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Abstract—We present novel soft-input soft-output (SISO) throughput remains to present a challenge for hardware im-
multiple-input multiple-output (MIMO) detectors based on the  plementation[[12].

Chase detection principle [1] in the context of iterative and . - i i
decoding (IDD). The proposed detector complexity is linear In this paper, we develop efficient soft-input soft-output

in the signal modulation constellation size and the number b MIMO detectors in the context of IDD. Our proposed MIMO
spatial streams. Two variants of the SISO detector are deveped, detectors have linear complexity. Furthermore, theirctnes
referred to as SISO B-Chase and SISO L-Chase. An efficient are generalizable to an arbitrary number of spatial streams
method is presented that uses the decoder output to modulate g signal modulation constellation size and, moreovere ha

the signal constellation decision boundaries inside the tlector . : .
leading to the SISO detector architecture. The performanceof fixed detection times. Our proposed MIMO detectors are

these detectors significantly improves with just a few numbeof ~9€neralization of the Chase family of detection algorittjfi}s
IDD iterations. The effect of transmit and receive antenna orre-  (referred to in the sequel as SISO B-Chase and SISO L-Chase).

lation is simulated. For the high-correlation case, the sueriority ~ Our contribution over the approach inl [1] is two-fold: Fjrst

of SISO B-Chase over the SISO L-Chase is demonstrated. in our proposed SISO B-Chase detector, we account for the
residual error variance in the symbol detection, making the
|. INTRODUCTION detector capable of generating soft output informatiorikan

the B-Chase detector inl[1] where only hard output is avilab
Second, we extend both of the L-Chase and B-Chase detection
?Igorithm to use soft-input through an efficient method for
Brocessing the a priori information obtained from the dexod
We compare our detection method to that ofl [13] that uses soft
feedback detection. We show large performance gains wéth th

Multiple-input multiple-output (MIMO) antenna communi-
cation systems are known to achieve large spatial multipdex
and diversity gains in multi-path rich fading channels. Al
communication systems require some sort of error cornecti
coding for reliable reception, e.g. turbo codes or low-itgns

arity-check codes. Thaurbo principle as described in[]2 ) ) .
East}t/)een successfully applieg andpextended to coded hM]Il\Wéw detection method over iterative SIOF.

systems with iterative detection and decoding (IDD) [3], [4. The rest of the paper is orgamzed_ as follows. Sedfion I
The "outer” code is the turbo or LDPC code and the ,,innelmtroduces the system model. Our soft-input soft-outpuvial

code is spatial multiplexing and transmission of the syrxaboﬁie'[ection methods are described in Sectionis Il IV -and

over the multiple antennas. With IDD there is an iterativ elr performances_ are shown in Sectioh V. Finally, Section
has the concluding remarks.

exchange of information between the MIMO detector a : .
the channel decoder which has been shown to achieve nea{}lotaﬂons Unless otherwise stated, lower case and upper

channel capacity [5]. In IDD architectures, the log-likelod case bold letters denote vectors and matrices, reSp%m
ratios (LLRs) of the code bits are generated by the MIM8 de_notes _the all-zero column vectdy, denotes _the identity
detector and passed to the channel decoder, which comp Jpalrix of sizem. Thek-th element of the vectax is denoted

the extrinsic LLRs and feeds them back to the detect Yx(k)' Furthermore| |.’ H I, and £1] _denote the _absolutg
alue,l>-norm, and statistical expectation, respectively, while

The detector exploits the a priori LLRs from the decoder téH g h | i :
generate more accurate LLRs for the channel decoder to start enotes the complex conjugate transpose operation.

a new iteration.
There is a rich body of literature on MIMO (or symbol) Il. SYSTEM MODEL

detectors ranging in complexity from linear minimum mean- \ve consider MIMO systems, whefg;, QAM symbols are
squared error (MMSE) [3]/]6] to sphere detection [7]. Th951?near|y precoded using the precoding mafii of size N x
detectors also differ in terms of their relative performancy, and then transmitted ové¥, > N; antennas. The receiver

where a sphere detector typically performs close to maximuBtects the transmitted symbols (streams) usig> N,
likelihood (ML) whereas the linear MMSE is inferior to ML. receive antennas. The input-output relation is given by

The core receiver complexity remains to be dominated by the

MIMO detector especially when the number of spatial streams AW ag B Jr, h 1
and the the size of the signal modulation constellation @hea y= s+n2Hs+n=) his+n @)
=1

stream are large, e.g. 4-layers and 64-QAM.
The drawback of MIMO sphere detectors has been theiherey, s, n andH denote theV, x 1 received signalNy, x 1
hardware implementation complexity! [8]. In spite of recerttansmitted symbols)N,. x 1 background noise plus inter-
advances in complexity reduction of MIMO sphere detectorsell interference, andv,. x N, channel matrix, respectively.
as reported in[[9]=[11], their nondeterministic procegsinFurthermoreh; is thei-th column vector of the equivalent
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channel matrixdH = HW, ands; is thei-th transmittedM -

Xmr e X3 Xz X
QAM symbol chosen from constellation. The symbol,s;, e ° ° o>

representg = log,(M) code bitsc; = [ci1 ci2 ... cigl. e

The above relationship models both single-carrier systems

over flat fading channels and orthogonal frequency divisidrig- 1. /M-PAM constellations for the real (or imaginary) part of the
multiplexing (OFDM) systems over frequency-selectivercha /"QAM constellationy.

nels where Equatioi{1) applies to each subcarrier. Assuimithe new input-output relation ifl(7), we approximate the LLR
a known channel at the receiver and zero-mean circulaity (@) as follows:

symmetric complex Gaussian noise of covariance matrix

Cnn = B!, we write the max-log maximum-a-posteriori L(cik) = seo "-chasds) — siExeo "-Chasds) ®
(MAP) detector LLR of the bit;;, as follows [4], [5]: N. ¢ I 9
- = bana mn)—||¥i — Ne-1 G Pz
L(cik) = max Mmaxlog(S) — MAaxX Nmaxlog(S) (2) TL-Chasds) Z Z (€mn) ‘y { of d; S
Si€Xk,1 Si€Xk,0 m=1n=1
N ¢ Np N ¢ )
nmax-log(s) = Z Z bana(Cmn)_ Hy—z hm8m||]23 (3) :Z bana(Cmn)_ |yz(NL) - di3i|
m=1n=1 m=1 m=1n=1
Np—1,_ 2
wheres = [s1s2...5x,]7, ||x|3 = xBx, and y;, and =S [¥i (1) — ci(l)si — s;| ©)

Xk,1 denote the constellation sets where #h¢h bit is "1’ Eln;(1)]*]
and '0’, respectively. Furthermord,,(c,.,) denotes the a - 9 - .
priori LLR (computed by the decoder) of the hif,,,, while WhereE[|n;(1)|"] = 1 and E{|n;(1)|"] is thels-norm of thel-
{bmn}?_, € {0,1} denote the bit vector representationsgf. th row of R;*. Note that t.he co_rrelatlons between the eIemgnts
The exact brute-force solution dfl (2) requires the comjpurtat of n; are not accounted inl(9) in order to reduce the algorithm
of M Nt metrics, which is quite complex for large signal modcomplexity. We rewrite the maximization problems [in (8) as:
ulation constellation sizes and large number of spatiabsts. q
However, in this work we show how we approximate the max- max 7.chasds)= max <Z binLa(Cin)—15i (N1 )—disi|*
log MAP solution in [2) using much lower complexity. By = <X EXEION

whitening the noise and multiply by vB, we arrive at an

equivalent system model giveany +NL,1 ) q e i) — ci(l)si—sjl|2
~ - ~ max inLia\Cjn)—
y=VBy=Hs+n @ TS\ ST P

whereH = vBH andi = vBn ~ N(0,Iy ).

ey
=,

(10)

where we enumerate over the stream of intergstand

In order to generate the LLRs &f, we first reorganize the computeq; + Zf\f{l a;,; for every possible instance af.
columns ofH such that itsi-th and last columns are swappedrhen, we run the maximization ovey,; and xx o to get
to getH; = HP;, whereP; is the correspondingV;, x Ny the LLR. Although [ID) reveals that we need to compute
permutation matrix withP? = Iy, . Next, we obtain the QR (N, —1)M? metrics, we show in the next subsection how we
decomposition o; = Q,R,; and rotatey by QX to get exactlyand efficiently solve for the sub-maximization problem
a;,; using much fewer metric computations.

IIl. SOFT-INPUT SOFT-OUTPUT L-CHASE DETECTORS

yi=Ql'y=R;Pis+n; (5)
where Q#Q; = Iy,, n;, = Qfn ~ N(0,Iy,) andR; is A. Efficient computation of the sub-maximization problem
an Np, x N, upper triangular matrix. Furthermor®;s — Separating out the real and imaginary parts of the sub-

[Sj1 Sjs -+ Sjn, ] _ wherejy, =i andj; = Np. The matrix maximization problemy; ;, we write [15]
R, can be portioned as follows:

N (20 = $r31)°
R, Qi = max bjnLa(cjn) — ——2—
R; = [OT 21] (6) Sr.j €Y (nezh 7t (€ E[|fll(l)|2]
2
whereR; is the upper triangulafN; — 1) x (Np — 1) matrix + max <Z bjinLa(cjin) — M) (11)
constructed by the firs¥;, — 1 rows and columns oR,;. Also, SLiy €Y nel; Eln;(1)|]

t; is the last column oR,; excluding its(Ny, N;,) element

wherez, (s, ;) andzr ;(sr ;) denote the real and imaginar
denoted byd;. Next, we get ri(8r) risr) ginary

parts of z(s;,), respectively, wherez; = y;(1) — c;(1)s;.
~ R 0 In,_1 C ~ Furthermore, I, and I; are the bit indices corresponding
i= [ 0 J yi= { o” dz} Pis+n; (") to s, and sy, respectively, whileyy denotes they/M-
B PAM one-dimensional constellation shown in Fig. 1 which
wherec; = R;lfi is obtained using the back substitutiorcorresponds to the real or imaginary partsgf We use the a
technique [[14] where no matrix inversion is needed. Usingriori LLRs to modulate[[15] the decision thresholds betwee



the /M-PAM constellation symbols in Fig] 1. Based on th% }NL ! . instead of being nulled out as @ (7). Furthermore,
modulated thresholds, we apply simple slicerszppandz;
to obtain the solutions of the real and imaginary maximaati (e residual error atter subtracting the symbols estimetes

problems in [(T1L) denoted by, ands;  , respectively, as: being accounted for using its variance ygiven by
NLfl

2
=g max (37 byuLaley) — L)) (1) var =1+ 3 Iryy[var(s; ) )
i s €\ 7. Elln;(1))*] f=l+1
I max Dy, < 2n) where the symbols estimates and variances are given by
’ u>1 w=""
. q
B Q[an] 2 Tmy g;aﬁDmu S Zrl < ggﬁDmu ij =F [ij {La(cjfn)aLd(cjfn)}nzl} (18)
rl < D 5 e
vy A< min Do, var(s; ) = E [|sjf — 5 |2 ]{La(cjfn),/:d(cjfn)}nzl} (19)
i i i ici i q
where@/.] is the quantization (slicing) function dhd where| denotes the conditioning operator ﬂd(cjf )i
Dy = Dym = L;'“T“ are the post-detection LLRs of the bits representing t aos%ym
s;, obtained as follows:
_ E[|fl(l)|2] Znelr (bmn — bun)La(cjin) (13) K
Z 2~ 7] min_ 5~ win_ 5,
SiplCipn= Sip 16
is the modulated boundary between the one-dimensional cod-a(¢jn) = 1 - fNL_l L (s, )’ 2<f<Np-1
stellation symbolsz,, and z, in Fig. [, where{b,,,}?_, +Zg:f+1 |rf9| var(s;, ) 20
is the bit vector representation of amy/-QAM complex (20)
symbol whole real part equals te,,. Similarly, we obtain where
s7 ;- Despite that the solution of_(IL0) requires enumeration Ny —1
over s;, the M — M boundaries {D,.,}, are computed By, = vilf) = ryn, 50— Z TroBi, =TS, (21)
only once and not for each instance gf Hence, the to- g—f+1

tal number of metric computations required to detectis

NLM—(Ny, — )W < (N, — 1)M? for large N, and M. We use the combined a priori and post-detection LLRs,

Lp(c]f )= L, (c]fn) + Ld(c]fn) and compute the mean and

IV. SOFT-INPUT SOFT-OUTPUT B-CHASE DETECTORS variance in[(IB) and.(19) simply as follows ‘ES]

To detect the-th stream, we reorganize the columnskbf 1 (1+(2bmn — l)tanh(Lp(cjfn)/2))
such that itsi-th column is moved to the last column position. 8,=Y _ sm 57 (22)
The remainingNy — 1 columns are BLAST-sorted [16] and smEX
placed at the firsfV, — 1 column positions. The reorganized - (1_|_(2bmn _ 1)tanh(L,,(cj n)/2))
channel matrix isH; = HA,;, where A; is the N, x N1 var(s Z |$m |? !
permutation matrix withA? = Iy, . Next, we obtain the QR SmEX 24
decomposition ofl; = Q;R,; and rotatey by QF to get —15; |2 (23)
!
H ~
yi=Qi'y = RiAis+n; (14)  where tanh(.) is the hyperbolic tangent function.
whereQYQ; = Iy, , n; =~ N(0,Iy,) andR, is an Ny, x Next, we rewrite the maximization problem in{15) as:
Ny, upper triangle matrix whosék, () element is denoted by
Ty AlSO, Ais = s, 85, ... 85, |7 With jy, =i andj; = Ny. ,, nax ng. ChasdS)= - max <meL (cin)—|yi(NL)—d;si|”
we approximate the LLR ir({2) as follows: FEXELO) k(o)
Licir)  max ngchasds) = max nacnasds)  (15) o
SiEX Si€EXk,0 Nip—1 q |Z s |
+ 3 max( Y by La(e n)—17”> ) (24)
2 ) Ju Ju 2
T)p-chasd$) = Z Z bmnLa(Cmn)= [yi(NL) = 7, v, 5i] =1 SJZGX(n—l var/ry
m=1n=1
2 éai,[
NLfl .
Ni_:l yill) =7y, 80 — f:Zl;H TS, = Tusi L= yvi(l) — TZNLSlr Zj l+1 T iy (25)
— var; i

(16) Then, we use our algorithm in Sectibn III-A to solve for the
maximization problemy;; in (24), with E[|n;({)|’] replaced
where 7g.chase IS the same aS)maxiog in (@) except that by var;/r? while z,.; and z;; are replaced by the real and

e i est imagi t tively, of |
the symbols{sjf}f ., are replaced by their estimatesiMaginary parts, respectively, of in (29).
=I+

2|n most standards, the constellation mapping can be egdldd simplify
1For the detailed derivation, refer to [15]. the computations of the symbol mean and variance withoutnsations
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Fig. 2. Performance comparison over the first (dash-doitezs), second

(dashed lines), and third (solid lines) IDD iterations fd&EPB channel with
no antenna correlation and high code rate 0.83
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Fig. 3. Performance comparison over the first (dash-doitezs), second

(dashed lines), and third (solid lines) IDD iterations fdPA=channel with
high antenna correlation and low code rate 0.5

Our contribution over the B-Chase algorithm in [1] is two-

fold. First, we account for the residual error variance i

code rates, namely, 0.5 and 0.83, respectively. Furthermor
two standard multi-path channel models|[18] are simulated;
namely, the pedestrian-B (PEDB) channel with no antenna
correlation, and the extended pedestrian-A (EPA) chaniikl w
high antenna correlations, where both transmit and receive
correlation coefficients are 0.9. Perfect channel knowdeidg
assumed at the receiver. Fig$. 2 amd 3 show that both of the
proposed algorithms (SISO L-Chase and B-Chase) outperform
SIOF in [13] by several dBs. The waterfall phenomenon is not
observed in these figures since we simulate frequency s&lect
channels rather than frequency flat channels. The bendiit fro
the iterations in SIOF receiver is minimal due to the lack of
coding gain when using code rate of 0.83 in the case ofFig. 2.
High channel correlations also diminish the benefit of tHersl
method as seen in Figl 3 due its inability of separating osit th
correlated streams. Comparing Figk. 2 ahd 3, we observe the
superiority of SISO B-Chase over SISO L-Chase algorithm
for channels with high antenna correlation.

VI. CONCLUSION

Based on the Chase detection principle, previously known
for producing hard decisions, we developed soft-input-soft
output MIMO detectors for two classes of algorithms: SISO B-
Chase and SISO L-Chase. An efficient method was described
for using the decoder output LLRs to modulate the QAM
signal constellation decision boundaries in the detedtbe
performances of the SISO B-Chase and SISO L-Chase were
compared with the SIOF detector in [13] under different cod-
ing rates and channel conditions. Simulation results skdowe
that the new proposed detectors haue 4 dB advantage over
SIOF at1% BLER after 3 iterations. Simulations also showed
that SISO B-Chase has superior performance over SISO L-
Chase for channels with high correlations.
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