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L' Control Theoretic Smoothing Splines

Masaaki Nagaharalember, IEEEand Clyde F. MartinFellow, IEEE

Abstract—In this paper, we propose control theoretic smooth-
ing splines with L' optimality for reducing the number of
parameters that describes the fitted curve as well as removin
outlier data. A control theoretic spline is a smoothing splhe
that is generated as an output of a given linear dynamical
system. Conventional design requires exactly the same nureb
of base functions as given data, and the result is not robust
against outliers. To solve these problems, we propose to uge
optimality, that is, we use theL' norm for the regularization term
and/or the empirical risk term. The optimization is described
by a convex optimization, which can be efficiently solved via
numerical optimization software. A numerical example shows the  Fig. 1. Control theoretic spline as a robB(s) that draws a smooth curve
effectiveness of the proposed method. y(t) with a control inputu(t) based on given data.

Index Terms—Control theoretic splines, smoothing splinesL!
optimization, convex optimization.

actuator system of the robot (see Hi§. 1) has just a small area
of memory. The other drawback is that the spline is not robust
[. INTRODUCTION against outliers in observed data. In other words, coneaati

The spline has been widely used in signal processing, rintrol theoretic splines are sensitive to outliers. Torcme
merical computation, statistics, etc. In particular, #meooth- these drawbacks, we propose to usé optimality in the
ing splinegives a smooth curve that has the best fit to givedesign. For reduction of the number of parameters, we etiliz
noisy data([l],[2]. The smoothness is achieved by limitine sparsity-promoting propertgf the L' norm regularization,
the L2 norm of them-th derivative of the curve as well asalso known as LASSO (least absolute shrinkage and selec-

minimizing the squared error (or empirical risk) betweetadation operator) [[9], [[10]. For robustness against outlievs,

and the curve. adopt theL! norm for the empirical risk minimizatiori [11],
The control theoretic smoothing spling] is generalization assuming that the noise is Laplacian, heavier-tailedibigton

of the smoothing spline using control theoretic ideas, bicvh than Gaussian that is assumed in conventional stlidise

the spline curve is determined by the output of a line@oblem is then described in convex optimization, which can

dynamical system. It is shown inl[4] that control theoretiB€ efficiently solved by numerical computation software, e.

splines give a richer class of smoothing curves relative &x on MATLAB [L4], [15]. For numerical computation,

polynomial curves. Figll1 illustrates the idea of the contrdve implement the design procedure on MATLAB programs

theoretic spline; given a finite number of data, the rob#tith cvx, access[[16] to obtain the programs. Based on the

modeled by a dynamical system with transfer functigfs) Programs, we show a numerical example that illustrates the

is driven by a control input:(¢) and draws a smooth curveeffectiveness of the proposed method.

y(t) that fits to the data. The problem of the control theoretic The remainder of this article is organized as follows: Sec-

spline is to find controk(t) that gives an expected motiontion [ reviews the conventional?-optimal control theoretic

of the robot, based on the modél(s) and the data set. Spline and discusses drawbacks of thie spline. Sectio Il

Furthermore, the control theoretic spline has been progedfermulates the problem of the proposed spline to overcome

be useful for trajectory planning ifnl[5], mobile robots if,[6 drawbacks in theL? spline, and show a procedure to the

contour modeling of images iri|[7], probability distributio solution. A numerical example is included in Sectionl IV.

estimation in[[8], to name a few. For more applications and<€ctior;¥ draws conclusions.

rather complete theory of control theoretic splines, sée [4

Conventional design of control theoretic splines is based !l L? CONTROL THEORETIC SMOOTHING SPLINES
on L? optimization [3], and has two main drawbacks. One Consider a linear dynamical systefhdefined by
is that we need the same number of parameters as the data .
: - t) = Az (t) + bu(t), 0)=0eR",
to represent the fitted curve. If the data set is big, then the 2(t) Tw( )+ bu(®),  2(0) Q)
number of parameters becomes crucial when for example the y(t) =c z(t), t=0

whereA € R™*™, b, c € R". We assuméA, b) is controllable
Copyright (c) 2012 |IEEE. Personal use of this material isnyited. < 1 0,€ € €4, b)
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data set

D .= {(tl,yl), (tg,yl), cee (tNayN)}

is given, where, ..

0 <t <ty <---<ty=:T,andy,...,yny are noisy

sampled data of the output ¢fl (1). The objective here is to find
controlu(t), ¢ € [0, T] for the dynamical systeni](1) such that

y(t;) = y; fori =1,..., N. For this purpose, the following
guadraticcost function has been introduced In [3]:

T N
J () = A / ()2t + S wily(t) - w2, @)
=1
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[1l. L' CONTROL THEORETIC SMOOTHING SPLINES

Before formulating the design problem @f' spline, we
prove the following lemma:

., ty are sampling instants which satisfy Lemma 1:Assume that controk(t) is given by

N
u(t) = Z Oig(ti — 1), 8

for somed; e R, i =1,2,...,N. Then we have
N
y(t) =3 0ilg(t =)o gt: =), tE[0.T). (9
=1

In particular, forj =1,2,..., N, we have

where A > 0 is the regularization parameter that specifies

the tradeoff between the smoothness of conir@)) defined

in the first term of [[R) and the minimization of the squared

empirical risk in the second term. Alsay; > 0 is a weight
for i-th squared lossy(t;) — v:|?>. Then the problem of.?
control theoretic smoothing spline is formulated as fobow

Problem 1 {2 control theoretic smoothing splineFind
controlu(t) that minimizes the cosf(u) in (2) subject to the
state-space equation inl (1).

The optimal controk: = «* that minimizesJ(u) is given
by [3], [4]

N
wi(t) =D 0ig(ti 1), (3)
=1
whereg(-) is defined by
c'e7h if 7€0,7)
p— ) 3 ) 4
9(7) {O, otherwise. @)

Note thatc"e47b in g(7) is the impulse response of the

dynamical systeni{1). The optimal coefficiefifs. . ., 0% are
given by

0 = [67,....0%] =\ +WG) Wy, (5
where

W .= diag(wy, .. 7.

(6)

The matrixG = [G;;] € RV*Y in (@) is the Grammian
defined by

Gij = (g(ti — ), g(t; —))

T
/ g(ti - t)g(tj - t)dt7 i,j
0

'7wN)a y::[ylv"'ayN

()

1,...,N.

An advantage of th&.? control theoretic smoothing spline

N
y(tj) = Z 6‘le7 (10)
i=1

Proof: If u(t) = 0 for ¢ < 0, then the solution ofC{1) is
given by

t T
/ c" At bu(r)dr = / g(t — T)u(r)dr
0 0

= <g(t - ')a u>
Substituting[(B) into the above equation givies (9). Theomfr

y(t)

the definition ofG;; in (), we immediately havé (10). ®
By this lemma, the erroy(t;) — y; is given by
N
y(t_])_yJ:ZHZGl]_yza j:172a"'1N1
i=1
or equivalently
y(t1) —y
: =GO — vy, (12)
y(tn) —yn

where@ := [#;,...,0x]" andy is given in [6). Based on
this, we consider the following optimization problem:

Problem 2 (.!-optimal spline coefficients)ind 8 ¢ RY
that minimizes

Jp(0) :=1l10[l1 + [W(GO — )3, (12)

wheren > 0 andp € {1,2}.

The regularization term|@||, is for sparsity of coefficients
01,...,0N, as used in LASSO[[9],.[10]. Also, smallf|
leads to smallL! norm of controlu since from[(8) we have

T
/ u(t)ldt < C[6])1,
0

is that the optimal control can be computed offline via equmati for some constan€ > 0. On the other hand, the empirical
(B). However, the formula indicates that if the data si¥ds risk term, ||IW (G0 — y)||, is for the fidelity to the data. For
large, so is the number of base functionsuif(t), as shown p = 1, additive noise is assumed to be Laplacian, a heavy-
in (@). This becomes a drawback if we have only a smathiled distribution, to take outliers into account, whijle= 2
memory or a simple actuator for drawing a curve with this related to Gaussian noise. In each case, cost fundgih)
optimal controlu*(¢). Another drawback is that thB? spline is convex iné.

is not robust at all against outliers, as reported in [13i¢sithe Unlike L? spline, the solution to the optimization in Prob-
squared empirical risk if12) assumes that the additiveenoilem[2 cannot be represented in a closed form. However, by
is Gaussian. To solve these problems, we addpoptimality using a numerical optimization algorithm we can obtain an
for the design of spline. approximated solution within a reasonable time. For exampl
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for the optimization withp = 2, we can adopt FISTA (Fast
Iterative Shrinkage-Thresholding Algorithm) [18], whighan
extension of Nesterov’s work [19] to achieve the convergen
rate O(1/k?) at k-th iteration. On the other hand, fer= 1,
there is no algorithm achieving such a rate, but the op
mization is still convex and we can use an efficient conve
optimization software, such asvx on MATLAB [14], [15].

Remark 1:The optimization is related to the following
signal subspace

V= {u € L?*0,T):u= i@ig(ti —), 0 € R}.

i=1

That is, we seek the optimal contralin V such that the

coefficients minimize[(12). Note thdy(t1 —),...,g(ty —-)} e
is a basis oft due to the controllability and observability of time [sec]
system [(IL).

Remark 2:Although we have assumed that the initial stateig. 2. Simulation result of.! spline: original curve (dashed line), observed
x is 0, we can also set the initial state(0) = =z, as a data (circles), fitted curve (solid line).
design variable in a similar manner. In this case, the output
y(t) becomes Lt optimal coeficients

50F T T T T T

N
y(t;) =cleMmo+> 0,Gij, j=12,...,N,
=1
and the optimization is formulated by

30

20

min {n0]s + [W(Hzo + GO - y)llj},  (13)
whereH := [eA e, ... eA V] T, This is also a convex op- ’
timization problem and can be efficiently solved via numeric “of

optimization softwares.

Remark 3:The choice of parameters and w; influences
the performance of curve fitting. The regularisation partame
n controls the trade-off between the sparsity and fidelityhef t R,
solution; a largem leads to a sparser solution (i.e. mdkés
are zero) while a smallef leads to a smaller empirical risk.

On the other handy; may be chosen to be larger if the datgig. 3. coefficients ofr.! spline
y; contains smaller error. These parameters should be chosen
by trial and error (e.g. cross-validatidn [10]).

that is, the data are sampled at rat¥ [Hz] (100 samples
IV. NUMERICAL EXAMPLE per second) from initial time; = 0.1. The observed data

In this section, we show a numerical example that illugl> Y2 -+ -»¥s01 areé assumed to be disturbed by additive Lapla-
trates the effectiveness of the proposkd control theoretic cian noise with mea and variancel. See FiglP for the

smoothing spline. We set the dynamical systemwith transfer original curveyoig(t) and the observed_dam, Y2, -+ Y501
function For these data, we compute the optimal coefficients of the
P(s) = 1 L' control theoretic spline withp = 1 corresponding to
83410 Laplacian noise. The design parameters are= 0.01 and

w; = 1 for all ¢ (i.e. all elements have equal weight). We

State-space matrices fdét(s) are given by = : :
assume that the initial state(0) = x, is also a design

00 -1 1 0 variable, that is, we solve optimization {13).
A=110 0}, b=|0], c¢=|0}. Fig.[2 shows the resulting fitted curygt) computed with
01 0 0 1 the L'-optimal controlu(t). We can see that the data are
We assume the original curve is given by considerably disturbed by Laplacian noise, but the recon-
structed curve well fits the original curve. To see the sparsi
Yorig(t) = sin(2t) + 1. property of theL!-optimal coefficients, we plot the value of

the coefficients in Figl]3. As shown in this figure, tfié-
optimal coefficients are quite sparse. In fact, the number of
t;=01+001(: -1), i=1,2,...,501, coefficients whose absolute values are greater thadl is

The sampling instants are given by



L2 optimal coefficients
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tion. The design is formulated as coefficient optimizatidthw
an L' regularized term and ah' or L? empirical risk term,
which can be efficiently solved by numerical computation
softwares. A numerical example has been shown to illustrate
the effectiveness of the proposéd spline.

Future work may include extension to constrained splines
as proposed in_[20], and extension to sparse feedback tontro
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Fig. 4. Coefficients ofL? spline [
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Fig. 5. Error between original curvg(t) and fitted curve by.! spline (solid 2
line) and L2 spline (dashed line) (12]

just5 out of 501 coefficients. On the other hand, we show thgg)
L2-optimal coefficients with\ = 0.0001, see equatiori{2), in
Fig.[4. This figure indicates that the coefficients are notspa
at all and theL? spline requires almost all the base functiongs;
to represent the fitted curve. Note that the reconstructedecu
by the L? spline also well fits the original curve as shown
in Fig. [5, which shows the error between the original curvee)
and the fitted curves. This figure shows that fitespline is [17]
almost comparable with thé! splmel [t
In summary, we can say by the simulation that the proposed
L' control theoretic smoothing spline can effectively redudé9l
the effect of noise in data and also give sufficiently sparse
representation for the fitted curve. [20]

[14]

V. CONCLUSION 21]
In this paper, we have proposed tfié control theoretic
smoothing splines for noise reduction and sparse reprzmser[gz]

3 Another example in[[13] shows that ah' spline outperforms arf.?
spline in view of outlier rejection.

as discussed in [21]. [22].
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