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Abstract

We study the problem of the transmission of currently observed time variable signals

via a channel that is capable of sending a single binary signal only for each measurement

of the underlying process. For encoding and decoding, we suggest a modification of the

adaptive delta modulation algorithm. This modification ensures tracking of time variable

signals. We obtained upper estimates for the error for the case of noiseless transmission.

Index Terms: encoding, communication bit-rate constraints, adaptive delta modu-

lation, noiseless binary channel, A/D conversion

1 Introduction

We study the problem of transmission of a currently observed continuous time signal via a

noiseless binary channel. The evolution law for the underlying continuous time signal is not

supposed to be known; only some mild conditions on the signal regularity are imposed. In

particular, the signal is not necessarily continuous, and unexpected jumps may occur. We

consider the situation where the channel capacity is insufficient to send in real time sufficiently

∗This is a pre-copy-editing, author-produced PDF of a paper accepted to IEEE Signal Process-

ing Letters following peer review. The definitive publisher-authenticated version is available online at

http://www.signalprocessingsociety.org/publications/periodicals/letters/

The author is with Department of Mathematics and Statistics, Curtin University, GPO Box U1987,

Perth, Western Australia, 6845 (email N.Dokuchaev@curtin.edu.au).This work was supported by ARC grant

of Australia DP120100928 to the author.

1



accurate approximations of the current measurements. Therefore, the observed measurements

have to be encoded, transmitted in the encoded form, and decoded. This problem may arise,

for example, for remote control of underwater vehicles, since communication is severely limited

underwater (see [1]).

The paper suggests a modification of the systems from [2, 3, 4], where limited capacity

digital channels were studied in stochastic setting. In [2], a related filtering problem was

considered for the case of bounded random disturbances. A case of decreasing Gaussian

disturbances was studied in [3] for a scalar system. In [4], a filtering problem was studied

for the case of non-decreasing Gaussian disturbances for vector processes. The present paper

considers an extreme case of a binary channel, i.e., one-bit capacity channel that can transmit

a single binary signal for a single measurement of the underlying process. This channel

connects two subsystems of a dynamical system. The first subsystem, that is called Encoder,

receives the real-valued measurements and converts them into a binary symbolic sequence

which is sent over the communication channel. For each measurement, only one single bit

signal can be sent. The second subsystem (Decoder) receives this symbolic sequence and

converts it into a real-valued state estimate. Therefore, the effectiveness of the entire system

is defined by the effectiveness of the binary encoding algorithm. This encoding problem was

widely studied in the literature. In non-causal setting, some important results can be found

in [5, 6, 8, 9]; see also the bibliography therein. In [5, 6, 9], the encoding was studied in the

framework of the sampling theory and Fourier analysis. In [8], a sequential binary estimator

based on stochastic contamination was obtained for continuous processes.

For our particular task, we have restrictions of causality. To satisfy this condition, we

suggest a modification of the adaptive delta modulation algorithm introduced by Jayant [10]

for voice transmission; see more recent development in [11] and the bibliography therein. The

suggested algorithm ensures stable tracking of time variable signals using just one bit for each

measurement. The algorithm does not depend on the parameters of the evolution law and

the distributions of the underlying process. We obtained the upper estimates of the error for

the case of a noiseless transmission.

2 Problem statement and the result

Let x(t) be a continuous time state process observed at times tk = kδ, k = 0, 1, 2, ..., where

δ > 0 is given.
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Suppose estimates of the current state x(t) are required at a distant location, and are to

be transmitted via a digital communication channel such that only one bit of data may be

sent at each time tk, i.e., a binary channel. For this task, we consider a system which consists

of the encoder, the transmission channel, and the decoder. For each observation x(tk), the

encoder produces a one-bit symbol hk which is transmitted via the channel and then received

by the decoder; the decoder produces an estimate y(t)|[0,tk] which depends only on h1, ...., hk .

In other words, the process x(t) is supposed to be sampled at times tk, encoded, transmitted

via the channel and then decoded. We assume that the transmission is noiseless.

It is important that, for each sample for each sampling point tk, only one bit of information

can be transmitted. The corresponding algorithm is suggested below.

Let real numbers y0, M0 > 0, M̄ > 0, and a ∈ (1, 2] be given parameters that are known

both to the encoder and the decoder. The algorithm can be described as follows.

1. Sample values x(tk) are taken;

2. The encoder computes a sequence {(yk,Mk)}k≥1 ⊂ R2 and produces a sequence of

binary symbols {hk} consequently for k = −1, 0, 1, 2, ... by the following rule: h−1 = 1,

and

hk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if yk < x(tk)

−1, if yk > x(tk)

−hk−1, if yk = x(tk),

(1)

where

yk = yk−1 + hk−1Mk−1δ, k = 1, 2, ... (2)

Mk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

aMk−1, if k /∈ T and k − 1 /∈ T

Mk−1, if k /∈ T and k − 1 ∈ T

max(a−1Mk−1, M̄ ), if k ∈ T ,

(3)

and where T = {k ≥ 1 : hk−1hk < 0}.

3. The binary symbol hk is transmitted via the channel.

3



4. The decoder computes the same sequence {(yk,Mk)}k≥1 ⊂ R2 using the received values

{hk} by the same rule as the encoder.

5. Finally, the decoder computes estimate y(t) of the process x(t) as

y(t) = yk + hkMk(t− tk), t ∈ [tk, tk+1], (4)

and where k = 0, 1, 2, ..., y(0) = y0.

Note that this algorithm represents a modification of the Jayant’s adaptive delta modu-

lation algorithm [10, 11], where it was assumed that, in our notations,

M̄ = 0, Mk = aMk−1 if k − 1 ∈ T . (5)

The novelty of algorithm (1)–(4) is that it allows three possible values of Mk/Mk−1 on each

step instead of two, and uses two bit memory instead of one. It was shown in [11] that

Jayant’s algorithm allows to track benchmark constant processes. We show below that he

suggested changes ensure stable tracking processes for variable in time underlying processes.

In addition, we were able to estimate the tracking error.

Let D > 0 be given.

We consider continuous time processes x(t) with a polynomial rate of growth, i.e., such

that there exists C > 0 and c > 0 such that

|x(t+ θ)| ≤ C(|x(t)|+ θc), t > 0, θ > 0.

In addition, we assume that there are intervals [α, β] ⊂ [0,+∞) such that

sup
t∈[tk,tk+1]

|x(t)− x(tk)| ≤ Dδ (6)

for all for all k such that [tk, tk+1] ⊂ [α, β]. In fact, y(t) will be approaching x(t) during these

time intervals only. Therefore, a good approximation is not feasible if these intervals are too

small or have too large gaps between them.

Remark 1 Clearly, (6) holds if x|[α,β] is absolutely continuous and |dx(t)/dt| ≤ D. However,

we prefer to use condition (6) since it is less restrictive; in particular, (6) holds for some

discontinuous on [α, β] processes x.

Theorem 1 (i) Let τ = inf{m ∈ T }. Then

τ ≤ inf{m ≥ 0 : M0(1 + a+ a2 + · · ·+ am)δ ≥ |y0 − x(0)|+ C(1 +mcδc) }. (7)

Here C and c are the constants from (6).
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(ii) Assume that M̄ ≥ 2D. Let θ = 3 loga(Mτ/M̄ ) + 6. In this case, if (6) holds for all

k ∈ {τ, τ +1, τ +2, ..., τ + θ}, then there exists an integer η ∈ {τ, τ +1, τ + 2, ..., τ + θ}
such that

Mη = M̄ , |x(tη)− y(tη)| ≤ (aM̄ +D)δ. (8)

(iii) Assume that M̄ ≥ 2D, assume that (8) holds for some integer η ≥ 0, and assume that

(6) holds for k ≥ η. Then Mk ∈ {M̄ , aM̄} for all k ≥ η and Mk = M̄ for all k ≥ η

such that k ∈ T . In addition,

|x(tk)− y(tk)| ≤ (aM̄ +D)δ,

sup
t∈[tk ,tk+1]

|x(t)− y(t)| ≤ (aM̄ + 2D)δ, (9)

for all k ≥ η.

The proof of the theorem is given in Appendix.

Let us discuss some implications of Theorem 1. As can be seen, y(t) stats to approximate

x(t) after the time tη and until (6) is overstepped. The time period [0, tη ] is used to bring the

value y(t) to a close proximity of x(t). The time period [tτ , tη] is used to reduce the value Mk

from Mτ down to M̄ . The approximation error can be significant during the time interval

[0, tη ], if the distance |y0 − x(0)| is large.
If a jump of x occurs at time s > tη, then Theorem 1 can be applied again for the

initial time t = s instead of t = 0, and for y0 and M0 replaced by y(κδ) and Mκ, where

κ = min{k : kδ ≥ s}.
If M̄ ≥ 2D, then, by Theorem 1, the process y(t) oscillates about the underlying process,

and the error does not vanish even for constant x(t). On the other hand, a choice of small

M̄ may lead to a larger time of proximity recovery after a jump of x.

Remark 2 The suggested algorithm is robust with respect to the errors caused by missed or

misread signals hk for the models where the decoder is always aware that a signal was missed

or misread, i.e., for the case of the so-called binary erasure channel. Obviously, there are

models of channels with noise where these conditions are not satisfied. It could be interesting

to find a way to modify an algorithm such that it will be robust with respect to the transmission

errors for these models.
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3 Illustrative examples

In numerical experiments, we compared the performance of the Jayant’s encoding algorithm

[10] and modified version (1)–(4). We observed that, in all our experiments, the modified

version (1)–(4) ensures faster recovering of the proximity after a jump of the underlying

process. This is illustrated in Figures 1-2 presenting the results of the applications of the

Jayant’s encoding algorithm [10] and the suggested algorithm (1)–(4) of a discontinuous

piecewise continuous process x(t). Figures 1-2 show the process x(t) and the corresponding

processes y(t) for δ = tk+1−tk = 0.04 and for δ = tk+1−tk = 0.02 respectively, t ∈ [0, 2]. With

these sampling rates, transmission of the encoded signals for t ∈ [0, 2] requires to transmit

50 bits only for δ = 0.04 and 100 bits only for δ = 0.02. For these examples, we used y0 = 5,

a = 1.5, and M0 = 2δ = 2D. The algorithm (1)–(4) was applied with M̄ = 2δ. We used

MATLAB for these calculations.

Figure 1: Example of a discontinuous input x(t) and the corresponding estimate y(t) for

δ = 0.04 for Jayant’s encoding algorithm [10] and for the suggested algorithm (1)–(4).
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4 Discussion and future developments

1. The estimates in Theorem 1 represent the upper bounds for the worst case scenario; in

practice, one should expect a better performance. A more informative estimate of the

algorithm performance could be obtained in the stochastic setting, such as the mean

square error given certain probabilistic characteristics of the input. In this setting,

optimal selection of the parameter a could be investigated.
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Figure 2: Example of a discontinuous input x(t) and the corresponding estimate y(t) for

δ = 0.02, for Jayant’s encoding algorithm [10] and for the suggested algorithm (1)–(4).
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2. It could be interesting to extend the algorithm on vector processes x(t).

3. The presented algorithm is causal, i.e., it collects current information and does not

require the future values of the process. It could be interesting to estimate the loss of

the effectiveness caused by the causality restrictions in comparison with the algorithms

known in the rate-distortion theory in non-causal setting, where an entire signal x(t)|[0,T ]

is known and has to be encoded, for some given interval [0, T ] (see, e.g., [12], Ch. 13).

4. In theory, an arbitrarily close causal approximation in L2-norm can be achieved by

binomial processes with a fixed rate of change for general stochastic square integrable

processes, including Ito and jump processes [13]. However, an algorithm of this approx-

imation was not obtained therein. It could be interesting to investigate if the algorithm

from the present paper can be used to achieve this kind of approximation.

Appendix: Proof of Theorem 1

To prove statement (i), it suffices to observe that

inf
k≤m

|y(tk)− x(tk)| ≤ |y0 − x(0)| + C(1 +mcδc)−M0(1 + a+ a2 + · · ·+ am)δ.

Let us prove statement (ii). For integer numbers s ≥ 0, set

τ(0) = τ = inf{m ∈ T }, τ(s) = inf{m > s : m ∈ T }, s > 0.
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Let us prove first that, for any s ∈ T ,

τ(s) ≤ s+ 3 (10)

and

sup
s≤k≤τ(s)

|x(tk)− y(tk)| ≤ (Ms−1 +D)δ,

sup
s≤k≤τ(s)

sup
t∈[tk ,tk+1]

|x(t)− y(t)| ≤ (Ms−1 + 2D)δ. (11)

For certainty, we assume that hs−1 = −1. Since s ∈ T , it follows that hs = 1 and x(ts−1) ∈
[ys, ys−1]. If s+ 1 ∈ T or s+ 2 ∈ T then (10) holds. Suppose that s+ 1 /∈ T , s+ 2 /∈ T , and

s+ 3 /∈ T . Hence

x(ts+3) ∈ [ys − 4Dδ, ys−1 + 4Dδ].

Since s + 1 /∈ T and s + 2 /∈ T , it follows that x(ts+3) ∈ [ys−1, ys−1 + 4Dδ). On the other

hand,

y(ts+3) = ys−1 −Ms−1δ +Msδ +Ms+1δ +Ms+2δ ≥ ys−1 + 2Msδ ≥ ys−1 + 4Dδ.

It follows that {s + 1, s+ 2, s + 3} ∩ T 	= ∅ and (10) holds.

Let us prove (11). We have to consider the cases where τ(s) = s+1, s+2, s+3 separately.

Let us assume again that hs−1 = −1 and hs = 1.

We have that Ms−1 ≥ 2aD and x(ts) ∈ [ys−1 +Dδ, ys].

Let us assume that τ(s) = s+ 1. In this case,

x(ts+1) ≤ ys+1,

x(ts+1) ∈ [ys −Dδ, ys+1], x(ts) ∈ [ys, ys+1 +Dδ],

x(t) ∈ [ys −Dδ, ys+1 +Dδ], t ∈ [ts, ts+1],

y(t) = ys +Ms(t− ts)δ, t ∈ [ts, ts+1].

Hence (11) holds for the case where τ(s) = s+ 1.

Let us assume that τ(s) = s+ 2. In this case,

x(ts+2) ≤ ys+2, x(ts+1) > ys+1,

x(ts+2) ∈ [ys+1 −Dδ, ys+2], x(ts+1) ∈ [ys+1, ys+2 +Dδ],

x(ts) ∈ [ys+1 −Dδ,min(ys−1 +Dδ, ys+2 + 2D],
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and

x(t) ∈ [ys+1 −Dδ, ys+2 +Dδ], t ∈ [ts+1, ts+2],

x(t) ∈ [ys+1 −Dδ,min(yt−s + 2Dδ, ys+2 +Dδ)], t ∈ [ts, ts+1],

y(t) = ys+i +Ms+i(t− ts+i)δ, t ∈ [ts+i, ts+i+1], i = 0, 1, 2.

Hence (11) holds for the case where τ(s) = s+ 2.

Let us assume that τ(s) = s+ 3. In this case,

x(ts+3) ≤ ys+3, x(ts+2) > ys+2, x(ts+1) > ys+1,

and

x(ts+3) ∈ [ys+2 −Dδ, ys+3],

x(ts+2) ∈ [ys+2,min(ys−1 + 3Dδ, ys+3 +Dδ],

x(ts+1) ∈ [max(ys+1, ys+2 −Dδ),min(ys−1 + 2Dδ, ys+3 + 2D)],

x(ts) ∈ [ys+1 −Dδ,min(ys−1 +Dδ, ys+2 + 2D)].

In addition,

x(t) ∈ [ys+2 −Dδ, ys+3 +Dδ], t ∈ [ts+2, ts+3],

x(t) ∈ [ys+1 −Dδ, ys−1 + 3Dδ], t ∈ [ts+1, ts+2],

x(t) ∈ [ys+1 −Dδ, ys+2 +Dδ], t ∈ [ts, ts+1],

y(t) = ys+i +Ms+i(t− ts+i)δ, t ∈ [ts+i, ts+i+1], i = 0, 1, 2, 3.

Hence (11) holds for the case where τ(s) = s+ 3.

Let us prove that

Mτ(s) ≤ max(Ms−1/a, M̄ ). (12)

We found above that ρ = τ(s) ≤ s+3. By the definitions, Mρ = max(Mρ−1/a, M̄ ). Further, if

ρ = s+ 1 then Mρ = max(Ms/a, M̄ ) = max(max(Ms−1/a, M̄ )/a, M̄ ) ≤ max(Ms−1/a, M̄ ). If

ρ = s+2 thenMs+1 = Ms andMρ = max(Ms+1/a, M̄ ) = max(Ms/a, M̄ ) ≤ max(Ms−1/a, M̄ ),

similarly to the previous case. If ρ = s + 3 then Ms+1 = Ms = max(Ms−1/a, M̄ ), Ms+2 =

aMs+1 = aMs, andMρ = max(Ms+2/a, M̄ ) = max(Ms+1, M̄) = max(Ms, M̄ ) = max(Ms−1/a, M̄ ).

Then (12) follows.
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Let us prove statement (ii). Let us define θ0 = τ(0), θk = τ(θk−1), k > 0. By (10) and (12)

applied to θk instead of τ(0), it follows that θk − θk−1 ≤ 3 and Mθk = max(Mθk−1−1/a, M̄ ).

Hence Mθk = max(a−k+1Mτ(0), M̄ ). It follows that η exists and η ≤ θk, where k ≤
loga(Mτ(0)/M̄ ) + 2 and θk ≤ τ(0) + 3k.

Let us prove statement (iii). Let us observe that, in the sequence (hη+1, hη+2, hη+3, ....),

there are no quadruple occurrences of the same symbol, i.e., for all m ≥ η,

(hm+1, hm+2, hm+3, hm+4) 	= ±(1, 1, 1, 1). (13)

We will use the induction method. Assume that the statement holds for k ∈ [η,m], where

m ∈ T . It suffices to show that there exists m0 ∈ {m + 1,m + 2,m + 3} ∩ T such that the

statement holds for k ∈ {m+ 1, ...,m0}. For certainty, we assume that hm = 1. This means

that Mm = M̄ and hm−1 = −1.

• Assume that hm+1 = −1. It follows that Mm+1 = M̄ and m+ 1 ∈ T .

• Assume that (hm+1, hm+2) = (1,−1). It follows that (Mm+1,Mm+2) = (M̄, M̄ ) and

m+ 2 ∈ T .

• Assume that (hm+1, hm+2) = (1, 1). It follows from (10) that hm+3 = −1. Hence

(Mm+1,Mm+2,Mm+3) = (M̄ , aM̄, M̄ ) and m+ 3 ∈ T .

In addition, (11) holds for s = m. By induction, the proof of (iii) follows. This completes

the proof of Theorem 1. �
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