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Abstract

In this work, we consider linear-feedback schemes for the two-user Gaussian broadcast channel

with noiseless feedback. We extend the transmission schemeof [Ozarow and Leung, 1984] by applying

estimators with memory instead of the memoryless estimators used by Ozarow and Leung (OL) in their

original work. A recursive formulation of the mean square errors achieved by the proposed estimators is

provided, along with a proof for the existence of a fixed point. This enables characterizing the achievable

rates of the extended scheme. Finally, via numerical simulations it is shown that the extended scheme can

improve upon the original OL scheme in terms of achievable rates, as well as achieve a low probability

of error after a finite number of channel uses.

I. INTRODUCTION

We study the transmission of two independent messages over atwo-user Gaussian broadcast channel

(GBC) with noiseless causal feedback, referred to in the following as the GBCF, focusing on linear-

feedback schemes. In [1], Ozarow and Leung presented inner and outer bounds on the capacity region

of the two-user GBCF, and showed that in some scenarios it is larger than the capacity region of the

GBC. In the following, we refer to the achievability scheme presented in [1] as theOL scheme. The OL

scheme is a linear-feedback scheme that builds upon the scheme of Schalkwijk and Kailath (SK) [2],

which achieves the capacity of point-to-point (PtP) Gaussian channels with noiseless causal feedback

(NCF). Motivated by the optimality of the SK scheme for PtP channels, the works [3] and [1] extended

this approach to the two-user Gaussian multiple-access channel with NCF (GMACF) and to the two-user

GBCF, respectively. For the GMACF this extension achieves the capacity region, however, for the GBCF
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this extension is generally suboptimal. The OL scheme of [1]and the scheme of [3] were later extended

to GBCFs and to GMACFs with more than two users as well as to Gaussian interference channels with

NCF (GICFs) in [4]. These schemes were also used in [5] to stabilize (in the mean square sense) two

linear, discrete-time, scalar and time-invariant systemsin closed-loop, via control over GMACFs and

GBCFs, respectively.

Transmission over the GBCF was also studied using tools fromcontrol theory. The work [6] derived

a linear code for the two-user GBCF in which the noises at the receivers are independent. This code

obtained higher achievable rates compared to the OL scheme.Later, [7] used linear quadratic Gaussian

(LQG) control to remove the restriction of independent noises in [6], and obtained a linear-feedback

communications scheme for theK-user GBCF. Recently, [8] showed that for the two-user GBCF with

independent noises having the same variance, the scheme of [7] is the optimal scheme subject to using

a linear feedback, in the sense of maximal sum-rate.

The work [9] studied the GBCF and the GICF and derived a schemewhose achievable sum-rate

approaches the full-cooperation bound as the signal-to-noise ratio (SNR) increases to infinity. Finally,

in [10] it was shown that the capacity region of the GBCF with independent noises and with only a

common message cannot be achieved using a coding scheme which employs linear feedback.

Note that all the works on GBCFs reviewed above focused on theachievable rates, namely, the rates

are obtained as the blocklength increases to infinity. From this perspective, it was shown in [7] that

when the noises are independent, the LQG scheme of [7] achieves a larger rate region than the OL

scheme. However, in [11] we showed that when constraining the blocklength to be finite, the OL scheme

can achieve lower mean squared errors (MSEs), and thereforea lower probability of error compared to

the LQG scheme (we note that although the focus of [11] is on transmission of correlated sources, this

observation holds also for independent messages). In this work we propose an extension of the OL scheme

which improves upon the achievable region obtained in [1], and benefits from the good performance of

the OL scheme when the blocklength is finite. Next, we detail our main contributions:

Main Contributions: We focus on linear-feedback schemes as such schemes are simple to implement.

In the OL scheme of [1] the receivers’ errors are estimated based only on the last channel output.

However, as the transmitted signal in the OL scheme is statistically correlated withall previous channel

outputs, this approach is generally suboptimal. In this work we provide anexplicit recursive formulation
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of the minimum MSE (MMSE) estimators which use the lasttwo channel outputs, along with an explicit

recursive characterization of the resulting achievable MSEs. We show that the proposed scheme has a

fixed point, which enables characterizing its achievable rates as well as its MSE performance at any finite

number of channel uses. We note that this is the firstexplicit characterizationof an OL-type scheme

which uses estimators with memory, and the first time that a fixed point property is proved for such a

scheme. Furthermore, via numerical simulations we show that the extended scheme can both improve

upon the original OL scheme in terms of achievable rates, andoutperform the scheme of [7] in terms of

probability of error after afinite number of channel uses. Finally, we demonstrate that in contrast to the

common intuition, applying MMSE estimation based on several recent channel outputs may sometimes

result in lower achievable rates than MMSE estimation basedonly on the most recent channel output.

The rest of this paper is organized as follows: The problem definition and the OL scheme are presented

in Section II, the extended OL scheme is derived in Section III, and discussion along with numerical

examples are given in Section IV.

Notations: We use upper-case letters to denote random variables, e.g.,X, boldface letters to denote

random column vectors, e.g.,X, and calligraphic letters to denote sets, e.g.,M. We useE {·} , (·)T and

R to denote the expectation, transpose, and the set of real numbers, respectively. Lastly, sgn(x) denotes

the sign ofx, with sgn(0) , 1.

II. PROBLEM DEFINITION AND PREVIOUS RESLTS

A. Problem Definition

We consider communications over the GBCF, depicted in Fig. 1. All signals are real. The encoder

obtains a pair of independent messagesM1 ∈ M1 andM2 ∈ M2, where each message is uniformly

distributed over its message set. The encoder is required tosend the messageMi, i = 1, 2, to the i’th

receiver, Rxi, usingn channel uses. The channel outputs at each receiver at timek, k = 1, 2, . . . , n, are

given by:

Yi,k = Xk + Zi,k, i = 1, 2, (1)

where the noisesZi,k ∼ N (0, σ2
i ) are i.i.d over timek, and independent of(M1,M1). Let E{Z1Z2} =

ρzσ1σ2.

A (R1,R2, n) codefor the GBCF consists of
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Fig. 1: The Gaussian broadcast channel with feedback links.The blocks denoted byD represent a unit delay.

1) Two discrete message setsMi,{1, 2, . . . , 2nRi}, i = 1, 2.

2) An encoder which maps the observed message pair,Mi ∈ Mi, and the received NCF up to timek,

into a channel input at timek via Xk = fk(M1,M2,Y
k−1
1,1 ,Yk−1

2,1 ).

3) Two decodersgi : Rn 7→ Mi, each uses itsn channel outputs ,Yn
i,1, to estimateMi: M̂i = gi(Y

n
i,1).

The transmitted signal is subject to the average power constraint [1], [7]:

n
∑

k=1

E
{

X2
k

}

≤ nP. (2)

Theprobability of errorat Rxi is defined as:P (n)
e,i ,Pr{M̂i 6=Mi}. We say that(R1,R2) is anachievable

rate pair subject to the power constraint (2) if there exists a sequence of (R1,R2, n) codes satisfying

(2), such that lim
n→∞

P
(n)
e,i =0. Next, we briefly review the OL scheme of [1].

B. A Short Review of the OL Scheme

In the OL scheme [1], prior to transmitting a channel symbol,the transmitter determines the estimation

errors at the receivers based on the noiseless feedback, andthen sends a linear combination of these errors.

Thus, the channel output at each receiver consists of its estimation error corrupted by a correlated noise

term, which consists of the other receiver’s error and additive Gaussian noise. Each receiver then updates

its estimation according to its observed channel output, thereby, decreasing the variance of its estimation

error.

Setup: Each messagemi ∈ Mi is mapped into a PAM constellation point,θi, uniformly distributed

over the interval[−0.5, 0.5]. Next, defineΘ̂i,k to be the estimate of the constellation pointΘi at thei’th

4



receiver, after observing thek’th channel outputYi,k. Let ǫi,k,Θ̂i,k−Θi be the estimation error afterk

transmissions, and definêǫi,k−1,Θ̂i,k−1−Θ̂i,k. Thus, we can writeǫi,k=ǫi,k−1−ǫ̂i,k−1. We also define

αi,k,E{ǫ2i,k} to be the MSEs afterk transmissions, andρk,
E{ǫ1,kǫ2,k}√

α1,kα2,k
to be the correlation coefficient

between the estimation errors.

Initialization: In the first two transmissionsXk =
√
12P ·Θk, k = 1, 2, are sent. After the first

transmission, Rx1 estimatesΘ1 via Θ̂1,1=
Y1,1√
12P

. Rx1 ignores the second transmission and setsΘ̂1,2=Θ̂1,1.

Similarly, Rx2 ignores the first transmission and setsΘ̂2,2=
Y2,2√
12P

. Thereforeαi,2=
σ2

i

12P , andρ2=0.

Encoding: Let g > 0 be a constant which facilitates a tradeoff betweenR1 and R2, and letΨk ,
√

P
1+g2+2g|ρk| . At the k’th transmission,k ≥ 3, the transmitter sends [1, pg. 668]:

Xk=Ψk−1

(

ǫ1,k−1√
α1,k−1

+
ǫ2,k−1√
α2,k−1

· g · sgn(ρk−1)

)

, (3)

and the corresponding channel outputs are given by (1).

Decoding: Rxi estimatesǫi,k−1, i = 1, 2, basedonly on Yi,k: ǫ̂i,k−1=E{ǫi,k−1|Yi,k}= E{ǫi,k−1Yi,k}
E{Y 2

i,k} Yi,k.

Let πi,P +σ2
i ,Σ,P +σ2

1 +σ2
2 − ρzσ1σ2, andς2i ,σ2

i − ρzσ1σ2. Then,αi,k are given by the recursive

expressions [1, Eqs. (5)–(6)]:

αi,k = αi,k−1

σ2
i +Ψ2

k−1g
4−2i(1− ρ2k−1)

πi
, i = 1, 2, (4)

where the recursive expression forρk is given by [1, Eq. (7)]:

ρk=
(ρzσ1σ2Σ+ς21 ς

2
2 )ρk−1−Ψ2

k−1Σ · g(1−ρ2k−1)sgn(ρk−1)
√
π1π2

√

σ2
1+Ψ2

k−1g
2(1−ρ2k−1)

√

σ2
2+Ψ2

k−1(1−ρ2k−1)
. (5)

In [1] it was shown that there exists aρ ∈ [0, 1] such that when|ρk−1|=ρ thenρk=−ρk−1. This ρ is a

root of the polynomial obtained by settingρk=ρ andρk−1=−ρ in (5). Let ρ̃ denote the largest root of this

polynomial in[0, 1]. In [1] it is shown how to initialize the transmission to guarantee|ρk|= ρ̃≡ρOL, k≥3.

After n channel uses Rxi employs a maximum likelihood decoder to recoverMi. Let Ψ̃, P
1+g2+2gρ̃ . Then,

the rates achieved by the OL scheme are given by [1, Eq. (9)]:

Ri<
1

2
log2

(

πi

σ2
i +Ψ̃2g4−2i(1−ρ̃2)

)

,ROL
i . (6)

III. A N EW EXTENDED OL SCHEME

The MMSE estimator ofǫi,k−1 based on the channel outputsYk
i,1, is given byE{ǫi,k−1|Yk

i,1}. Yet,

as successive channel outputs are not independent, obtaining an explicit expression for this estimator is
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analytically intractable. In the OL scheme, the estimates of ǫi,k−1 are generated basedonly onYi,k. These

estimators are suboptimal sinceYk−1
i,1 andǫi,k−1 are correlated. A natural way to improve upon the OL

scheme is estimatingǫi,k−1 based on[Yi,k, Yi,k−1]
T ,Ỹi,k. We refer to this as extended OL (EOL). The

EOL encoding is done as in (3). LetQ
Ỹi,k

denote the covariance matrix of the vectorỸi,k. Sinceǫi,k−1

andỸi,k are jointly Gaussian, the MMSE estimator ofǫi,k−1 based onỸi,k is given by [12, Eq. (12.6)]:

ǫ̂i,k−1 = E

{

ǫi,k−1 · (Ỹi,k)
T
}

·Q−1
Ỹi,k

· Ỹi,k. (7)

The following theorem explicitly characterizesǫ̂i,k−1 in (7):

Theorem1. The estimatorŝǫi,k−1 in (7) are given by:

ǫ̂1,k−1 =
Ψk−1

√
α1,k−1(1 + g · |ρk−1|)
π2
1 − λ2

1,k−1

(π1Y1,k − λ1,k−1Y1,k−1) (8a)

ǫ̂2,k−1 =
Ψk−1

√
α2,k−1(g + |ρk−1|)sgn(ρk−1)

π2
2 − λ2

2,k−1

(π2Y2,k − λ2,k−1Y2,k−1) , (8b)

where the termsλ1,k−1 andλ2,k−1 are recursively given by:

λ1,k−1 =
Ψk−1Ψk−2(g + |ρk−2|) · g · sgn(ρk−1)sgn(ρk−2)π2σ2(σ2 − ρzσ1)

√

π2
2 − λ2

2,k−2 −Ψ2
k−2(g + |ρk−2|)2π2

√

π2
2 − λ2

2,k−2

(9a)

λ2,k−1 =
Ψk−1Ψk−2(1 + g · |ρk−2|)π1σ1(σ1 − ρzσ2)

√

π2
1 − λ2

1,k−2 − Pπ1 +Ψ2
k−2 · g2(1− ρ2k−2)π1

√

π2
1 − λ2

1,k−2

, (9b)

andλi,j = 0, j = 1, 2. Furthermore,αi,k, the MSEs afterk transmissions, are recursively given by:

αi,k=αi,k−1

π2
i−λ2

i,k−1−Pπi+Ψ2
k−1g

4−2i(1−ρ2k−1)πi

π2
i −λ2

i,k−1

, (10)

i = 1, 2. Finally, letϕk,Ψ2
k ·(g + |ρk|)(1 + g|ρk|)sgn(ρk). Then,ρk is recursively given byρk = Tk−1

Ωk−1

,

whereTk−1 andΩk−1 are given by:

Tk−1, ρk−1 · g · π2
1π

2
2 − g · ϕk−1 · π1π2 · Σ+ λ2

1,k−1π
2
2 · sgn(ρk−1) + g2 · λ2

2,k−1π
2
1 · sgn(ρk−1)

− λ2
1,k−1λ

2
2,k−1 · sgn(ρk−1)(1 + g2 + 2g|ρk−1|) + g · ϕk−1λ1,k−1λ2,k−1(P + ρzσ1σ2), (11a)

Ωk−1, g
√

(π2
1−λ2

1,k−1)(π
2
2−λ2

2,k−1)×
√

π2
1−λ2

1,k−1−Pπ1+Ψ2
k−1g

2(1−ρ2k−1)π1

√

π2
2−λ2

2,k−1−Pπ2+Ψ2
k−1(1−ρ2k−1)π2. (11b)

Proof outline: Let λi,k−1 denote the off-diagonal elements ofQ
Ỹi,k

(the two off-diagonal elements of
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Q
Ỹi,k

are equal). Explicit direct calculation of̂ǫi,k−1, in terms ofρk−1, αi,k−1 andλi,k−1, results in (8).

The recursive expressions in (9) are then obtained via an explicit calculation ofE{Yi,kYi,k−1}, and the

instantaneous MSEs in (10) are calculated viaE{ǫ2i,k}. Finally, the instantaneous correlation coefficient

is calculated viaρk,
E{ǫ1,kǫ2,k}√

α1,kα2,k
.

Remark1. Fixing λi,k = 0, k ≥ 1, EOL specializes to OL.

Similarly to the OL scheme, the EOL scheme has a fixed-point, which is stated in the following

theorem:

Theorem2. Consider the EOL scheme with the decoders given in (8)–(11) and encoding given in (3).

Then, there exists a(ρ, λ1, λ2) ∈ [0, 1] × R
2 such that if |ρk−1| = ρ, λi,k−1 = λi, i = 1, 2, then

|ρk| = ρ, λi,k = λi, i = 1, 2.

Proof: First, note that the method used to prove the fixed point for the OL scheme cannot be applied

to the EOL due to the termsλi,k−1, cf. [1, pg. 669].

The fixed point is proven by applying Brouwer’s fixed-point theorem, [13, Subsection 12.8.4], to

the estimation scheme (9)–(11). Letξk , sgn(ρk)sgn(ρk−1) ∈ {1,−1}, and define the vectorVk ,

[λ1,k, λ2,k, ρ
2
k, ξk]. Eqs. (8)–(11) imply thatVk−1 determinesλi,k andρk. Let ν denote the mapping from

Vk−1 to Vk and letν1 denote the mapping fromVk−1 to Vk when ξk=1,∀k. We prove thatν has a

fixed point in two steps: First, we show thatν1 has a fixed point. Then, we show that a fixed point of

ν1 translates into a fixed point ofν.

Fixed point of ν1: Assume thatξk = 1,∀k, and defineV1,k , [Vk]ξk=1. We show thatV1,k =

ν1(V1,k−1), i.e., knowledge ofV1,k−1 and constants is sufficient to calculateV1,k. Eq. (11b) implies

that Ω2
k−1 is a function ofρ2k−1, λ

2
1,k−1 andλ2

2,k−1. Similarly, from (11a) we have thatT 2
k−1 is also a

function of ρ2k−1, λ
2
1,k−1 and λ2

2,k−1. Therefore, forξk−1 = 1 we have thatρ2k can be obtained from

ρ2k−1, λ1,k−1 andλ2,k−1. From (9) it follows that forξk−1 = 1, λi,k are functions ofρ2k−1, λ1,k−1 and

λ2,k−1.

Noting thatλ2
i,k < π2

i ,∀k, we conclude that forA , [−π1, π1] × [−π1, π2] × [0, 1] the mappingν1

obeysν1 : A 7→ A. Finally, recall Brouwer’s fixed-point theorem which states that if D is convex and

compact andh : D 7→ D is a continuous function, thenh has a fixed point. AsA is compact and convex,

it follows that ν1 has a fixed point. We denote this fixed point byV̄1 = [λ̄1, λ̄2, ρ̄
2].
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Fixed point of ν: We show thatν([V̄1, 1]) = [V̄1, 1]. As V̄1 is a fixed point ofν1, it follows that if

ρ2k−1= ρ̄2, λi,k−1= λ̄i, thenρ2k = ρ̄2, λi,k= λ̄i. Therefore, asλ1,k = λ1,k−1, (9a) implies that ifξk−1= ξ̄

thenξk=ξ̄. Thus,ν has a fixed point. The proof is the same forξk=−1.

Let V̄ = [λ̄1, λ̄2, ρ̄
2, ξ̄] be a fixed point ofν, and let Ψ̄ , P

1+g2+2gρ̄ . Similarly to [1, pg. 669] the

initialization procedure can be designed to guarantee|ρ2|= ρ̄≡ρEOL. Further settingλi,2 = λ̄i will result

in |ρk| = ρ̄ andλi,k = λ̄i for k ≥ 3. Therefore, the EOL scheme achieves rate pairs satisfying:

Ri<
1

2
log

(

π2
i − λ̄2

i

π2
i−λ̄2

i −Pπi+Ψ̄2g4−2i(1−ρ̄2)πi

)

,REOL
i . (12)

IV. N UMERICAL EXAMPLES AND A D ISCUSSION

A. The Acheivable Rate Region

Consider the GBCF withσ2
1=σ2

2=1, ρz=0, andP=5. Fig. 2 illustrates the achievable rate regions of

the OL scheme, the EOL scheme, and the LQG scheme of [7, Thm. 1]. The regions for OL and EOL are

obtained by varyingg in the range[0.01, 100]. It can be observed that in this setting EOL outperforms

OL, and that LQG outperforms both OL and EOL. The subfigure in Fig. 2 depictsρOL andρEOL versusg,

for the same setting. It can be observed thatρEOL ≤ ρOL. The intuition for this relationship is as follows:

since the estimator (8a) usesY1,k andY1,k−1 for estimation, and sinceY1,k−1 is correlated withǫ2,k−1,

this reduces the correlation betweenǫ1,k = ǫ1,k−1 − ǫ̂1,k−1 and ǫ2,k = ǫ2,k−1 − ǫ̂2,k−1, which leads to

ρEOL ≤ ρOL.
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Next, note thatin some scenarios OL can outperform EOL. The reason for this situation is that the

achievable rates in the OL and EOL schemes are subject to two contradicting effects: while the subtraction

of λ̄2
i in the numerator and denominator of (12) increasesREOL

i compared toROL
i (which corresponds to

λ̄2
i = 0), the fact thatρEOL can be smaller thanρOL can decreaseREOL

i compared toROL
i (this follows

as bothROL
i andREOL

i increase withρOL andρEOL, respectively). This situation is illustrated in Fig. 3

which presents the achievable rate regions forσ2
1 =0.1, σ2

2 =50, ρz =0 andP =1. It can be observed

in the figure that for largeR1 and smallR2 OL outperforms EOL. Finally, note that the OL and EOL

schemes can be combined by applying a decoder which uses the estimator that achieves the largestR2

at any specificR1.

B. Probability of Error for Finite Blocklengths

Motivated by the results of [11], in this subsection we consider thefinite blocklengthregime, which

impliesP (n)
e,i >0.

For independent noises with equal variances, the LQG schemeis a realization of the class of schemes

presented in [8], which achieves the highestsum-rateamong all linear-feedback schemes. Furthermore,

for this setting the LQG scheme is also a realization of the class of schemes presented in [6]. In fact, [7]

showed that for this setting,in terms of achievable rates, LQG strictly outperforms OL, as is demonstrated

in Fig. 2. Recall that in the OL and in the EOL schemes, the achievable rates are determined by the

scheme’s steady-state (fixed point) in terms ofρ2k (andλi,k). In this steady-state, at each channel use the

MSEαi,k is attenuated by aconstant factor, which determines the achievable rates, see [7, Lemma 1] on
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the connection between the MSEs and the achievable rates. Similarly, the achievable rates of the LQG

scheme are determined by the scheme’s steady-state MSE exponents. However, numerical evaluations

show that the LQG scheme converges to its steady-state slower than the OL and EOL schemes. Based

on this observation, [11] showed that when the codeword length is finite, the OL scheme can achieve

lower MSE compared to the LQG scheme. Furthermore, it can be easily observed that ifREOL
i >ROL

i ,

andρEOL<ρOL (as indicated in Fig. 2), then EOL outperforms OL also in the finite blocklength regime.

Let βi,n denote the MSE achieved by a decoder of a linear-feedback transmission scheme aftern

channel uses, and letRi be the transmission rate. Recall that as the scheme is linearthe estimation error

is a Gaussian RV [12, Subsection 10.5]. Since the data pointsare selected out of a PAM constellation

over [−0.5, 0.5], the probability of error can be computed using the standardexpression for PAM [1, pg.

670]:

P
(n)
e,i =

2nRi − 1

2nRi−1
Q

(

1

2nRi+1
√

βi,n

)

. (13)

Let ROL
1 (ρz) denote the achievable rate of the OL scheme at a specific noisecorrelationρz, and similarly

defineREOL
1 (ρz) and RLQG

1 (ρz). Fig. 4 depictsP (n)
e,1 vs. n for the OL, EOL and LQG schemes, for

P = 2, σ2
1 = σ2

2 = 1, and g = 1, for two cases:ρz = 0, andρz = 0.3. For this settingROL
1 (0) = 0.458,

REOL
1 (0) = 0.461, and RLQG

1 (0) = 0.464. The transmission rate, forall the schemes, is set toR1 =

0.9 · ROL
1 (ρz), ρz = 0, 0.3. It can be observed that, forρz =0, the EOL scheme achievesP (n)

e,1 = 10−5

10



after n= 18 channel uses, while the OL and LQG schemes requiren= 20 and n= 56 channel uses,

respectively. It can be further observed that for smalln the EOL scheme and the OL scheme achieve

similar P (n)
e,1 ; however, for largern the EOL scheme significantly improves upon the OL scheme. These

observations also hold when the noises are correlated, as concluded from the curves corresponding to

ρz=0.3 in Fig. 4.

Finally, note that forρz=0, a fixed transmission rate0.9·ROL
1 (0), andσ2

1 =σ2
2=1, the LQG scheme

requiresP = 2.8 in order to achieveP (n)
e,1 =10−5 after n=18 channel uses. This reflects an SNR loss

of 1.46 dB compared to the EOL scheme.We conclude that in the finite blocklength regime the EOL

scheme can significantly improve upon both the OL and the LQG schemes.
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