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Source separation of multimodal data: a

second-order approach based on a constrained joint

block decomposition of covariance matrices
Bertrand Rivet

Abstract—Blind source separation aims at extracting unknown
sources from mixtures of them. When multimodal data are
considered (i.e. multi-set or multi-kind), some joint analysis
are needed, for instance multi-set canonical correlation analysis
or independent vector analysis. However, these methods only
consider unidimensional sources in each set/modality. In this
letter, an approach for dealing with multidimensional sources
in each modality is derived. It assumes that the underlying
dimensions in each modality for each source are known and it is
based on a piecewise second order stationary model. Based on the
likelihood, a contrast function is derived for the Gaussian case
and is shown to be a constrained joint block decomposition of
covariance matrices. Numerical simulations exhibit the merit of
using a few number of modalities: it improves the quality of the
separation and reduces the variance on the estimates. Finally, the
proposed method outperforms the multi-set canonical correlation
analysis and the independent component analysis applied to each
individual modality followed by a clustering.

Index Terms—Blind source separation, multimodal data, mul-
tidimensional signals, joint block matrix decomposition

I. INTRODUCTION

Nowadays, it is classical to record a physical phenomenon

at the same time with several kinds of sensors: for instance,

brain activities can be recorded using electroencephalography

(EEG), magnetoencephalography (MEG) and functional near-

infrared spectroscopy (NIRS). Moreover, the recorded signals

can be contaminated by electrocardiograms (ECG) artifacts

and/or eye movements artifacts (e.g., blinks). As a conse-

quence, one deals with multimodal1 data, i.e. the algorithms

can process simultaneously several sets of data recorded by

several kinds of sensors to improve the estimation compared

to the use of a single modality: for instance, one can also

use extra ECG sensors placed on the chest and/or an eye-

tracker to improve the quality of artifacts estimation compared

to use only EEG or only MEG sensors. It is worth noting

that multimodal data (i.e. data recorded from several kinds

of sensors) are not similar to multidimensional data (i.e. data

recorded from several sensors of the same kind).

Moreover, the recorded signals are often mixtures of several

initial sources of interest which must be estimated to analyze
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1Note that in this article, multimodal does not refer to the statistical
meaning: i.e., it does not refer to a probability distribution function with
several modes, but to several sets of data or several modalities used to record
the data.

the process. This problem can be tackled by the blind source

separation framework (BSS) [1]. In particular, independent

component analysis (ICA) has been developed to separate

I sources si(t) ∈ R, i ∈ {1, . . . , I} that are statistically

mutually independent [2], [1]. More recently two extensions

of ICA have been proposed to address two distinct practical

problems. Firstly, when considering simultaneously two or

more sets of data, the joint blind source separation (joint-

BSS) aims to achieve a separation of a multi-set data such

that the I recovered sources s
[k]
i (t) ∈ R are aligned for

each dataset k ∈ {1, . . . ,K}, with K the total number of

datasets. Joint-BSS can be obtained for example by multi-set

canonical correlation analysis (MCCA) [3], [4], mCCA+joint-

ICA [5] or independent vector analysis (IVA) [6]. Secondly,

the separation of I multidimensional sources si(t) ∈ R
ni ,

with ni the dimension of the ith source, assuming that

multidimensional sources are mutually independent (i.e. inter-

source independence) while allowing dependence between

each source components (i.e. intra-source dependence) re-

lies on multidimensional independence component analysis

(MICA) [7] or independent subspace analysis [8].

The multimodal separation of multidimensional sources

tackled in this letter can be seen, in a very general way, as

a merging of these two extensions: processing simultaneously

K sets of mixtures of I multidimensional sources s
[k]
i (t) ∈

R
n
[k]
i , k ∈ {1, . . . ,K} and i ∈ {1, . . . , I}. The proposed

multimodal multidimensional blind source separation (MM-

BSS) approach extends the IVA since the sources are not

necessarily present in all sets and the dimension of the sources

can be different in each modality. The proposed algorithm

to separate the sources is based on a constrained joint block

decomposition of covariance matrices.

The remainder of this letter is organized as follows. Sec-

tion II describes the modeling of multimodal source separation

and the proposed algorithm to extract the multidimensional

sources. Section III presents the numerical results, before the

conclusions and perspectives in Section IV.

II. MULTIMODAL SOURCE SEPARATION

From the proposed modeling of MM-BSS (Section II-A),

a likelihood approach is used to express a contrast function

assuming that sources are piecewise second-order stationary

signals (Section II-B) by generalizing models of unimodal

unidimensional sources [9] and of unimodal multidimensional

sources [10], [11]. Finally, a constrained gradient based ap-

proach is expressed to optimize it (Section II-C).
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A. Multimodal multidimensional modeling

Let us consider K modalities and I multimodal multidimen-

sional sources: s
[k]
i (t) ∈ R

n
[k]
i denotes the vector of length n

[k]
i

related to the ith source in the modality indexed k at time t.

In each modality, the recorded signals are considered to be

instantaneous linear mixtures of these sources

x
[k](t) = A[k]

s
[k](t), ∀k ∈ {1, . . . ,K}, (1)

where s
[k](t) = [s

[k]†

1 (t), . . . , s
[k]†

I (t)]† and A[k] ∈ R
n[k]×n[k]

are the source vector and the full-rank mixing matrix of the

kth modality, respectively. n[k] =
∑I

i=1 n
[k]
i , and ·† denotes

the transpose operator. Model (1) is recast into components by

x
[k](t) =

I
∑

i=1

A
[k]
i s

[k]
i (t), ∀k ∈ {1, . . . ,K}, (2)

where A
[k]
i ∈ R

n[k]×n
[k]
i are column mixing sub matrices

related to the ith source of the kth modality so that A[k] =

[A
[k]
1 , . . . , A

[k]
I ]. Moreover, by denoting the full multimodal

source vector s(t) = [s[1]
†

(t), . . . , s[K]†(t)]†, model (1) is

written as

x(t) = As(t), (3)

where A is a block diagonal matrix whose ith diagonal block

is equal to A[k]. Moreover, let us introduce the multimodal

vector of the ith source s̃i(t) = [s
[1]†

i (t), . . . , s
[K]†

i (t)]†, and

s̃(t) = [s̃1(t), . . . , s̃I(t)]
†. Therefore, s(t) and s̃(t) are equal

up to a permutation matrix L: s̃(t) = Ls(t).

Finally, the MM-BSS problem corresponds to the estimation

of a set of K demixing matrices B[k] such that the components

y
[k]
i (t) of

y
[k](t) = B[k]

x
[k](t), (4)

where y
[k](t) = [y

[k]†

1 (t), . . . ,y
[k]†

I (t)]† with y
[k]
i (t) ∈ R

n
[k]
i ,

lie in the same subspaces as s
[k]
i (t), ∀k ∈ {1, . . . ,K}.

Indeed, this problem suffers from severe indeterminacies as

the original unimodal unidimensional or multidimensional

blind source separation problems: any set of n
[k]
i × n

[k]
i

invertible matrices W
[k]
i (1 ≤ k ≤ K) leads to the same

problem (2) when right multiplying A
[k]
i by W

[k]
i and left

multiplying s
[k]
i (t) by W

[k]−1

i . It is worth noting that, in the

separation formulation (4), the estimation of the set of matrices

B[k] is equivalent to estimate the mixing matrices A[k] since

B[k] =
(

A[k]
)−1

up to block permutations corresponding to

the arbitrary order of the sources.

B. Likelihood expression and contrast function

Let us consider that sources are piecewise second-order

stationary signals and that the partition of the observation

interval [1, T ] into P domains Dp, p ∈ {1, . . . , P}, is known.

Each domain Dp contains Tp samples such that T =
∑P

p=1 Tp.

Finally, the sources s
[k]
i (t) are assumed to be temporally

white, mutually decorrelated with a zero mean and wide-sense

stationary on Dp:

E
[

s
[k]
i (t)s

[k]†

i (t′)
]

= 0, if t 6= t′, ∀i, ∀k (5)

E
[

s
[k]
i (t)

]

= 0, ∀t, ∀i, ∀k (6)

E
[

s
[k]
i (t)s

[l]†

j (t)
]

= 0, if i 6= j, ∀t, ∀(k, l) (7)

E
[

s
[k]
i (t)s

[l]†

i (t)
]

= R
(p)

s
[k]
i

,s
[l]
i

, ∀t ∈ Dp, ∀i, ∀(k, l) (8)

where E[·] is the expectation operator, R
(p)

s
[k]
i

,s
[l]
i

is the mul-

timodal covariance matrix of source i between modalities k

and l on domain Dp. Assumptions (7) and (8) can be recast

in a more elegant global form by

E
[

s̃(t)s̃†(t)
]

= R
(p)
s̃,s̃ , ∀t ∈ Dp, (9)

where the full multimodal covariance matrix of the sources

R
(p)
s̃,s̃ is block diagonal, each block is of size ni =

∑K

k=1 n
[k]
i .

Therefore the multimodal covariance matrix of sources s(t) is

expressed by

E
[

s(t)s†(t)
]

= R(p)
s,s = L†R

(p)
s̃,s̃L, ∀t ∈ Dp, (10)

and has a structure denoted StructRs,s
≡ L†BDiagRs̃,s̃

L,

where BDiag· is the structure of a block diagonal matrix

defined by the indexed matrix. This means that R
(p)
s,s has the

structure of a block diagonal matrix left and right multiplied

by the permutation matrix L.

From these assumptions and with normally distributed

sources s
[k]
i (t), the log-likelihood of the described model is

L({{x[k](t)}Tt=1}
K
k=1; {A

[k]}Kk=1, {R
(p)
s,s}

P
p=1) =

−
1

2

P
∑

p=1

Tp

[

log det
(

2πR(p)
x,x

)

+Tr
(

R̂(p)
x,xR

(p)−1

x,x

)

]

, (11)

where Tr(·) is the trace operator, R
(p)
x,x is the full covari-

ance matrix of the multimodal multidimensional observations

x(t) = [x[1]†(t), . . . ,x[K]†(t)]† and

R̂(p)
x,x =

1

Tp

∑

t∈Dp

x(t)x†(t)

is its estimate. From linear model (3), the likelihood (11) can

be rewritten as

L({{x[k](t)}Tt=1}
K
k=1; {A

[k]}Kk=1, {R
(p)
s,s}

P
p=1) =

− T
〈

D
(

A−1R̂(p)
x,xA

−†, R(p)
s,s

)

〉P

p=1
+ κ, (12)

with ·−† the inverse of the transposed matrix and

〈

M (p)
〉P

p=1
=

1

T

P
∑

p=1

TpM
(p),

and where for any m×m positive definite matrices R1, R2

D(R1, R2) =
1

2

(

Tr(R1R
−1
2 )− log det(R1R

−1
2 )−m

)

,

and

κ = −
1

2

(

nT +
P
∑

p=1

Tp log det
(

2πR̂(p)
x,x

)

)

,
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with n =
∑I

i=1 ni =
∑K

k=1 n
[k] =

∑I

i=1

∑K

k=1 n
[k]
i . The

contrast function [2], [1] is then expressed as

C(A) =
〈

D
(

A−1R̂(p)
x,xA

−†, StructRs,s

(

A−1R̂(p)
x,xA

−†
))

〉P

p=1
,

(13)

where StructM (·) is the operator which orthogonally projects

matrix · onto matrix space of structure similar to M (i.e.

this operator puts to zero all entries outside the structure of

matrix M ) and R̂
(p)
s,s = StructRs,s

(

A−1R̂
(p)
x,xA

−†
)

. It is worth

noting that multimodal mixing matrix A is constrained to be

block-diagonal.

C. Constrained relative gradient based approach

The aim of MM-BSS thus leads to the following constrained

optimization problem

Â = argmin
A

C(A), s.t. A ∈ BDiagn, (14)

where BDiagn is the set of block-diagonal matrices defined

by pattern n = [n[1], . . . , n[K]]† (i.e. the size of the kth

diagonal block of A is equal to n[k]). It is worth noting that

an unconstrained joint block diagonalization (JBD) algorithm

cannot be used since the estimation of the mixing matrix A

will also contain some cross-modalities term (i.e. non null term

outside the block diagonal) that are undesired.

Optimizing criterion (14) is achieved by a relative gradient

based approach: the iterative estimation A(l) of A at the lth

iteration is expressed as

A(l) = A(l−1)

(

I− λ(l−1)∇C
(

A(l−1)

)

)

, (15)

where λ(l−1) > 0 is the step of the gradient method and

∇C(A) is the relative gradient [9] of (13) derived as

∇C(A) = −
〈

BDiagA

(

Struct−1
Rs,s

(

A−1R̂(p)
x,xA

−†
)

×

(

A−1R̂(p)
x,xA

−†
)

)〉P

p=1
+ I, (16)

with I the identity matrix and Struct−1
· (·) is the inverse of

the resulting matrix. In this study, the choice of λ(l) is set by

backtracking using the Wolfe conditions [12].

It is worth noting from (13), that MM-BSS can be inter-

preted as a joint block decomposition of a set of multimodal

covariance matrices, since D(·, ·) is a measure of discrepancy

between A−1R̂
(p)
x,xA

−† and R̂
(p)
s,s .

Moreover, one has to know the dimensions n
[k]
i of each

source i in each modality k to set the constraints on the

structure of the multimodal covariance matrices R
(p)
s,s . This

can be done in a semi-blind approach from the knowledge

on the experiment. However, in a fully blind context, these

informations are unknown and need to be estimated from the

data. This latter point is out of the scope of this letter and will

be addressed in later studies.

III. NUMERICAL EXPERIMENTS

First, to assess the quality of the estimation, a performance

index is presented (Section III-A). Two numerical simulations
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Fig. 1. Convergence rate of the proposed method: performance of the
separation against the number of iterations for three values of Tp.

are performed (Section III-B): convergence rate of the pro-

posed iterative method and influence of the number K of

modalities with comparisons with existing ICA, IVA and M-

BSS estimations.

A. Performance measurement and data generation

The multimodal multidimensional model (Section II-A)

suffers from indeterminacies due to the multidimensional

nature of the sources. Indeed, as pointed out in [10], the

multidimensional sources cannot be defined by the values

of mixing sub-matrices A
[k]
i , but rather by the sub-spaces

spanned by these sub-matrices. As a consequence, the average

performance index (PI) [13] to quantify the quality of the

separation is defined as the mean of cosines of the angles

between the subspaces [14] spanned by A
[k]
i and Â

[k]
i :

PI
(

Â
)

=
1

I

I
∑

i=1

PIi
(

{Â
[k]
i }k

)

, (17)

with the performance index of the ith source PIi
(

{Â
[k]
i }k

)

=
1
K

∑K

k=1 α
(

A
[k]
i , Â

[k]
i

)

where α(·, ·) denotes the average co-

sine between the two subspaces defined by the matrices

in arguments, computed as the mean of singular values of

pair (Q
[k]
i , Q̂

[k]
i ), with Q

[k]
i an orthonormalization of A

[k]
i . The

value of PI is in [0, 1]: the higher the PI value is, the better

the separation is.

During the simulations, the mixing matrices A[k] are gener-

ating as I + E , where E is a random matrix whose entries are

independently drawn from a uniform distribution in [−.4, .4].
This perturbation is large enough to show the behavior of the

method while assuring a convergence to the global optimum.

The covariance matrices R
(p)
s,s are drawn as U†U and then

vanishing theoretically null entries depending of the structure

of Rs,s with entries of U drawn independently from a uni-

form distribution in [−.2, .8] to ensure a correlation between

components and modalities. Finally, estimations of covariance

matrices R̂
(p)
s,s are drawn from a multivariate Wishart distribu-

tion with covariance matrix R
(p)
s,s and Tp degrees of freedom.

Finally, the observed covariance matrices R̂
(p)
x,x are expressed

as R̂
(p)
x,x = AR̂

(p)
s,sA

† + R̂
(p)
b,b, with R̂

(p)
b,b a perturbation matrix

(i.e. additive noise) drawn randomly as V †V so that its

diagonal entries are 10% of the diagonal entries of AR̂
(p)
s,sA

†.

B. Numerical simulations

The convergence rate of the proposed method is shown

on Fig. 1. The values of C(Â) and PI(Â) are displayed
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(a) Comparison with other methods

(b) Influence of the number of modalities

Fig. 2. Influence of the number of modalities K: performance of the
separation against K. The central mark is the median, the edges of the box
are the 25th and 75th percentiles. The whiskers extend to the extreme values.

against the number of iterations for three values of Tp. For

each plot, 20 random configurations are overlapped. In this

simulation, there are four modalities (K = 4) and three

sources (I = 3), with n1 = [2, 2, 1, 0]†, n2 = [1, 2, 0, 3]† and

n3 = [0, 2, 2, 4]†. For each realization, a random multimodal

mixing matrix A is generated while keeping fixed the observed

multimodal covariance matrices R̂
(p)
s,s . The iterative algorithm

is initialized with the identity matrix I. It is worth noting that

each realization converges to the same value of C(Â), for

a fixed Tp, highlighting the equivariance [15] of the crite-

rion (14). Furthermore, increasing the value of Tp improves

the estimation accuracy of R̂
(p)
s,s leading to a better estimation

of the multimodal mixing matrix A since 1−PI(Â) decreases

when Tp increases. Finally, there is a high correlation between

minimizing the contrast function C(Â) (13) and maximizing

the average PI (17).

In the second numerical experiment, the proposed method

is compared to ICA applied on each modality followed by

a clustering to reorder the estimated components, to IVA

followed by a clustering and to M-BSS applied on each

modality (Figure 2(a)). For both ICA and IVA, the clustering

method minimizes the angles between the subspaces spanned

by the columns of A[k] and of Â[k]. ICA, IVA and M-BSS

have been performed by a joint diagonalization algorithm [16],

by the algorithms described in [17] and in [10], respectively.

An additional method (JBD) is used for the comparison: it

consists of minimizing the proposed criterion (14) without

any constraints on A (i.e. joint block diagonalizing the set of

multimodal covariance matrices) and then projecting the esti-

mate Â on BDiagn. Thirty configurations are drawn randomly

with P = 2 and Tp = 10000. To compare with IVA method

(which is special case of the proposed method), the dimension

of the sources must be the same in all modalities: we choose

∀i ∈ {1, . . . , 4}, n
[k]
i = i, ∀k. Note that with one modality

(K = 1), IVA and ICA are equivalent and JBD, M-BSS

and MM-BSS are equivalent. The results highlight that the

proposed method outperforms all the other ones. These results

show that modeling the multimodal nature of the data increases

the estimation of the mixing matrix: IVA is better than ICA and

MM-BSS is better than M-BSS. The same positive behavior

is observed by considering the multidimensionality of the

sources: M-BSS is better than ICA and MM-BSS is better than

IVA. Finally, the constraints on the mixing matrix A for the

JBD are necessary to achieve a good estimate of it since MM-

BSS outperforms JBD. In practice, the initialization A(0) can

be obtained by a JBD estimate and projecting it onto BDiagn
or by IVA if the dimensions of the sources are reliable.

Finally, the influence of the number of modalities K is

shown in Figure 2(b) for general configurations. It consists of

extracting a bidimensional (n
[k]
1 = 2, ∀k) source (say s

[k]
1 (t))

from several modalities. In this experiment, for each number

of modalities K, 250 trial configurations are drawn randomly

with P = 2 and Tp = 10000 and different A, R
(p)
s,s and R̂

(p)
s,s .

The number of the other sources in each modality (Ik − 1)

is uniformly sampled from {1, 2, 3} and their dimensions n
[k]
i

are in {0, 1, 2}. The results are reported in Figure 2(b). It

is worth noting that increasing the number of modalities can

improve the quality of the extraction. Indeed, the median value

of PI1 increases with K. Moreover, a visual inspection leads

to observe that the variance decreases with the number of

modalities used. Even if the proposed MM-BSS is closely

related to a JBD of a set of matrices, one can see the positive

impact of explicitly taking into account the constraints on the

mixing matrix A (MM-BSS) instead of a global extraction

without embedded the multimodal constraints (JBD).

IV. CONCLUSIONS AND PERSPECTIVES

In this letter, the problem of source separation of multimodal

multidimensional signals has been considered. A contrast

function (13) has been derived based on the likelihood of

the multimodal mixing matrix that shares the equivariance

property. It has been shown that minimizing this contrast func-

tion leads to a constrained joint decomposition of covariance

matrices assuming a second order model for the sources. In

practice, an iterative relative gradient descent algorithm is used

which ensures a local convergence. The proposed method is a

generalization of both the unimodal multidimensional source

separation and of the multimodal unidimensional source sep-

aration. The numerical simulations show that modeling the

multi-modality nature of the signal outperforms separate ex-

traction followed by a clustering or a global extraction without

embedded the multimodal constraints. Furthermore, using a

few number of modalities can improve the quality of the

extraction. However increasing it too much will not further

improve it, but will only reduce the variance of the estimates.

Future studies will address this later remark from a theoretical

point of view using some information theory considerations,

as well as a theoretical performance analysis.
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