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Abstract

In this work, we consider linear-feedback schemes for the-user Gaussian broadcast channel
with noiseless feedback. We extend the transmission scloéft@zarow and Leung, 1984] by applying
estimators with memory instead of the memoryless estimateed by Ozarow and Leung (OL) in their
original work. A recursive formulation of the mean squarees achieved by the proposed estimators is
provided, along with a proof for the existence of a fixed poirtis enables characterizing the achievable
rates of the extended scheme. Finally, via numerical sitiomig.it is shown that the extended scheme can
improve upon the original OL scheme in terms of achievablesizas well as achieve a low probability

of error after a finite number of channel uses.

|. INTRODUCTION

We study the transmission of two independent messages aver-aser Gaussian broadcast channel
(GBC) with noiseless causal feedback, referred to in thkovidhg as the GBCF, focusing on linear-
feedback schemes. 1hl[1], Ozarow and Leung presented inmepater bounds on the capacity region
of the two-user GBCF, and showed that in some scenarios #rgget than the capacity region of the
GBC. In the following, we refer to the achievability schenregented in [1] as th©L schemeThe OL
scheme is a linear-feedback scheme that builds upon thengcbé Schalkwijk and Kailath (SK)_[2],
which achieves the capacity of point-to-point (PtP) Gaarssihannels with noiseless causal feedback
(NCF). Motivated by the optimality of the SK scheme for PtRachels, the works [3] and][1] extended
this approach to the two-user Gaussian multiple-accessehavith NCF (GMACF) and to the two-user
GBCF, respectively. For the GMACEF this extension achiehesdapacity region, however, for the GBCF
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this extension is generally suboptimal. The OL schemeé loffid the scheme of [3] were later extended
to GBCFs and to GMACFs with more than two users as well as tos&an interference channels with

NCF (GICFs) in [4]. These schemes were also used in [5] toiltak{in the mean square sense) two
linear, discrete-time, scalar and time-invariant systémslosed-loop, via control over GMACFs and

GBCFs, respectively.

Transmission over the GBCF was also studied using tools fronirol theory. The work [6] derived
a linear code for the two-user GBCF in which the noises at #ueivers are independent. This code
obtained higher achievable rates compared to the OL schiember, [7] used linear quadratic Gaussian
(LQG) control to remove the restriction of independent asisn [6], and obtained a linear-feedback
communications scheme for th€-user GBCF. Recently| [8] showed that for the two-user GBGth w
independent noises having the same variance, the schernig isfthe optimal scheme subject to using
a linear feedback, in the sense of maximal sum-rate.

The work [9] studied the GBCF and the GICF and derived a schetmase achievable sum-rate
approaches the full-cooperation bound as the signal-en@tio (SNR) increases to infinity. Finally,
in [10] it was shown that the capacity region of the GBCF witldépendent noises and with only a
common message cannot be achieved using a coding schente evhpdoys linear feedback.

Note that all the works on GBCFs reviewed above focused orathéevable rates, namely, the rates
are obtained as the blocklength increases to infinity. Frbim perspective, it was shown inl[7] that
when the noises are independent, the LQG scheme]of [7] ahi@varger rate region than the OL
scheme. However, in [11] we showed that when constrainiagotbcklength to be finite, the OL scheme
can achieve lower mean squared errors (MSEs), and theraftower probability of error compared to
the LQG scheme (we note that although the focus of [11] is ansmission of correlated sources, this
observation holds also for independent messages). In tiris we propose an extension of the OL scheme
which improves upon the achievable region obtained in [f§l benefits from the good performance of
the OL scheme when the blocklength is finite. Next, we detail main contributions:

Main Contributions. We focus on linear-feedback schemes as such schemes ate sonmpplement.

In the OL scheme of[[1] the receivers’ errors are estimatesetanly on the last channel output.
However, as the transmitted signal in the OL scheme is 8tatily correlated withall previous channel

outputs, this approach is generally suboptimal. In thiskwee provide arexplicit recursive formulation



of the minimum MSE (MMSE) estimators which use the tagb channel outputs, along with an explicit
recursive characterization of the resulting achievableEBISNe show that the proposed scheme has a
fixed point, which enables characterizing its achievaliiesras well as its MSE performance at any finite
number of channel uses. We note that this is the &rgtlicit characterizatiorof an OL-type scheme
which uses estimators with memory, and the first time that edfigoint property is proved for such a
scheme. Furthermore, via humerical simulations we show ttiea extended scheme can both improve
upon the original OL scheme in terms of achievable rates,camgerform the scheme afl[7] in terms of
probability of error after dinite number of channel uses. Finally, we demonstrate that inrasinto the
common intuition, applying MMSE estimation based on sdveyeent channel outputs may sometimes
result in lower achievable rates than MMSE estimation bawdy on the most recent channel output.

The rest of this paper is organized as follows: The problefimitien and the OL scheme are presented
in Section[l, the extended OL scheme is derived in Sediiinahd discussion along with numerical
examples are given in SectignlIV.

Notations. We use upper-case letters to denote random variables,)é.dypldface letters to denote
random column vectors, e.gX, and calligraphic letters to denote sets, e/gl., We useE {-}, (1) and
R to denote the expectation, transpose, and the set of redbersnrespectively. Lastly, sgrn) denotes

the sign ofz, with sgr(0) = 1.
Il. PROBLEM DEFINITION AND PREVIOUS RESLTS

A. Problem Definition

We consider communications over the GBCF, depicted in [BigAllLsignals are real. The encoder
obtains a pair of independent messadés € M; and M, € M, where each message is uniformly
distributed over its message set. The encoder is requiresgnd the messagkl;,: = 1,2, to the'th
receiver, R, usingn channel uses. The channel outputs at each receiver atktilne- 1,2, ... ,n, are

given by:
Yir=Xp+Zip, i=12, (1)

where the noise¥,; , ~ N(0,0?) are i.i.d over timek, and independent dfM;, M;). Let E{Z,Z>} =

P20102.

A (R1,Rz2,n) codefor the GBCF consists of
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Fig. 1. The Gaussian broadcast channel with feedback lifiks.blocks denoted by represent a unit delay.

1) Two discrete message setd; 2{1,2,...,2"%} i = 1,2,

2) An encoder which maps the observed message phis M;, and the received NCF up to tinig
into a channel input at timé via X = f(M;, My, Yi7', Y57,

3) Two decoderg; : R™ — M, each uses ita channel outputsyy, to estimateM;: M; = gi(Yﬁl)-

The transmitted signal is subject to the average power ns{1], [7]:
> E{x}} <nP. (@)
k=1

The probability of errorat Rx; is defined asPe(Z)éPr{MﬁéMi}. We say tha{R, Ro) is anachievable
rate pair subject to the power constrairl (2) if there exists a sequ@idR,, Ry, n) codes satisfying

@), such thatlim Pe(j})zo. Next, we briefly review the OL scheme ofl [1].

B. A Short Review of the OL Scheme

In the OL scheme |1], prior to transmitting a channel symbiwd, transmitter determines the estimation
errors at the receivers based on the noiseless feedbacthemdends a linear combination of these errors.
Thus, the channel output at each receiver consists of iima&sdn error corrupted by a correlated noise
term, which consists of the other receiver’s error and addiBaussian noise. Each receiver then updates
its estimation according to its observed channel outpetethy, decreasing the variance of its estimation
error.

Setup: Each messager; € M; is mapped into a PAM constellation poirdt,, uniformly distributed

over the interval[—0.5, 0.5]. Next, define@,-vk to be the estimate of the constellation poiht at thed’'th



receiver, after observing thigth channel output; ;.. Let fi,kééi,k_@i be the estimation error aftér
transmissions, and defirﬁgk_lééi,k_l—éi,k. Thus, we can write; ,=¢; ;1 —€; ,—1. We also define
aMéE{e?’k} to be the MSEs aftek transmissions, ang, 7% to be the correlation coefficient
between the estimation errors.

Initialization: In the first two transmissions(;, = v12P-0,,k = 1,2, are sent. After the first

transmission, Rxestimate$; via (3)171: jﬁ Rx; ignores the second transmission and Sﬁtg @1 1.
Similarly, Rx, ignores the first transmission and 5@572:\;%. Therefoream:l‘;—fp, and p, =0.

Encoding: Let g > 0 be a constant which facilitates a tradeoff betwdenand Ry, and let¥, £

\/ = At the k'th transmissionk > 3, the transmitter sendsl[1, pg. 668]:

T+g*2glpx]”

€1,k—1 €2,k—1
Xp="p_ ( : +—= - g - Sgn(px— >> 3
N\ s T gnpe—1) 3)

and the corresponding channel outputs are giveri by (1).

Decoding: Rx; estimates; i, = 1,2, basedonly onY; : éi7k_1:E{ei,k_1]}fi,k}—%Y
Letm; 2P+ 02,22 P+ 0} + 03 — p,o102, ands? £02 — p,o109. Then,a; ;, are given by the recursive
expressiond [1, Egs. (5)—(6)]:

o2+ W2 gt (1 — g
Qe = O e—1 k=19 ( pk_l)a i:1727 (4)

) 7T1

where the recursive expression far is given by [1, Eq. (7)]:

(p=01025+6fF) pr—1— P, B - g(1—p}_;)SGMpp— 1)
VT2 \/‘71+‘I’k 1972(1- Pk_1)\/02+‘1'k—1(1 Pk—1)

In [1] it was shown that there existsac [0, 1] such that whenp,_1|=p thenpp=—pxr_1. Thisp is a

= ()

root of the polynomial obtained by settipg=p andp,_; = —p in (B). Letp denote the largest root of this
polynomial in[0, 1]. In [1]] it is shown how to initialize the transmission to gaatee|pi| =p=poL, k> 3.

After n channel uses Rvemploys a maximum likelihood decoder to recowdy. Let & £ Then,

1+g2+29p

the rates achieved by the OL scheme are giveri by [1, Eq. (9)]:

R;<= logz( T , - )éR?L. (6)

o2+ W2g1-2i(1—f2)

1. ANEw EXTENDED OL SCHEME
The MMSE estimator ot; ,_; based on the channel outpuﬁfl, is given by]E{e,-vk_1|Yfil}. Yet,

as successive channel outputs are not independent, olgfaini explicit expression for this estimator is
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analytically intractable. In the OL scheme, the estimates p_; are generated basedly onY; ;. These
estimators are suboptimal sinbéﬁfl‘l ande; ;. are correlated. A natural way to improve upon the OL
scheme is estimating ;_; based onY; j, Yi,k_l]Té?M. We refer to this as extended OL (EOL). The
EOL encoding is done as inl(3). '—Q\?M denote the covariance matrix of the vecfé{,k. Sincee; ;1

and?,-vk are jointly Gaussian, the MMSE estimator @f,_; based om?,-’k is given by [12, Eq. (12.6)]:

€ik—1=E {fi,k—l . (?z,k)T} . Q;k Y k. (7)
The following theorem explicitly characterizeés;,_; in (7):

Theoreml. The estimatorg; ,_; in (Z) are given by:

. Up1y/are—1(1+g-|pp-1)
€1 k-1 = 70 (mY1e — Ae—1Y1k-1) (8a)
T — Al k-1
R Uy 1y/Q2r—1(9 + [pr—1])S9Mpr—1)
bop—1 = — (m2Yor — Xop—1Yo k1), (8b)
2k—1

where the terms\; ,_; and ), ;_; are recursively given by:

Wip—1Vs—2(g + [pr—2|) - g - SGMpr—1)SgNp—2)T202(02 — p-01)
V3 = 0 — (g + loe—zl)?may [m3 — 03,
. U1 Wio(l + g - |pr—2|)mio1(01 — p202)
\/ﬂ'% — )‘ik o — Pm+ 937 _,-g%(1— P%_z)ﬂl\/ﬂ% - )‘%,k—z

and); ; = 0,7 = 1,2. Furthermorep; ;, the MSEs aftef: transmissions, are recursively given by:

A -1 = (9a)

, (9b)

2 —)\?’k_l—Pm—i—\I’z_lg‘l_% (1=p_yi

212
; )\i k—1

QG =04 k-1 , (10)

i =1,2. Finally, let o, 22 (g + |pr|)(1 + glpk])san(px). Then,py. is recursively given by, = %

whereT_; and(2;_, are given by:

Th—1% pe—1- g TiT5 — g Pp—1 * T2 - E+/\1k 175 - SO pp—1) + 92‘>\§,k—177%'59"(0k—1)

= Al 1 A5 ko1 - SOMpe—1) (1 + ¢ + 2glpr—1]) + 9 - h—1 M1 k-1 A2k—1(P + pz0102), (11a)

Q1= g\/ 1k (73 )‘%,k—l)x

\/ﬂ'%—)\%k —Pmi+VU2_ g (1—p%_1)ﬂ'1\/ﬂ'%—)\%’k_l—P7T2+\If%_1(1—p%_1)71‘2. (11b)

Proof outline: Let \; ;1 denote the off-diagonal elementsQf, (the two off-diagonal elements of



QYi , are equal). Explicit direct calculation éf;_1, in terms ofp,_1, a; ,—1 and\; 51, results in [(8).

The recursive expressions inl (9) are then obtained via aficéxgalculation of E{Y; Y; »_1}, and the

instantaneous MSEs in_(110) are calculated M{’f?,k}- Finally, the instantaneous correlation coefficient
A Efer rean}

is calculated vigp, = —zes |

Remarkl. Fixing \; , =0,k > 1, EOL specializes to OL.

Similarly to the OL scheme, the EOL scheme has a fixed-poithichvis stated in the following

theorem:

Theorem2. Consider the EOL scheme with the decoders giveriin [(8)—(hdl) encoding given in[{3).
Then, there exists dp, A1, \2) € [0,1] x |2 such that if [pr_1] = p, \ix—1 = N,i = 1,2, then

|pk| =P /\i,k =N\, i =1,2.

Proof: First, note that the method used to prove the fixed point fer@Qh scheme cannot be applied
to the EOL due to the terms; ,,_;, cf. [1, pg. 669].

The fixed point is proven by applying Brouwer’s fixed-poinedinem, [[18, Subsection 12.8.4], to
the estimation schemé&l(9)=(11). L&t = sgn(px)sgnpr_1) € {1,—1}, and define the vectowW; =
A ks A2k, 02, &) Egs. [B)-(IL) imply thaV,,_; determines\; , andpy. Letv denote the mapping from
Vi_1 to Vi and letr; denote the mapping froiV,_; to V, when&,=1,Vk. We prove thaty has a
fixed point in two steps: First, we show that has a fixed point. Then, we show that a fixed point of
11 translates into a fixed point of.

Fixed point of vi: Assume thats, = 1,Vk, and defineV, = [Vi]e,=1. We show thatV,;, =
v1(Vi-1), i.e., knowledge ofV; ,_; and constants is sufficient to calcula¥g ;. Eq. [I1b) implies
thatQ}_, is a function ofp;_;, A}, _; and A3, ,. Similarly, from (II&) we have thak; , is also a
function of pi_;,A?,_, and A3, . Therefore, for¢, 1 = 1 we have thaip; can be obtained from
P21, A1 k-1 and Ay —1. From [9) it follows that for¢,_; = 1, A, are functions ofp?_,,\; 41 and
A2, k—1-

Noting that)?, < 77,Vk, we conclude that ford = [—m,m1] x [—71,m2] x [0,1] the mapping;
obeysv; : A — A. Finally, recall Brouwer’s fixed-point theorem which stitat if D is convex and
compact and : D — D is a continuous function, thel has a fixed point. As4d is compact and convex,

it follows thatv; has a fixed point. We denote this fixed point By = [A1, A2, p%].
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Fig. 2: Acheivable rate region faP = 5,07 = 03 = 1 andp, = 0.

Fixed point of v: We show thatv([V1,1]) =[V1,1]. As V; is a fixed point ofvy, it follows that if
pr_1=p% Nik—1=N;, thenp? =p? \; = \;. Therefore, as\; x = A1 x_1, (93) implies that if¢,_;=¢
then&,=€. Thus,v has a fixed point. The proof is the same fgre=—1. [ |

Let V = [, A2, p%,&] be a fixed point ofy, and let¥ = %. Similarly to [1, pg. 669] the
initialization procedure can be designed to guaramge=p= pgoL. Further setting\; o = i will result

in |px] = p and\; , = A; for k > 3. Therefore, the EOL scheme achieves rate pairs satisfying:

R, < “log [~ oA £ REOL (12)
‘T2 2=\ — P+ U2g*2(1-p?)m; v

IV. NUMERICAL EXAMPLES AND A DISCUSSION

A. The Acheivable Rate Region

Consider the GBCF witlr?=c2=1, p,=0, and P=5. Fig.[2 illustrates the achievable rate regions of
the OL scheme, the EOL scheme, and the LQG schemnie of [7, Thih&]regions for OL and EOL are
obtained by varying; in the range{0.01, 100]. It can be observed that in this setting EOL outperforms
OL, and that LQG outperforms both OL and EOL. The subfigureign[B depictspo. andpgo. versusy,
for the same setting. It can be observed thad. < poL. The intuition for this relationship is as follows:
since the estimatof (Ba) us&s; andY; ,_; for estimation, and sinc&) ;_; is correlated withes ;,_1,
this reduces the correlation betweery, = €; ;-1 — €1 ,—1 andez, = €z 1 — €2 4,—1, Which leads to

PeEOL < poL.
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Fig. 3: Acheivable rate region faP = 1,0% = 0.1, 02 = 50 and p, = 0.

Next, note thain some scenarios OL can outperform EQILhe reason for this situation is that the
achievable rates in the OL and EOL schemes are subject todmtcadicting effects: while the subtraction
of A? in the numerator and denominator of (12) increaBgS- compared tdRS" (which corresponds to
A\? = 0), the fact thatoo. can be smaller thapo,, can decreasBFC compared taRP" (this follows
as bothRO" and REO! increase withpo, and peol, respectively). This situation is illustrated in Fig. 3
which presents the achievable rate regionsdde=0.1,05 =50, p, =0 and P =1. It can be observed
in the figure that for larg&R; and smallR, OL outperforms EOL. Finally, note that the OL and EOL
schemes can be combined by applying a decoder which usestiatr that achieves the largdst

at any specifidk;.

B. Probability of Error for Finite Blocklengths

Motivated by the results of [11], in this subsection we cdesithefinite blocklengthregime, which
implies Pe(j})>0.

For independent noises with equal variances, the LQG scliemeealization of the class of schemes
presented in[[8], which achieves the highsstn-rateamong all linear-feedback schemes. Furthermore,
for this setting the LQG scheme is also a realization of tlas<bf schemes presented|in [6]. In falct, [7]
showed that for this settingn terms of achievable rates QG strictly outperforms OL, as is demonstrated
in Fig.[2. Recall that in the OL and in the EOL schemes, the eagtlile rates are determined by the
scheme’s steady-state (fixed point) in termgppfiand \; ;). In this steady-state, at each channel use the

MSE «; ;, is attenuated by aonstant factorwhich determines the achievable rates, 5ée [7, Lemma 1] on
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Fig. 4: Pe(ﬁ) vs.n, for P = 2,0? = 02 = 1,p. = 0,p. = 0.3, andg = 1. All schemes use a transmission rate of
R =0.9-R%(p.).

the connection between the MSEs and the achievable ratedafy, the achievable rates of the LQG
scheme are determined by the scheme’s steady-state MSHapo However, numerical evaluations
show that the LQG scheme converges to its steady-state rstbae the OL and EOL schemes. Based
on this observation/ [11] showed that when the codewordtleigfinite, the OL scheme can achieve
lower MSE compared to the LQG scheme. Furthermore, it canaséyeobserved that iREO > RO,
and peoL < poL (as indicated in Fid.]2), then EOL outperforms OL also in tmétei blocklength regime.

Let j;,, denote the MSE achieved by a decoder of a linear-feedbaokriasion scheme after
channel uses, and I&; be the transmission rate. Recall that as the scheme is liheastimation error
is a Gaussian RV_[12, Subsection 10.5]. Since the data panetselected out of a PAM constellation
over[—0.5,0.5], the probability of error can be computed using the standapmtession for PAM[1, pg.
670]:

nR;
P = 22nR;11Q<2nRi +11 \/B_n> (13)
Let RP:(p.) denote the achievable rate of the OL scheme at a specific coisglationp,, and similarly
define RE%(p.) and R{%®(p.). Fig.[@ depictsP;) vs. n for the OL, EOL and LQG schemes, for
P=20%=03=1, andg=1, for two casesp, = 0, andp, = 0.3. For this settingR%"(0) = 0.458,
RECL(0) = 0.461, and RY?%(0) = 0.464. The transmission rate, faall the schemesis set toR; =

0.9 - R%(p.), p. = 0,0.3. It can be observed that, for, =0, the EOL scheme achievd%éﬁ) =107°

10



after n =18 channel uses, while the OL and LQG schemes requite20 and n =56 channel uses,
respectively. It can be further observed that for smathe EOL scheme and the OL scheme achieve
similar Pe(ﬁ); however, for largemn the EOL scheme significantly improves upon the OL schemesé& he
observations also hold when the noises are correlated, radud®d from the curves corresponding to
p-=0.3 in Fig.[4.

Finally, note that forp, =0, a fixed transmission rat9-R9-(0), ando? =02 =1, the LQG scheme
requiresP = 2.8 in order to achievaDe(ﬁ) =10° after n=18 channel uses. This reflects an SNR loss
of 1.46 dB compared to the EOL schenwWe conclude that in the finite blocklength regime the EOL

scheme can significantly improve upon both the OL and the LE®rmses
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