Abstract:
Co-salient object detection has attracted much more attention recently as it is useful for many problems in vision computing. However, most of existing methods emphasize ...Show MoreMetadata
Abstract:
Co-salient object detection has attracted much more attention recently as it is useful for many problems in vision computing. However, most of existing methods emphasize detecting the common salient objects in a small group of images and the objects of interest in those images have clear borders with respect to the backgrounds. In this work, we propose a novel co-saliency detection method, which aims at discovering the common objects in a large and diverse image set composed of hundreds of images. First, we search a group of similar images for each image in the set. Our method is based on the overlapped groups. We handle each group with an unsupervised random forest to extract the rough contours of the common objects. Then a contrast-based measure is utilized to produce the saliency map for an individual image. For each image in the set, we collect all the maps from the groups that contain the image and fuse them together as the inter-saliency map for the image. The final co-saliency map is computed by combining the inter-saliency map with the single saliency map of this image. Experimental evaluation on an established large dataset demonstrates that our approach attains superior results and outperforms the state-of-the-art methods.
Published in: IEEE Signal Processing Letters ( Volume: 22, Issue: 2, February 2015)