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Abstract—We present novel soft-input soft-output (SISO)
multiple-input multiple-output (MIMO) detectors based on the
Chase detection principle [1] in the context of iterative and
decoding (IDD). The proposed detector complexity is linear
in the signal modulation constellation size and the number of
spatial streams. Two variants of the SISO detector are developed,
referred to as SISO B-Chase and SISO L-Chase. An efficient
method is presented that uses the decoder output to modulate
the signal constellation decision boundaries inside the detector
leading to the SISO detector architecture. The performanceof
these detectors significantly improves with just a few number of
IDD iterations. The effect of transmit and receive antenna corre-
lation is simulated. For the high-correlation case, the superiority
of SISO B-Chase over the SISO L-Chase is demonstrated.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) antenna communi-
cation systems are known to achieve large spatial multiplexing
and diversity gains in multi-path rich fading channels. All
communication systems require some sort of error correction
coding for reliable reception, e.g. turbo codes or low-density
parity-check codes. Theturbo principle as described in [2]
has been successfully applied and extended to coded MIMO
systems with iterative detection and decoding (IDD) [3], [4].
The ”outer” code is the turbo or LDPC code and the ”inner”
code is spatial multiplexing and transmission of the symbols
over the multiple antennas. With IDD there is an iterative
exchange of information between the MIMO detector and
the channel decoder which has been shown to achieve near
channel capacity [5]. In IDD architectures, the log-likelihood
ratios (LLRs) of the code bits are generated by the MIMO
detector and passed to the channel decoder, which computes
the extrinsic LLRs and feeds them back to the detector.
The detector exploits the a priori LLRs from the decoder to
generate more accurate LLRs for the channel decoder to start
a new iteration.

There is a rich body of literature on MIMO (or symbol)
detectors ranging in complexity from linear minimum mean-
squared error (MMSE) [3], [6] to sphere detection [7]. These
detectors also differ in terms of their relative performance
where a sphere detector typically performs close to maximum
likelihood (ML) whereas the linear MMSE is inferior to ML.
The core receiver complexity remains to be dominated by the
MIMO detector especially when the number of spatial streams
and the the size of the signal modulation constellation on each
stream are large, e.g. 4-layers and 64-QAM.

The drawback of MIMO sphere detectors has been their
hardware implementation complexity [8]. In spite of recent
advances in complexity reduction of MIMO sphere detectors,
as reported in [9]–[11], their nondeterministic processing

throughput remains to present a challenge for hardware im-
plementation [12].

In this paper, we develop efficient soft-input soft-output
MIMO detectors in the context of IDD. Our proposed MIMO
detectors have linear complexity. Furthermore, their structures
are generalizable to an arbitrary number of spatial streams
and signal modulation constellation size and, moreover, have
fixed detection times. Our proposed MIMO detectors are
generalization of the Chase family of detection algorithms[1]
(referred to in the sequel as SISO B-Chase and SISO L-Chase).
Our contribution over the approach in [1] is two-fold: First,
in our proposed SISO B-Chase detector, we account for the
residual error variance in the symbol detection, making the
detector capable of generating soft output information, unlike
the B-Chase detector in [1] where only hard output is available.
Second, we extend both of the L-Chase and B-Chase detection
algorithm to use soft-input through an efficient method for
processing the a priori information obtained from the decoder.
We compare our detection method to that of [13] that uses soft
feedback detection. We show large performance gains with the
new detection method over iterative SIOF.

The rest of the paper is organized as follows. Section II
introduces the system model. Our soft-input soft-output MIMO
detection methods are described in Sections III and IV and
their performances are shown in Section V. Finally, Section
VI has the concluding remarks.

Notations: Unless otherwise stated, lower case and upper
case bold letters denote vectors and matrices, respectively, and
0 denotes the all-zero column vector.Im denotes the identity
matrix of sizem. Thek-th element of the vectorx is denoted
by x(k). Furthermore,| |, ‖ ‖, andE[.] denote the absolute
value,l2-norm, and statistical expectation, respectively, while
( )H denotes the complex conjugate transpose operation.

II. SYSTEM MODEL

We consider MIMO systems, whereNL QAM symbols are
linearly precoded using the precoding matrixW of sizeNt×
NL and then transmitted overNt ≥ NL antennas. The receiver
detects the transmitted symbols (streams) usingNr ≥ NL
receive antennas. The input-output relation is given by

y = H̄Ws+ n , Hs+ n =

NL∑

i=1

hisi + n (1)

wherey, s, n andH̄ denote theNr×1 received signal,NL×1
transmitted symbols,Nr × 1 background noise plus inter-
cell interference, andNr × Nt channel matrix, respectively.
Furthermore,hi is the i-th column vector of the equivalent
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channel matrixH = H̄W, andsi is the i-th transmittedM -
QAM symbol chosen from constellationχ. The symbol,si,
representsq = log2(M) code bitsci =

[
ci1 ci2 . . . ciq

]
.

The above relationship models both single-carrier systems
over flat fading channels and orthogonal frequency division
multiplexing (OFDM) systems over frequency-selective chan-
nels where Equation (1) applies to each subcarrier. Assuming
a known channel at the receiver and zero-mean circularly
symmetric complex Gaussian noisen of covariance matrix
Cnn = B−1, we write the max-log maximum-a-posteriori
(MAP) detector LLR of the bitcik as follows [4], [5]:

L(cik) = max
si∈χk,1

ηmax-log(s)− max
si∈χk,0

ηmax-log(s) (2)

ηmax-log(s) =

NL∑

m=1

q∑

n=1

bmnLa(cmn)− ‖y−
NL∑

m=1

hmsm‖2
B

(3)

where s = [s1 s2 ... sNL
]T , ‖x‖2

B
≡ xHBx, and χk,1 and

χk,1 denote the constellation sets where thek-th bit is ’1’
and ’0’, respectively. Furthermore,La(cmn) denotes the a
priori LLR (computed by the decoder) of the bitcmn, while
{bmn}qn=1

∈ {0, 1} denote the bit vector representation ofsm.
The exact brute-force solution of (2) requires the computation
of MNL metrics, which is quite complex for large signal mod-
ulation constellation sizes and large number of spatial streams.
However, in this work we show how we approximate the max-
log MAP solution in (2) using much lower complexity. By
whitening the noise and multiplyy by

√
B, we arrive at an

equivalent system model given by

ỹ =
√
By = H̃s+ ñ (4)

whereH̃ =
√
BH and ñ =

√
Bn ∼ N(0, INr

).

III. SOFT-INPUT SOFT-OUTPUT L-CHASE DETECTORS

In order to generate the LLRs ofsi, we first reorganize the
columns ofH̃ such that itsi-th and last columns are swapped
to getHi = H̃Pi, wherePi is the correspondingNL × NL
permutation matrix withP2

i = INL
. Next, we obtain the QR

decomposition ofHi ≡ QiRi and rotatey by QH
i to get

yi = QH
i ỹ = RiPis+ ni (5)

whereQH
i Qi = INL

, ni = QH
i ñ ∼ N(0, INL

) and Ri is
an NL × NL upper triangular matrix. Furthermore,Pis =
[sj1 sj2 ... sjNL

]T where jNL
= i and ji = NL. The matrix

Ri can be portioned as follows:

Ri ≡
[
R̃i r̃i
0T di

]
(6)

whereR̃i is the upper triangular(NL− 1)× (NL− 1) matrix
constructed by the firstNL−1 rows and columns ofRi. Also,
r̃i is the last column ofRi excluding its(NL, NL) element
denoted bydi. Next, we get

ȳi=

[
R̃−1

i 0
0 1

]
yi =

[
INL−1 ci
0T di

]
Pis + n̄i (7)

where ci = R̃−1

i r̃i is obtained using the back substitution
technique [14] where no matrix inversion is needed. Using

x1x2x3
���
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Fig. 1.
√

M -PAM constellationψ for the real (or imaginary) part of the
M -QAM constellationχ.

the new input-output relation in (7), we approximate the LLR
in (2) as follows:

L(cik) ≈ max
si∈χk,1

ηL-Chase(s)− max
si∈χk,0

ηL-Chase(s) (8)

ηL-Chase(s)=

NL∑

m=1

q∑

n=1

bmnLa(cmn)−
∥∥∥∥ȳi −

[
INL−1 ci
0T di

]
Pis

∥∥∥∥
2

=

NL∑

m=1

q∑

n=1

bmnLa(cmn)− |ȳi(NL)− disi|2

−
NL−1∑

l=1

|ȳi(l)− ci(l)si − sjl |2

E[|n̄i(l)|2]
(9)

whereE[|n̄i(1)|2] = 1 andE[|n̄i(l)|2] is thel2-norm of thel-
th row ofR̃−1

i . Note that the correlations between the elements
of n̄i are not accounted in (9) in order to reduce the algorithm
complexity. We rewrite the maximization problems in (8) as:

max
si∈χk,1(0)

ηL-Chase(s)= max
si∈χk,1(0)

(
q∑

n=1

binLa(cin)−|ȳi(NL)−disi|2

︸ ︷︷ ︸
,αi

+

NL−1∑

l=1

max
sjl∈χ

(
q∑

n=1

bjlnLa(cjln)−
|ȳi(l)− ci(l)si−sjl |2

E[|n̄i(l)|2]

)

︸ ︷︷ ︸
,αi,l

)

(10)

where we enumerate over the stream of interestsi, and
computeαi +

∑NL−1

l=1
αi,l for every possible instance ofsi.

Then, we run the maximization overχk,1 and χk,0 to get
the LLR. Although (10) reveals that we need to compute
(NL−1)M2 metrics, we show in the next subsection how we
exactlyand efficiently solve for the sub-maximization problem
αi,l using much fewer metric computations.

A. Efficient computation of the sub-maximization problem

Separating out the real and imaginary parts of the sub-
maximization problemαi,l, we write [15]

αi,l = max
sr,jl∈ψ

(
∑

n∈Ir
bjlnLa(cjln)−

(zr,l − sr,jl)
2

E[|n̄i(l)|2]

)

+ max
sI,jl∈ψ

(
∑

n∈II
bjlnLa(cjln)−

(zI,l − sI,jl)
2

E[|n̄i(l)|2]

)
(11)

wherezr,l(sr,jl) andzI,l(sI,jl) denote the real and imaginary
parts of zl(sjl), respectively, wherezl = ȳi(l) − ci(l)si.
Furthermore,Ir and II are the bit indices corresponding
to sr,jl and sI,jl , respectively, whileψ denotes the

√
M -

PAM one-dimensional constellation shown in Fig. 1 which
corresponds to the real or imaginary parts ofsjl . We use the a
priori LLRs to modulate [15] the decision thresholds between
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the
√
M -PAM constellation symbols in Fig. 1. Based on the

modulated thresholds, we apply simple slicers onzr,l andzI,l
to obtain the solutions of the real and imaginary maximization
problems in (11) denoted bys∗r,jl ands∗I,jl , respectively, as:

s∗r,jl=arg max
sr,jl∈ψ

(
∑

n∈Ir
bjlnLa(cjln)−

(zr,l − sr,jl)
2

E[|n̄i(l)|2]

)
(12)

= Q[zr,l] ,





x1, max
u>1

D1u ≤ zr,l

xm, max
u>m

Dmu ≤ zr,l ≤ min
u<m

Dmu

x√M , zr,l ≤ min
u<

√
M

D√
Mu

whereQ[.] is the quantization (slicing) function and1

Dmu = Dum =
xm + xu

2

− E[|n̄i(l)|2]
∑
n∈Ir (bmn − bun)La(cjln)

2(xm − xu)
(13)

is the modulated boundary between the one-dimensional con-
stellation symbolsxm and xu in Fig. 1, where{bmn}qn=1

is the bit vector representation of anyM -QAM complex
symbol whole real part equals toxm. Similarly, we obtain
s∗I,jl . Despite that the solution of (10) requires enumeration
over si, the M −

√
M boundaries,{Dmu}, are computed

only once and not for each instance ofsi. Hence, the to-
tal number of metric computations required to detectsi is
NLM−(NL − 1)

√
M ≪ (NL − 1)M2 for largeNL andM .

IV. SOFT-INPUT SOFT-OUTPUT B-CHASE DETECTORS

To detect thei-th stream, we reorganize the columns ofH̃

such that itsi-th column is moved to the last column position.
The remainingNL − 1 columns are BLAST-sorted [16] and
placed at the firstNL − 1 column positions. The reorganized
channel matrix isHi = H̃Ai, whereAi is the NL × NL
permutation matrix withA2

i = INL
. Next, we obtain the QR

decomposition ofHi ≡ QiRi and rotatey by QH
i to get

yi = QH
i ỹ = RiAis+ ni (14)

whereQH
i Qi = INL

, ni =∼ N(0, INL
) andRi is anNL ×

NL upper triangle matrix whose(k, l) element is denoted by
rkl. Also,Ais = [sj1 sj2 ... sjNL

]T with jNL
= i andji = NL.

we approximate the LLR in (2) as follows:

L(cik) ≈ max
si∈χk,1

ηB-Chase(s)− max
si∈χk,0

ηB-Chase(s) (15)

ηB-Chase(s) =

NL∑

m=1

q∑

n=1

bmnLa(cmn)−
∣∣yi(NL)− rNLNL

si
∣∣2

−
NL−1∑

l=1

∣∣∣∣∣yi(l)− rlNL
si −

NL−1∑
f=l+1

rlf ŝjf − rllsjl

∣∣∣∣∣

2

varl
(16)

where ηB-Chase is the same asηmax-log in (2) except that

the symbols
{
sj

f

}NL−1

f=l+1

are replaced by their estimates,

1For the detailed derivation, refer to [15].

{
ŝj

f

}NL−1

f=l+1

, instead of being nulled out as in (7). Furthermore,

the residual error after subtracting the symbols estimatesis
being accounted for using its variance varl given by

varl = 1 +

NL−1∑

f=l+1

|rlf |2var(sj
f
) (17)

where the symbols estimates and variances are given by

ŝj
f
= E

[
sj

f

∣∣∣
{
La(cj

f
n), Ld(cj

f
n)
}q
n=1

]
(18)

var(sj
f
) = E

[
|sj

f
− ŝj

f
|2
∣∣∣
{
La(cj

f
n), Ld(cj

f
n)
}q
n=1

]
(19)

where| denotes the conditioning operator and
{
Ld(cj

f
n)
}q
n=1

are the post-detection LLRs of the bits representing the symbol
sj

f
obtained as follows:

Ld(cjf n) =

min
sj

f
|cj

f
n=0

βj
f
− min
sj

f
|cj

f
n=1

βj
f

1 +
∑NL−1

g=f+1
|rfg|2var(sjg )

, 2 ≤ f ≤ NL − 1

(20)

where

βj
f
= yi(f)− rfNL

si −
NL−1∑

g=f+1

rfg ŝjg − rffsjf (21)

We use the combined a priori and post-detection LLRs,
Lp(cj

f
n) = La(cj

f
n) + Ld(cj

f
n), and compute the mean and

variance in (18) and (19) simply as follows [13]2:

ŝj
f
=
∑

sm∈χ
sm

∏q

n=1

(
1+(2bmn − 1)tanh

(
Lp(cj

f
n)/2

))

2q
(22)

var(sj
f
)=
∑

sm∈χ
|sm|2

∏q

n=1

(
1+(2bmn − 1)tanh

(
Lp(cj

f
n)/2

))

2q

−|ŝj
f
|2 (23)

where tanh(.) is the hyperbolic tangent function.
Next, we rewrite the maximization problem in (15) as:

max
si∈χk,1(0)

ηB-Chase(s)= max
si∈χk,1(0)

(
q∑

n=1

binLa(cin)−|ȳi(NL)−disi|2

︸ ︷︷ ︸
,αi

+

NL−1∑

l=1

max
sjl∈χ

(
q∑

n=1

bjlnLa(cjln)−
|zl − sjl |

2

varl/r2ll

)

︸ ︷︷ ︸
,αi,l

)
(24)

zl =
yi(l)− rlNL

si −
∑NL−1

f=l+1
rlf ŝjf

rll
(25)

Then, we use our algorithm in Section III-A to solve for the
maximization problemαi,l in (24), with E[|n̄i(l)|2] replaced
by varl/r2ll while zr,l and zI,l are replaced by the real and
imaginary parts, respectively, ofzl in (25).

2In most standards, the constellation mapping can be exploited to simplify
the computations of the symbol mean and variance without summations
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Fig. 2. Performance comparison over the first (dash-dotted lines), second
(dashed lines), and third (solid lines) IDD iterations for PEDB channel with
no antenna correlation and high code rate 0.83
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Fig. 3. Performance comparison over the first (dash-dotted lines), second
(dashed lines), and third (solid lines) IDD iterations for EPA channel with
high antenna correlation and low code rate 0.5

Our contribution over the B-Chase algorithm in [1] is two-
fold. First, we account for the residual error variance in
(16) making the detector capable of generating soft output
information, unlike [1], where only hard output is available.
Second, we develop the algorithm to take soft input and use
an efficient algorithm to solve for the maximization problems
involving the a priori LLRs.

V. SIMULATION RESULTS

We simulate the block error rate (BLER) performance of
our proposed SISO L-Chase and SISO B-Chase algorithms,
and compare them to the algorithm in [13] referred to as
soft input, output, and feedback (SIOF). The performance is
simulated for OFDM systems with 2048 subcarriers and 64-
QAM modulation over each subcarrier for various signal-to-
noise ratios (SNRs). Iterative detection and decoding with3
iterations, is employed at the receiver, where the channel de-
coder is the standard LTE turbo decoder [17]. The transmitter
usesNt = 4 antennas to transmitNL = 4 layers with no
precoding, i.e.,W = I4, and the receiver usesNr = 4 anten-
nas. The performances are compared for low and high turbo

code rates, namely, 0.5 and 0.83, respectively. Furthermore,
two standard multi-path channel models [18] are simulated;
namely, the pedestrian-B (PEDB) channel with no antenna
correlation, and the extended pedestrian-A (EPA) channel with
high antenna correlations, where both transmit and receive
correlation coefficients are 0.9. Perfect channel knowledge is
assumed at the receiver. Figs. 2 and 3 show that both of the
proposed algorithms (SISO L-Chase and B-Chase) outperform
SIOF in [13] by several dBs. The waterfall phenomenon is not
observed in these figures since we simulate frequency selective
channels rather than frequency flat channels. The benefit from
the iterations in SIOF receiver is minimal due to the lack of
coding gain when using code rate of 0.83 in the case of Fig. 2.
High channel correlations also diminish the benefit of the SIOF
method as seen in Fig. 3 due its inability of separating out the
correlated streams. Comparing Figs. 2 and 3, we observe the
superiority of SISO B-Chase over SISO L-Chase algorithm
for channels with high antenna correlation.

VI. CONCLUSION

Based on the Chase detection principle, previously known
for producing hard decisions, we developed soft-input soft-
output MIMO detectors for two classes of algorithms: SISO B-
Chase and SISO L-Chase. An efficient method was described
for using the decoder output LLRs to modulate the QAM
signal constellation decision boundaries in the detector.The
performances of the SISO B-Chase and SISO L-Chase were
compared with the SIOF detector in [13] under different cod-
ing rates and channel conditions. Simulation results showed
that the new proposed detectors have3 to 4 dB advantage over
SIOF at1% BLER after 3 iterations. Simulations also showed
that SISO B-Chase has superior performance over SISO L-
Chase for channels with high correlations.
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