact that the
dictionary should be learned such that the samples of similar
poses have similar sparse codes. In order to overcome these
shortcomings, this paper presents a Bayesian framework for
SRDL-based pose estimation that targets the popular cases for
which the number of training examples is limited. Moreover,
by employing appropriate prior distributions on the latent
variables of the proposed model, the dictionary is learnt with
the constraint that the samples with similar poses must have
similar sparse codes.
The remainder of this letter is organized as follows: The
proposed method is introduced in Section II. Experimental
results are presented in Section III. Finally, the conclusion
and future work are given in Section IV.

II. PROPOSED 3D HUMAN POSE ESTIMATION METHOD

Following [9], we aim at learning two dictionaries (visual
input dictionary and pose dictionary) with a shared sparse
representation based on a Bayesian learning framework that
utilizes the information of the pose training data.
Let X = {xi ∈ RMx}Ni=1, and Y = {yi ∈ RMy}Ni=1 denote
the training set of N visual input features and their corre-
sponding pose features, respectively. We model each input
feature xi(i = 1, ..., N) and pose feature yi(i = 1, ..., N) as a
sparse combination of the atoms of dictionaries Dx ∈ RMx×K
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and Dy ∈ RMy×K with an additive noise exi and eyi ,
respectively.The matrix form of the model is given as

X = DxA+ Ex, Y = DyA+ Ey (1)

where A = [α1,α2, ...,αN ] ∈ RK×N is the set of K-
dimensional sparse codes, Ex ∼ N (0, γ−1xy IMx), and Ey ∼
N (0, γ−1xy IMy

) are the zero-mean Gaussian noise with preci-
sion value γxy (IMx

and IMy
are Mx ×Mx and My ×My

identity matrices, respectively). We model each sparse code
αi = [α1i, ..., αKi]

T (i = 1, ..., N) as an element-wise multi-
plication of a binary vector zi = [z1i, ..., zKi]

T (i = 1, ..., N)
and a weight vector si = [s1i, ..., sKi]

T (i = 1, ..., N), as

αki =
zki + 1

2
ski, i = 1, ..., N, k = 1, ...,K (2)

where αki denotes the k-th coefficient of the i-th sparse
code, zki ∈ {−1, 1}(i = 1, ..., N, k = 1, ...,K) is a binary
random variable, and ski(i = 1, ..., N, k = 1, ...,K) is a
zero-mean Gaussian random variable with precision value γs(
ski ∼ N (0, γ−1s )

)
. The intuition for the above model is that

if zki = −1, then αki = 0 and the k-th atom of the dictionaries
Dx and Dy are inactive. If zki = +1, then the k-th atom of
the dictionaries are active, and the value of cofficient αki is
drawn from αki ∼ N (0, γ−1s ). We also put a prior distribution
on each binary random variable zki(i = 1, ..., N, k = 1, ...,K)
by using the logistic sigmoid function, as

P (zki | wik) =
1

1 + e−zkiwik
, i = 1, ..., N, k = 1, ...,K (3)

where {wk = [w1k, ..., wNk]T }Kk=1 are the hyper-parameters
of the model. In order to exploit the information of the training
pose data, a prior Gaussian distribution is considered for
{wk}Kk=1 as

wk ∼ N (0,Σw), k = 1, ...,K (4)

where

Σw(i, j) = K(yi,yj), i = 1, ..., N, j = 1, ..., N (5)

and K(yi,yj) is a valid kernel (a kernel which satisfies the
Mercer’s condition) that diminishes by increasing the distance
between yi and yj . By using above distributions, the process
of generating the sparse codes is as follows:
• Draw the parameters {wk}Kk=1 by using (4).
• Draw the binary random vectors {zi}Ni=1 by using (3).
• If zki = 1, draw αki ∼ N (0, γ−1s ), else αki = 0.

As it can be seen from this process, if the two input features
have similar pose features, they tend to use the same dictionary
atoms (imposed by kernel K) to get similar sparse codes.
In our method, we also impose a prior zero-mean Gaussian
distribution on the dictionary atoms of Dx = [dx1 , ...,d

x
K ] and

Dy = [dy1, ...,d
y
K ], as

dxk ∼ N (0, γ−1x IMx
), dyk ∼ N (0, γ−1y IMy

), k = 1, ...,K.
(6)

To be Bayesian, we typically place non-informative Gamma
hyper-priors on parameters γx, γy, γxy , and γs. Given the
training data (X,Y ), the proposed hierarchical probabilistic
model can be expressed as

Fig. 1. Proposed model (blue shadings indicate observations).

P (W | Σw) ∼
K∏
k=1

N (wk; 0,Σw) (7)

P (Z |W ) =

K∏
k=1

N∏
i=1

1

1 + exp(−zkiwik)
(8)

P (S | γs) ∼
K∏
k=1

N∏
i=1

N (ski; 0, γ−1s ) (9)

P (γs | as, bs) ∼ Gamma(γs; as, bs) (10)

P (X | Z, S,Dx, γxy) ∼
N∏
i=1

N (xi;D
x(
zi + 1

2
� si), γ−1xy I)

(11)

P (Y | Z, S,Dy, γxy) ∼
N∏
i=1

N (yi;D
y(
zi + 1

2
� si), γ−1xy I)

(12)
P (γxy | axy, bxy) ∼ Gamma(γxy; axy, bxy) (13)

P (Dx | γx) ∼
Mx∏
j=1

K∏
k=1

N (dxjk; 0, γ−1x ) (14)

P (γx | ax, bx) ∼ Gamma(γx; ax, bx) (15)

P (Dy | γy) ∼
My∏
j′=1

K∏
k=1

N (dyj′k; 0, γ−1y ) (16)

P (γy | ay, by) ∼ Gamma(γy; ay, by) (17)

where � is the element-wise multiplication operator, Z =
[z1, ...,zN ], S = [s1, ..., sN ], W = [w1, ...,wK ] are the
hidden variables, Γ = {γx, γy, γs, γxy} are the parameters
(the precision values, inverse variances, of the Guassian noise
distributions), and Φ = {axy, bxy, ax, bx, ay, by, as, bs} are
the hyper-parameters of the proposed model. The graphical
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representation of the proposed probabilistic model is shown
in Fig 1.

A. Posterior Inference

Due to intractability of computing the exact posterior distri-
bution of the hidden variables, the inference is performed by
using the Gibbs sampling to approximate the posterior with S
samples. In the proposed model, all of the distributions are in
the conjugate exponential form except for the logistic function.
Due to the non-conjugacy between the logistic function and
the Gaussian distribution, deriving the Gibbs update equation
for W in closed-form is intractable. To overcome this problem,
one can put an exponential upper bound on the logistic
functions of (8) based on the convex duality theorem [10].
By using this theorem and utilizing the fact that the log of a
logistic function is concave, an upper bound on the logistic
functions is obtained in the form of

1

1 + exp(−zkiwik)
≤ exp

(
λizkiwik − g(λi)

)
i = 1, ..., N

(18)
where

g(λi) = −λi log λi− (1−λi) log(1−λi) i = 1, ..., N (19)

and {λi}Ni=1 are the variational parameters which should be
optimized to get the tightest bound. By using the upper
bound of (18), we propose a Gaussian distribution as the
distribution Q in a Metropolis-Hastings (MH) independence
chain algorithm [11] and derive the posterior samples for W
by using this algorithm (the details of generating samples for
W and other hidden variables are available in Appendix A).

B. Pose Prediction

After computing the posterior distribution of hidden vari-
ables, in order to determine the target pose yt of a given test
instance xt, given the test instance, the predictive distribution
of the target pose is first computed by integrating out the
hidden variables as

P (yt | xt, X, Y ) =∑
zt

∫
P (yt, st, zt, D

x, Dy,wt, γxy, γs | xt, X, Y )×

dst dγxy dγs dD
x dDy dwt

∝
∑
zt

∫
P (yt | st, zt, Dy, γxy)P (xt | st, zt, Dx, γxy)×

T (zt, st, D
x, Dy,wt, γxy, γs)dst dγxy dγs dD

x dDy dwt

(20)

where

T (zt, st, D
x, Dy,wt, γxy, γs) = P (Dx | X,Y )P (Dy | X,Y )

P (zt | wt)P (st | γs)P (γs | X,Y )P (wt | X,Y )P (γxy | X,Y )
(21)

and wt = [wt1, ..., wtK ]T . The mean of this distribution is
the target pose ŷt for xt. Since the expression of (20) cannot
be computed in a closed-form fashion, one can resort to the

Monte Carlo sampling to approximate that expression. As
such, the distribution T (zt, st, D

x, Dy,wt, γxy, γs) with L
samples can be approximated as

P (yt | xt, X, Y ) ≈ 1

L

L∑
l=1

βlN (yt; (Dy)l(
zlt + 1

2
�slt), (γlxy)−1I)

(22)

βl = P (xt | slt, zlt, (Dx)l, γlxy)

= N (xt; (Dx)l(
zlt + 1

2
� slt), (γlxy)−1I), l = 1, ..., L,

(23)

where rl is the l-th sample of the hidden variable r. By
using the fact that the sum of Gaussian distributions is still
a Gaussian distribution, ŷt is computed analytically by

ŷt =

∑L
l=1 βl(D

y)l(
zl
t+1
2 � slt)

L
∑L
l=1 γ

l
xy

. (24)

Sampling from T (zt, st, D
x, Dy,wt, γxy, γs) is straightfor-

ward (we use the posterior samples, see Section II-A). How-
ever, due to the fact that the true pose of the unknown visual
input xt in unknown, P (wt | X,Y ) cannot be obtained, and
hence the posterior samples of zt cannot be generated. To
overcome this problem, the samples of wt are derived based
on the posterior samples W as

wltk =
1

j

N∑
i=1

(wlik)θi k = 1, ...,K, l = 1, ..., L, (25)

where θi = 1 if xi belongs to the j nearest neighbors of xt,
and otherwise θk = 0. Sample derivation of wt is based on
the fact that neighboring visual inputs are more likely to have
similar poses. By using the above samples for wt, one can
generate the samples from P (zt | wt) by using (3).

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
method, the activities in the CMU Mocap dataset1 are used in
the bvh format to generate the silhouettes of real sequences.
The method is tested on various activities (”Acrobatic”, ”Nav-
igate”, ”Golf”, etc). We have used the histograms of shape
contexts [1] which encodes the visual input (silhouette) into
a 100-dimensional descriptor as the input feature. The human
body pose is also encoded by 57 joint angles (three angles for
each joint). The error is the average (over all angles) of the
root mean square error (RMS). We captured 600 frames from
each sequence and used 30, 60,100, and 200 of them as the
training data, and the rest as the test data. In all experiments,
all hyper-parameters are set to 10−6 to make the prior Gamma
distributions uninformative. We also used the exponentional
kernel K(yi,yj) = exp(−‖yi−yj‖/η), for which the kernel
parameter η is set to

η = 2
∑
i<j

‖yi − yj‖22
N(N − 1)

. (26)

1http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu
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TABLE I
AVERAGE ERROR (IN DEGREES) WITH STANDARD DEVIATION OF DIFFERENT METHODS.

Activity Tr. # RVM TGP SR DDL PM

Acrobatics 30 15.963 ± 2.73 15.411 ± 2.97 14.005 ± 2.32 16.731 ± 3.82 12.595 ± 1.24
Acrobatics 60 13.294 ± 2.53 13.353 ± 2.49 12.805 ± 2.12 14.734 ± 3.41 9.328 ± 0.99
Acrobatics 100 10.651 ± 1.52 9.882 ± 1.76 8.104 ± 1.44 10.323 ± 1.97 6.443 ± 0.96
Acrobatics 200 7.247 ± 1.14 6.896 ± 1.05 5.506 ± 0.93 6.989 ± 1.31 4.862 ± 0.79
Navigate 30 10.821 ± 1.19 10.917 ± 1.31 10.455 ± 0.99 11.421 ± 1.53 7.623 ± 0.61
Navigate 60 6.674 ± 0.96 6.819 ± 0.89 6.662 ± 0.71 7.872 ± 1.24 5.782 ± 0.34
Navigate 100 4.434 ± 0.22 5.029 ± 0.36 5.550 ± 0.49 5.753 ± 0.57 3.229 ± 0.20
Navigate 200 3.567 ± 0.17 4.194 ± 0.16 3.866 ± 0.27 4.331 ± 0.41 3.075 ± 0.12

Golf 30 14.514 ± 2.88 14.728 ± 2.02 13.909 ± 1.82 15.688 ± 2.93 8.241 ± 1.13
Golf 60 9.337 ± 2.51 8.964 ± 1.79 9.745 ± 1.11 10.949 ± 2.21 5.752 ± 0.88
Golf 100 7.652 ± 1.32 7.515 ± 0.69 5.467 ± 0.42 7.442 ± 0.61 3.931 ± 0.52
Golf 200 5.220 ± 1.48 5.333 ± 0.74 4.535 ± 0.50 5.273 ± 0.57 3.034 ± 0.37

In order to determine an appropriate number of dictionary
atoms. K, and nearest neighbors of unknown data samples,
j, the five-fold cross validation approach is performed to
find the best pair (K, j). The tested values for K are
{64, 128, 196, 256} and for j are {3, 5, 7}. In the analysis
that follows, 1200 MCMC iterations are used (700 burn-in
and 500 collection, from a random start). For the proposal
distribution Q in MH algorithm, the acceptance rates were
greater than 94%. We compared the performance of the
proposed method with that of the relevance vector machine
(RVM) as a well-known supervised regression method, the
twin Gaussian process (TGP) [12] as a state-of-the-art method,
and DDL [9] and SR [8] as two state-of-the-art SRDL-based
3D human pose estimation methods. The average estimation
accuracies (over 10 runs) together with the standard deviation
for three activities are shown in Table I (the results for other
activities are available in Appendix B), from which we can
see that the proposed method significantly outperforms the
other methods. The improvement in performance is because
of two reasons. Firstly, the number of labeled data is small;
hence these methods may overfit to the labeled data. Secondly,
these methods cannot utilize the information of the pose data.
Figure 2 shows the subjective result of the proposed method,
SR, and DDL for 4 sequences in the database, respectively.
These outputs are obtained using 200 training data sampled
from 400 test data. As can be seen, the proposed method has
a better reconstruction rate than the other methods.

IV. CONCLUSION

In this letter, a fully probabilistic framework for SR-based
3D human pose estimation was proposed that utilized the
information of the pose space. Experimental results proved the
high performance of the proposed method especially in cases
for which only a few number of training data is available.

APPENDIX A: MCMC INFERENCE

In the following equations, P (q | −) denotes the conditional
probability of parameter q, given current value of all other
parameters. The sampling equations are as follows:

Fig. 2. Subjective comparison. Columns show input silhouettes, real labels,
and outputs of PM, SR, and DDL, respectively.

Sample zi = [z1i, ..., zki, ..., zKi]
T :

P (zki | −) ∝
Mx∏
j=1

N (xji;

K∑
k′=1

(djk′sk′i
zk′i + 1

2
), γ−1xy )×

My∏
j′=1

N (yj′i;

K∑
k′=1

(dj′k′sk′i
zk′i + 1

2
), γ−1xy )×

1

1 + exp(−zkiwki)
(27)

Since zki is a Bernoulli random variable (zki ∈ {+1,−1}),
we have

P (zki = +1 | −) ∝ α, P (zki = −1 | −) ∝ α′ (28)
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where

α =exp
(
− 1

2
γxy

Mx∑
j=1

(
xji −

K∑
k′=1

djk′sk′i
)2)×

exp
(
− 1

2
γxy

My∑
j′=1

(
yj′i −

K∑
k′=1

dj′k′sk′i
)2)×

1

1 + exp(−wki)
(29)

α′ =exp
(
− 1

2
γxy

Mx∑
j=1

(
xji −

K∑
k′ 6=k

djk′sk′i
)2)×

exp
(
− 1

2
γxy

My∑
j′=1

(
yj′i −

K∑
k′ 6=k

dj′k′sk′i
)2)×

1

1 + exp(wki)
(30)

Hence, it is obvious that zki is drawn from a Bernoulli
distribution

P (zki | −) ∼ Bernoulli(θ), zki ∈ {+1,−1} (31)

where
θ =

α

α+ α′
(32)

Sample si = [s1i, ..., ski, ..., sKi]
T :

P (ski | −) ∝
Mx∏
j=1

N (xji;

K∑
k′=1

(dxjk′sk′i
zk′i + 1

2
), γ−1xy )×

My∏
j′=1

N (yj′i;

K∑
k′=1

(dyj′k′sk′i
zk′i + 1

2
), γ−1xy )×

N (ski; 0, γ−1s ) (33)

It is easy to show that if zki = −1, then ski is drawn from

P (ski | −) ∼ N (ski; 0, γ−1s ) (34)

and if zki = 1, ski is drawn from

P (ski | −) ∼ N (µs, (γ
′
s)
−1) (35)

where

γ′s = γs +
( Mx∑
j=1

(dxjk)2 +

My∑
j′=1

(dyj′k)2
)
γxy (36)

µs = (γ′s)
−1γxy

[ Mx∑
j=1

dxjk
( K∑
k′ 6=k

(dxjk′sk′i)− xji
)

+

My∑
j′=1

dyj′k
( K∑
k′ 6=k

(dyj′k′sk′i)− yj′i
)]

(37)

Sample W = [w1, ...,wk, ...,wK ]:

P (wk | −) ∝
N∏
i=1

P (zki | wik)N (wk; 0,Σw)

∝
N∏
i=1

1

1 + exp(−zkiwik)
N (wk; 0,Σw) (38)

From the above equation, we can see that P (wk | −) cannot
directly sampled from. However, we can put an exponential
upper bound on the logistic functions of the above equation
based on the convex duality theorem [10]. Using this theorem
and utilizing the fact that the log of a logistic function is
concave, we obtain an upper bound on the logistic functions
of the form

1

1 + exp(−zkiwik)
≤ exp

(
λizkiwik − g(λi)

)
i = 1, ..., N

(39)
where

g(λi) = −λi log λi− (1−λi) log(1−λi) i = 1, ..., N (40)

λi(i = 1, ..., N) are the variational parameters which should
be optimized to get the tightest bound.
By substituting the above upper bound back into Eq. 38, we
obtain

P (wk | −) ≤ N (µw,Σw) (41)

where

µw = ΣwΛk (42)

Λk = [λ1zk1, ..., λizki, ..., λNzkN ]T (43)

We use this normal distribution (right-hand side of Eq. 41)
as the proposal distribution Q in a Metropolis-Hastings (M-
H) independence chain [11], and accept wt+1

k = w′k with
probability min{pk, 1}, where

pk =
P (w′k)

P (wt
k)

Q(wt
k)

Q(w′k)

=

N∏
i=1

1 + exp(−zkiwtik)

1 + exp(−zkiw′ik)
exp
(
− µTwΣ−1w (w′k −wt

k)
)
(44)

Since the proposal distribution
(
N (µw,Σw)

)
should be ac-

curate around the current sample (wt
k), we can optimize the

variational parameters to make the upper bound (right-hand
side of Eq. 39) as tight as possible around the current sample.
Hence, by replacing wik with wtik in the right-hand side of Eq.
39, and by setting the derivative of the right-hand side of Eq.
39 respect to {λi}Ni=1 equal to zero, we can optimize {λi}Ni=1

as

λi =
1

1 + exp(−zkiwtik)
i = 1, ..., N (45)
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Sample Dx = [dx1 , ...,d
x
k, ...,d

x
K ]:

P (dxk | −) ∝
N∏
i=1

N (xi;D
x(
zi + 1

2
�si), γ−1xy I)N (dxk; 0, γxI)

(46)
It can be demonstrated that dxk is drawn from a Normal

distribution

P (dxk | −) ∼ N (µxk, γ
′
xI) (47)

where

γ′x =
( N∑
i=1

zki + 1

2
ski
)2
γxy + γx (48)

µxk =

∑N
i=1( zki+1

2 ski)γxy

γ′x
I×( N∑

i=1

K∑
k′ 6=k

dxk′(
zk′i + 1

2
sk′i)− xi

)
(49)

Sample Dy = [dy1, ...,d
y
k, ...,d

y
K ]:

P (dyk | −) ∝
N∏
i=1

N (yi;D
y(
zi + 1

2
�si), γ−1xy I)N (dyk; 0, γyI)

(50)
It can be demonstrated that dyk is drawn from a Normal

distribution

P (dyk | −) ∼ N (µyk, γ
′
yI) (51)

where

γ′y =
( N∑
i=1

zki + 1

2
ski
)2
γxy + γy (52)

µyk =

∑N
i=1( zki+1

2 ski)γxy

γ′y
I×( N∑

i=1

K∑
k′ 6=k

dyk′(
zk′i + 1

2
sk′i)− yi

)
(53)

Sample γs:

P (γs | −) ∝
K∏
k=1

N∏
i=1

N (ski; 0, γ−1s )Gamma(γs, as, bs)

(54)
It can be shown that γs can be drawn from a Gamma
distribution

P (γs | −) ∼ Gamma(a′s, b
′
s) (55)

where,

a′s = as +
NK

2
, b′s = bs +

1

2

K∑
k=1

N∑
i=1

s2ki (56)

Sample γxy:

P (γxy | −) ∝
Mx∏
j=1

N∏
i=1

N (xji;

K∑
k=1

(dxjk
zki + 1

2
ski), γ

−1
xy )×

My∏
j′=1

N∏
i=1

N (yj′i;

K∑
k=1

(dyj′k
zki + 1

2
ski), γ

−1
xy )×

Gamma(γxy, axy, bxy) (57)

It is easy to show that γxy can be drawn from a Gamma
distribution

P (γxy | −) ∼ Gamma(a′xy, b
′
xy) (58)

where,

a′xy = axy +
N(Mx +My)

2
(59)

b′xy = bxy +
1

2

Mx∑
j=1

N∑
i=1

(
xji −

K∑
k=1

(dxjk
zki + 1

2
ski)

)2
+

1

2

My∑
j′=1

N∑
i=1

(
yj′i −

K∑
k=1

(dyj′k
zki + 1

2
ski)

)2
(60)

Sample γx:

P (γx | −) ∝
Mx∏
j=1

K∏
k=1

N (dxjk; 0, γ−1x )Gamma(γx, ax, bx)

(61)
It can be demonstrated that γx can be drawn from a Gamma
distribution

P (γx | −) ∼ Gamma(a′x, b
′
x) (62)

where,

a′x = ax +
MxK

2
, b′x = bx +

1

2

K∑
k=1

Mx∑
j=1

(dxjk)2 (63)

Sample γy:

P (γy | −) ∝
My∏
j′=1

K∏
k=1

N (dyj′k; 0, γ−1y )Gamma(γy, ay, by)

(64)
It can be shown that γy can be drawn from a Gamma
distribution

P (γy | −) ∼ Gamma(a′y, b
′
y) (65)

where,

a′y = ay +
MyK

2
, b′y = by +

1

2

K∑
k=1

My∑
j′=1

(dyj′k)2 (66)
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TABLE II
AVERAGE ERROR (IN DEGREES) WITH STANDARD DEVIATION FOR DIFFERENT METHODS.

Activity Tr. # RVM TGP SR DDL PM

Throw and catch football 30 26.68 ± 3.94 19.55 ± 2.61 15.68 ± 2.03 18.62 ± 2.84 13.51 ± 1.17
Throw and catch football 60 25.43 ± 3.86 16.14 ± 2.34 13.91 ± 1.85 15.80 ± 2.53 10.47 ± 1.05
Throw and catch football 100 23.64 ± 3.11 10.49 ± 1.47 9.09 ± 1.08 11.13 ± 1.38 9.54 ± 0.91
Throw and catch football 200 8.27 ± 1.73 8.68 ± 0.71 7.43 ± 0.56 8.59 ± 1.02 7.76 ± 0.42

Michael jackson styled motions 30 19.71 ± 2.17 18.92 ± 2.33 17.38 ± 1.97 19.92 ± 2.87 14.89 ± 1.11
Michael jackson styled motions 60 16.48 ± 1.88 16.33 ± 1.76 15.72 ± 1.69 17.62 ± 2.44 13.69 ± 0.98
Michael jackson styled motions 100 13.23 ± 0.99 13.42 ± 0.84 12.34 ± 1.02 12.95 ± 1.39 11.32 ± 0.85
Michael jackson styled motions 200 8.86 ± 0.73 10.49 ± 0.33 8.69 ± 0.41 8.83 ± 1.04 7.57 ± 0.32

kick soccer ball 30 13.69 ± 2.24 15.53 ± 2.43 13.05 ± 2.41 14.97 ± 2.74 10.21 ± 1.00
kick soccer ball 60 11.44 ± 1.68 12.36 ± 1.93 10.94 ± 1.95 12.90 ± 2.03 8.96 ± 0.88
kick soccer ball 100 8.65 ± 0.87 10.41 ± 1.09 8.26 ± 1.26 9.24 ± 1.29 7.63 ± 0.72
kick soccer ball 200 6.12 ± 0.43 7.63 ± 0.64 6.23 ± 0.77 6.97 ± 0.91 5.83 ± 0.38

Run 30 15.71 ± 2.89 15.92 ± 2.16 14.17 ± 2.00 15.75 ± 2.51 10.00 ± 0.97
Run 60 13.49 ± 2.71 13.89 ± 1.82 10.63 ± 1.42 12.70 ± 1.66 8.95 ± 0.79
Run 100 9.85 ± 1.53 10.36 ± 0.69 8.96 ± 0.74 9.33 ± 0.88 7.34 ± 0.48
Run 200 6.44 ± 0.78 7.24 ± 0.33 6.42 ± 0.25 6.75 ± 0.54 5.89 ± 0.34
Walk 30 16.81 ± 2.63 15.92 ± 2.74 15.34 ± 2.80 17.00 ± 2.63 11.81 ± 1.02
Walk 60 14.47 ± 2.02 14.31 ± 2.10 13.75 ± 1.92 15.41 ± 2.16 10.32 ± 0.88
Walk 100 10.44 ± 1.34 9.88 ± 1.11 10.32 ± 0.94 11.02 ± 1.43 8.98 ± 0.76
Walk 200 7.43 ± 0.94 6.11 ± 0.79 6.03 ± 0.47 6.89 ± 0.69 5.34 ± 0.43

APPENDIX B: ADDITIONAL RESULTS

The average estimation accuracies (over 10 runs) together
with the standard deviation for activities ”Throw and catch
football”, ”kick soccer ball”, ”Micheal Jacson style”, ”Run”,
and ”Walk” are shown in Table II.

V. COMPUTATIONAL COMPLEXITY OF THE PROPOSED
METHOD

In this section, we consider the number of operations
(addition and multiplication) for one sweep of our MCMC
sampling method. The number of operations for sampling
{zi}Ni=1 (N is the number of training data) based on Eqs.
3 and 4 is in O

(
NK(Mx + My)

)
time (K is the number of

the dictionary atoms). The number of operations for sampling
{si}Ni=1 based on Eqs. 10 and 11 is in O

(
NK(Mx + My)

)
time. The time complexity for sampling {wk}Kk=1 is dom-
inated by the computation of the inverse of Σw which is
in O(N3) time. The number of operations for sampling
{dxk}Kk=1 and {dyk}Kk=1 based on Eqs. 23 and 27 is in O(NK2)
time. The time complexity for sampling γx, γy, γs and γxy
are in O(KMx), O(KMy), O(KN) and O(NK(Mx +My))
time respectively. Hence, the computational complexity for
one sweep of the MCMC method is approximately in
O(NK(Mx +My +K) +N3) time.
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