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Abstract—Estimation of a location parameter based on noisy II. ESTIMATION AND ASYMPTOTIC VARIANCE
and binary quantized measurements is considered in this legr. L :
We study)t/hg behavior of the Craner—Rao bound as a function of From th_e deflnltlon _O_f the problem, the binary outputs have
the quantizer threshold for different symmetric unimodal noise the following probabilities
distributions. We show that, in some cases, the intuitive abice of _ 1
threshold position given by the symmetry of the problem, plaing ; — o P >m) =P+ Vi>mn)=1-p,
the threshold on the true parameter value, can lead to locayl -1, PYy<7)=P@+Vi<m)=F(r9—1),

worst estimation performance. (1)
Index Terms—Parameter estimation, quantization. thus, if we knewry, F' andp we could obtain: with
z=1—-F""(p). (2)
|. INTRODUCTION This indicates that if we have an accurate estingaté p, we
can use it to obtain an estimak of x

Reduction of production costs of sensors and communica- A .
tion devices lead to the emer f ignal i X=m-F"(/). )
gence of a new signal processing
area, sensor networks. In a sensor network, a large numhiew, note that% is a Bernoulli variable with parameter
of sensors is used to gather information on some physids a consequence, an efficient estimatomppfvhich can be
guantities (pressure, humidity, temperature) or to detieet N 1_i
occurrence of some events (dam failure, fife) [1]. Due to the‘:'(ad nks). iy = Z 7+ Observe that, for large/, the
large number of sensors, which in some cases communicfeor ¢, of this estimator is approximately normal with zero
wirelessly, the communication rate available for traningt mean and varlanc"—"(1 p) — Flro= I)[l Fro=z)]
the sensor measurements is constrained. A possible wayeort To obtain the asymptotlc variance of this estlmator we can
sensors to communicate under this constraint is to consider study how a small erroe, on the estimation op is related
the measurements are coarsely quantized, for example asirig a small errok, on the estimation of. We can use a first
one bit quantizer. order approximation op +¢, = F (1o — x — €,;) aroundz to
This is the background motivation for this work, in whichobtain
we study estimation based on binary quantized measure- = dF' (o —x)
ments. In a more detailed way, the estimation problerd ™~ F o —a)te—4q =p=ef(n-z). (4)
is the following: estimate the scalar parameter € R, This givese, ~

{I)ep, indicating that for largeV

from N noisy measurementd, =« + Vi, k = 1, , N}, S

which are quantized{i, =Q (Y), k=1, ---, N}. The  var(e,) ~ Var(e,) _ 1 F(ro—2)[1—F(rn—z)]
noise{Vy, k=1, ---, N} is a sequence of real, independent fA(o—=x) N f2 (10— )

and identically distributed random variables agdis the (5)

In fact, it can be shown[[2] that the simple and intuitive

binary quantizeQ(Y}) = signYy, — 7p) € {—1,+1}.
The specific objective of this work is to characterize how theestlmator ofz_defined above is the maximum likelihood
stimator (MLE) and its asymptotic variance is equal to the

uantizer threshold, affects the estimation performance an%
d H P ramér—Rao bound (CRB). This means that the estimator is

what its optimal value for different noise distributions Ia woticall imal in t ¢ 4 with
what follows, F' denotes the cumulative distribution functiorfSyMptotically optima in terms of variance compared wi
other unbiased estimators.

(CDF) of the noise andf its probability density function :
(PDF). We assume that(v) is a strictly positive function with _The asymptotic variance and the CRB are a function of the
differences = 7y — x between the parameter and threshold

even symmetry and decreasing for- 0. Specific distributions
for which these assumptions hold are the Gaussian distsigut values
the Cauchy distribution, the Laplacian distribution anidttaé CRB(c) = N"!'B(e) with B(e) = w (6)
generalized Gaussian class of distributions. f2(e)
Therefore, we can directly study the influence of the thriekho
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IIl. COMMONLY USED SYMMETRIC NOISE DISTRIBUTIONS

a) Gaussian:a usual case of unimodal distribution is
the Gaussian distributiorf; (v) = [6/7] ' exp [-v2/82],
where § is a scale parameter. This case is analyzed_in [2]
and [3], where it is shown that the minimum value Bf(¢)
is obtained fore = 0 and thatB (¢) increases exponentially
to infinity when |¢| increases to infinity. Also, it is shown
that the minimum relative loss of estimation performanceawi
respect to (w.r.t.) the MLE with continuous measurements is
5 or approximately2dB (decibel), which is a small loss if we
consider how coarse the informa-tion tha-t W-e h-ave s, :Fig. 1. PDF for the uniform/Gaussian distribution. The eentegion is

b) Cau?hy: a stangiard family OT O_"St“k?“t'ons’ that ISunif.orrﬁ with width o, while the left and right sides are éaussian with standard
used as noise model in robust statistics, is the Studentgeliation parametes.
family [4], a specific member of this family that is used to
model impulsive noise is the heavy-tailed Cauchy distidut at = = 0 we havel — 2F (0) = 0, and only the second term
fo () = %1% For this distribution, if we evaluate is non-zero. Asf(") (0) = 0, 92 = 0 ate = 0 and this is an

+(%) extremum point. To verify if it is @ minimum or a maximum,
we calculate the second derivative:

B (g), we find a behavior similar to the Gaussian case: 0
is the minimum point and (¢) increases withe|. In this case,
the2relative loss w.r.t. the continuous measurement egiima dQ_B
is - or approximately).9dB, which is even smaller than the  d=2
Gaussian loss.

¢) Laplacian: another common distribution that is used ()1 - F ()] {6f(1)2 () =2/ () A (6)} } '
to model impulsive noises is the Laplacian distribution

=—2+ j”%@) X {—3f2 () fV (e)[1 — 2F (e)] +

_ B 1 £2(0)
fr(v) = 2 exp(—|%]). For this distributionB (¢) in (6) Therefore, ae =0 we have'qs| = -5°pm —2anda
can be calculated ana'ytica”y condition to have a local minimum is
B(e) = ° [2 exp (\g\) - 1] @) — f®(0) > 4f%(0). ®)

and we can easily see the same type of patter-ag) is the This condition can be easily verified in the Gaussian and
minimum and the function increases exponentially wigh. ~Cauchy cases, however, as we present next, it is not true for

Note that the optimal performance now @RrB (0) = &, all symmetric unimodal distributions.
which is exactly equal to the CRB for continuous measure-
ments, therefore well-tuned binary quantization, in thaseg V. ASYMMETRIC BINARY QUANTIZATION

cause.;sl no loss tc;f perfrc])rmance.l hreshold I A. The uniform/Gaussian case
In all cases above, the optimal thresholds= x, optima . . . . . .
P 4=, op Condition [8) is false iff ® (0) = 0, i.e. if the noise PDF is

guantization is symmetrid,e. with equiprobable outputs. As - , X o
2 is unknown, a possible way to achieve in practice thfjeat at the origin. Thus, the first case that comes into minhkas t

small performance losses indicated above is to use its b%g{form d|str|l3_ut|qn. We can add two Gaussmn %‘“’5‘0“?“?'
the uniform distribution to respect the regularity cormtit

approximation based on the measurements whicK jshis ; - : "
gives rise to the adaptive approaches proposed in[[2], [8] & quired for the validity of the CRB [8, p. 67]. Thus, conditi

[6]. is false for the following PDF (see Figl 1):

From the examples above, intuition seems to indicate that 1 L (vrg)?
the symmetric behavior of optimal quantization may be a<char far (v) = Gy exp [_5 (T) }
acteristic that can be generalized to all symmetric unirhoda pourv < —3,
distributions [7]. Unfortunately, our intuition is wrong ithis .
case, not only this is not true for all unimodal distribution o (v) = fu(v) = CVoro
but it happens that, = « can be locally the worst choice for pour — ¢ <v < g,
the quantizer threshold. N2

fGR( ): 1 exp [_5 (71*5)
IV. LOCAL CONDITION FOR SYMMETRY Cvemo 7

To prove that our intuition is wrong, we study the local pourv > g,
behavior of B (¢) arounds = 0. We denotef(™ the n-th _ o )
order derivative off and we imposef(") (0) = 0. whgreC =1+ \/2%0 is a n.ormallzanon cqnstant.

For Symmetric unimodal distributionﬁ(a) — f (—E) and F|gm ShOWSB (E) fOI‘ th|S PDF. To Ver|fy that the bound
F () =1— F(—e¢), thus B (¢) has even symmetry. represents correctly the behavior of the estimation vadan

The first derivative ofB (¢) w.r.t. € is we simulated the MLEL0® times for blocks of sizeV = 500

a5 P2 () [1 = 2F ()] — 2F () [1 — F ()] F (e) with ¢« = 1 and o = 1. The simulation results were used

de f3 (5) ’ 1The tails need not to be Gaussian, any decreasing tail casduk u




MSE

Fig. 2. CRB and simulated MLE MSE for uniform/Gaussian noBeth the
bound and simulated MSE were evaluated for a number of sample- 500
and fore in the interval[—2, 2]. The MSE for the MLE was evaluated using
105 realizations of the sample blocks. We considered the fatiguwnoise
parametersac = 1 ando = 1.

to evaluate the mean squared error (MSE). As expected,
bound and the simulated MSE are concave arognd 0,
therefore, setting the threshold to the parameter valwealy

the worst choice. There are two symmetric minima around
e =0, as a consequence, optimal quantization is asymmetric,

with the threshold being shifted to the right or the left oéth
true parameter value slightly more thgn

B. The generalized Gaussian case

We can also look for less straightforward cases, without the

central uniform behavior, for whicli(8) is false, for exampl

the family of generalized Gaussian distributions (GGDE [9]

faap (v) = ﬁ exp (— \%]6). B> 0 is a shape parame-
ter that allows to control the flatness of the distributioaward
zero.

The first derivative offc¢p at zero is not defined fo# < 1,
thus we are constrained to analyze the cases wherd. The
second derivative of sgp at zero is—oo for 1 < g < 2. For

MSE

Fig. 3. CRB and simulated MLE MSE for GGD noise. Both the bound
and simulated MSE were evaluated for a number of samples 500 and

for ¢ in the interval[—1, 1]. The MSE for the MLE was evaluated using
105 realizations of the sample blocks. We considered the fatiguwnoise
parameters3 = 4 and§ = 1.
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Fig. 4. CRB and simulated MLE MSE for GGD noise. Both the bound
and simulated MSE were evaluated for a number of samples: 50 and

for e in the interval[-1, 1]. The MSE for the MLE was evaluated using
10° realizations of the sample blocks. We considered the fatigunoise
parameters = 4 and$ = 1.

the Gaussian casg (= 2) the second derivative is negativedepends not only on information about the parameter, bot als

and respectd[8). However, fgr > 2, the second derivative
is zero anck = 0 is a maximum pointB (&) for the GGD is

given by
1 |e|P
-2 o )
’ (10)

1

5212 (B

ﬂQ

B(e) =

on information about the noise distribution.

To verify the concave behavior around= 0 even in the
cases where the CRB is not supposed to be tightfor small
N, we simulated the MLEO?® times for N = 50 and the same
GGD parameters previously used. The CRB and the simulation
results are shown in Fig] 4.

The results are given for a smaller intereak [—0, 3; 0, 3]
when compared to the results f&f = 500 because, for a

The shape of this function is shown in Fig. 3 through the CREn4| N, large= may generate infinite estimates with a high
for 3 =4,6 =1andN = 500. The simulated performance of 5 opability (X| = +oo when all the binary measurements
10° realizations of the MLE are also shown in this figure. Thgaye identical values).

bound is also close to the estimation performance in this.cas \we can see that the MLE MSE still have the concave shape
Here again, the optimal threshold position must be shifteg, nge — 0, even if the bound is looser than fof = 500.
away from the parameter and the optimal shift depends on  raomark: when the noise PDF is flat around zero, the
the noise scale factar This shows that the optimal quantizefyonavior of the bound seems to be linked to the fact that,

asymptotically, the boundaries of the flat zone are very in-
formative (the MLE for the location parameter of a uniform
distribution depends on the maximum and on the minimum
of the measurements). However, in the GGD case, the result

+oo
I 2*~lexp (—2) dz is the Gamma function and

0
w

v (z,w) = [ 2" Lexp (—z) dz is the incomplete Gamma function.
0

2r (x)



V3t e - symmetric. We can easily see this effect through the canditi
151 . for B’ (0) to be a local minimum:
—le
1
X 1 : — = fP(0) > 47 (0), (14)
0 (1-2q)
0.5 i as(l_—gq)g is a strictly positive and increasing in it can hap-
| | | pen for some noise distributions that wheis zero or small
02 4 6 8 10 the condition is not verified and we have asymmetric optimal
5 guantization, then if the channel degrades; 0 becomes a
Fig. 5. |e*| = ‘arg min B (¢)| as a function of the shape parametefor 0@l minimum and symmetric quantization becomes optimal.

GGD with fixed standard deviation.
VII. CONCLUSIONS

seems less intuitive, as the uniform behavior is not presentpifferently from what is intuitively expected, we have
In this case, it seems that the pOintS of the minima deﬁ@ﬁown in this letter that, when we estimate a location pa-
an equivalent uniform region, if we look from a locatioryameter based on binary quantized noisy measurements, the
parameter estimation point of view. It is interesting toejot symmetry and unimodality of the noise PDF does not imply
as it is shown in Fig[]5, that for a fixed GGD standarghat the optimal quantizer must be symmetiie, with the
deviation s, when we increase, the PDF gets closer to threshold chosen to have equiprobable outputs. Even if this
the uniform distribution and the two Optimaltend Smoothly is true for Comm0n|y used noise PDF (Gaussian’ Ca_uchy
to the boundaries of the uniform distributiarr /3. and Laplacian), we can find cases (uniform/Gaussian and
GGD) where this is not only suboptimal but it is also locally
the worst choice. This means that the optimal quantization
strategy depends on the noise distribution and not only en th

Until now, we considered that the estimator has direglarameter being measured. Moreover, we verified that if we
access to the measurements. We can consider a more realigti@duce a noisy channel (BSC) in the model, then the class
situation where the sensor is distant and transmit the inatf unimodal noise distribution for which optimal quantizat
measurements through a noisy channel, for example a bingrgymmetric becomes larger as the channel noise is inaease
symmetric channel (BSC). The BSC changes the sign of aFinally, notice that asymmetry might also appear in detec-
binary measurement with probability < 1. Therefore, the tion of weak signals based on binary quantized measurements
estimator receives-1 with probability In this case, it can be showhn [10] that detection performance

is directly related to the functio (¢) studied here.

VI. EFFECT OF A NOISY CHANNEL

r=q+(1—2¢)F (10 —x). (11)

Similarly to the perfect channel case, we can use the fregyuen ACKNOWLEDGMENT
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invert the function to obtainX: comments.
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