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Abstract

We consider the problem of exact sparse signal recovery from a combination of linear and 

magnitude-only (phaseless) measurements. A k-sparse signal x ∈ ℂn is measured as r = Bx and y 
= |Cx|, where B ∈ ℂm1×n and C ∈ ℂm2×n are measurement matrices and | · | is the element-wise 

absolute value. We show that if max(2m1, 1) + m2 ≥ 4k − 1, then a set of generic measurements 

are sufficient to recover every k-sparse x exactly, establishing the trade-off between the number of 

linear and magnitude-only measurements.

Index Terms

sparse signals; sparse phase retrieval; compressed sensing; phase retrieval

I. Introduction

Let x ∈ ℂn be a sparse signal, where the number of non-zero coefficients of x, denoted ||x||0, 

is k ≪ n.

Compressed (or compressive) sensing has emerged as a method for reconstructing sparse 

signals from m < n linear measurements acquired as:

(1)

where A ∈ ℂm×n is a sensing matrix. For exact sparse reconstruction, it is well-understood 

that m = 2k is necessary and sufficient [1]. Moreover, this bound can be achieved with 

polynomial-time reconstruction algorithms for Vandermonde-based measurement matrix 

designs (which also include partial Fourier transforms that sample only the low-frequency 

components) [2]. Stability guarantees are possible when A is chosen randomly from the 

Gaussian ensemble, where C1k log(n/k) measurements suffice for reconstructing the sparse 

signal exactly (with no measurement noise), or with distortion scaling with the noise level 

(with measurement noise) when using reconstruction techniques based on minimizing the ℓ1 

norm [3]–[6]. Compressed sensing has been successfully used in a number of applications, 
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including magnetic resonance imaging (MRI) [7], [8], sub-Nyquist sampling [9], radar 

imaging [10], and others (please see [11] and the references therein).

Recently, there has also been interest in reconstructing sparse signals from only the 

magnitude of the measurements. This process, referred to as sparse phase retrieval aims to 

estimate sparse signals from phaseless (magnitude-only) measurements

(2)

where | · | denotes element-wise absolute value. These measurements can be used to model 

problems in diffractive imaging [12], astronomical imaging [13], x-ray crystallography [14] 

and medical imaging [15], where the measurement matrix A is typically the Fourier matrix. 

Sparsity of signals has been shown to reduce the number of measurements in practice [16], 

[17]. Sparse phase retrieval has also been studied theoretically in certain scenarios, e. g. O(k 
log(n/k)) measurements were shown to be sufficient for stable sparse phase retrieval over ℝ 
[18], matching the order of measurements in compressed sensing [4], [5]. More recently, the 

problem of exact reconstruction for noiseless sparse phase retrieval for complex signals has 

been studied [19], [20], where it was shown that m = 4k − 2 phaseless measurements suffice 

to guarantee uniqueness of the sparsest solution. It was also shown that 2k measurements 

suffice in the real case, matching the bound from compressed sensing, where linear 

measurements are available. We note that these latter studies [18]–[20] characterize when 

the measurements are injective, and are not algorithmic in nature, i.e. they do not provide 

tractable algorithms that can actually perform (robust) sparse phase retrieval.

In practice, there are a number of applications, including astronomical and medical imaging 

[15], where a mixture of linear and phaseless measurements are available as follows:

(3)

For instance, in MRI, where the measurements are taken in the Fourier domain, a 

translational motion of the scanned object during the examination does not affect the 

magnitude of the measurements [15], [21]. Hence, in a scan where translational motion has 

occurred, we have both motion-free (linear) measurements and motion-corrupted (phaseless) 

measurements. Typically, the motion-corrupted measurements would be re-acquired. 

However, the measurement model of (3) allows (using the transform-domain sparsity of MR 

images) for reconstruction from these motion-corrupted data, along with the motion-free 

data, thus reducing scan time.

In this note, we study the exact recovery of a k-sparse x ∈ ℂn from a combination of m1 

linear and m2 phaseless measurements. We show that if the rows of B and C are a generic 

choice of vectors in ℂn, then max(2m1, 1)+m2 = 4k −1 measurements are sufficient to 

recover every k-sparse signal uniquely (up to global phase if m1 = 0). The outline of the 
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paper is given next. We state our result in Section II. We provide the proof of our main result 

in Section III.

II. Main Results

For sparse reconstruction with a mixture of linear and phaseless measurements (referred to 

as a “mixed measurement system”), the reconstructor solves

(4)

where r ∈ ℂm1 and y ∈ (ℝ+)m2.

We aim to characterize the number of sufficient measurements, m = m1 + m2, as well as the 

tradeoff between the number of linear and phaseless measurement, m1 and m2 respectively, 

in terms of the sparsity k (and possibly the dimensionality of the sparse signal n) for which 

there is a unique solution to the optimization problem in (4) (up to global phase if m1 = 0). 

Our main result for k-sparse x ∈ ℂn is as follows:

Theorem 1

For B ∈ ℂm1×n and C ∈ ℂm2×n, whose rows are a generic choice of vectors in ℂn, max(2m1, 

1) + m2 ≥ 4k − 1 measurements are sufficient to guarantee unique signal recovery (up to 
global phase if m1 = 0) for every k-sparse signal x ∈ ℂn.

Here, a generic choice of vectors indicate a dense open set in ℂn [22]. Intuitively, this 

suggests that a complex linear measurement is twice as important as a phaseless 

measurement. The trade-off between the number of linear and phaseless measurements, and 

the achievability region are depicted in Figure 1. We also state the results for the real case 

for completeness:

Theorem 2

For B ∈ ℝm1×n and C ∈ ℝm2×n, whose rows are a generic choice of vectors in ℝn, m1 + m2 

≥ 2k measurements are sufficient to guarantee unique signal recovery (up to global sign if 
m1 = 0) for every k-sparse signal x ∈ ℝn. Furthermore, m1 + m2 = 2k measurements are 
necessary.

Proof—This follows from the results in [1], [4], [19].

III. Proof of the Main Result

A. Notation

We define (ℂ) = {x ∈ ℂ : |x| = 1}. The space of diagonal phase matrices is defined as
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where pij is the (i, j)th element of P.

For any matrix A, let aij be the (i, j)th element of A, aj be the jth column of A, and a(j) be the 

jth row. Let A  be matrix whose columns are {aj : j ∈ }, and A(  ) be the matrix whose 

rows are {a(j) : j ∈ }. We let [l] = {1, 2, …, l} for any positive integer l. Let AT and A* 

denote the transpose and conjugate transpose of A. Finally, Gr(k,m) denotes the 

Grassmannian manifold of k-dimensional subspaces of ℂm, endowed with the projection 

Frobenius (chordal) distance.

B. Proof of Theorem 1

We modify and extend the proof technique in [22]. We consider different regions of m1 and 

m2:

1) m1 > k—Let the rows of A Ȭ [BT,CT]T ∈ ℂm×n with m = m1 + m2 be a generic choice of 

vectors in ℂn. We note that any k × k submatrix of A is invertible. Let ℐ,  ⊂[n] be two 

index sets of cardinality k. Let  = span(aj : j ∈ ℐ) and  = span(aj : j ∈ ).

Suppose there are two distinct k-sparse vectors, x, z ∈ ℂn, with supports ℐ,  respectively, 

such that

(5)

In other words,

(6)

for y = |b| and for some P ∈ ℘m2(ℂ). We first note that ℐ ≠  since with m1 > k, xℐ is 

uniquely determined as . Thus ℐ =  would imply xℐ = z , or x = z. We 

also note that r has at least (m1 − k + 1) > 1 non-zero elements, otherwise this would imply 

the existence of a rank-deficient k × k submatrix of Bℐ. Hence, without loss of generality we 

assume r1, r2 ≠ 0. Since the optimization in (4) is scale-invariant, we can divide both sides by 

r1 ≠ 0, thus we assume r1 = 1. We now re-write this set of equations as:

(7)
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(8)

and

(9)

(10)

where I is the identity matrix. We note d = r[k] and e = r[k].

We say two distinct k-planes ( , ), both in ℂm1+m2 satisfy the distinct-(m1,m2)-mapping 

property if there are distinct non-parallel vectors [rT, bT]T ∈  and [rT, cT]T ∈  with r ∈ 
ℂm1 and b, c ∈ ℂm2, such that |bj | = |cj | for 1 ≤ j ≤ m2.

From Equations (7) and (8), for [rT, bT]T ∈ 

where  and  are the (i, j)th elements of V(1) and V(2) respectively. Similarly from 

Equations (9) and (10):

where  and  are the (i, j)th elements of W(1) and W(2) respectively.

Hence if ( , ) satisfies the distinct-(m1,m2)-mapping property, there exists r2, …, rk ∈ ℂ 
(since r1 = 1) such that
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(11)

for k < i ≤ m1, and

(12)

for 1 ≤ i ≤ m2.

We consider the following variety of all tuples

(13)

Let |ℐ ∩  | = l, and note l < k since ℐ ≠ . The variety in (13) is locally isomorphic to 

ℂl(m−l)+2(k−l)(m−k+l) × (ℂ\0) × ℂk−2, corresponding to a real dimension 2l(m − l) + 4(k − l)(m 
− k + l) + 2k − 2. Next, we note that the set of 2-tuples in Gr(k,m) × Gr(k,m) that satisfy the 

distinct- (m1,m2)-mapping property is the image of the projection onto the first factor of the 

variety in (13) subject to the m1 − k equations in (11) and the m2 equations in (12) [22].

The measurements are generic, r1, r2 ≠ 0 and ℐ ≠ , thus each of the equations in (11) and 

(12) are non-degenerate. Since the variables { } and 

{ } appear in exactly one equation, the equations in (11) define 

a subspace of real codimension ≥ 2(m1 − k), whereas the equations in (12) define a subspace 

of real codimension ≥ m2. This is true for all choices, implying the equations are 

independent [22]. Therefore, the set of 2-tuples with an l-dimensional intersection in 

Gr(k,m) × Gr(k,m) that satisfy the distinct-(m1,m2)-mapping property have real dimension ≤ 

2l(m−l)+4(k−l)(m−k+l)+2k−2−2(m1 − k) −m2 = 2l(m−l)+4(k−l)(m−k+l)+4k−2−(2m1+m2).

Thus, if m1 > k and 2m1 + m2 > 4k − 2, then this set of 2-tuples cannot be the whole set of 

2-tuples in Gr(k,m) × Gr(k,m) with an l-dimensional intersection, since this space has 

dimension 2l(m − l)+4(k − l)(m − k +l). In fact, if 2m1 +m2 > 4k −2, and the measurements 

are generic, then the set of 2-tuples with an l-dimensional intersection in Gr(k,m) × Gr(k,m) 

that satisfy the distinct- (m1,m2)-mapping property has measure 0. There are finitely many 

choices for ℐ and  (and thus l), hence the results extend to all possible choices of k 
columns of A, using a union bound argument. Thus, if the rows of A ∈ ℂ(m1+m2)×n 

(equivalently B ∈ ℂm1×n and C ∈ ℂm2×n) are a generic choice of vectors, m1 > k and 2m1 + 

m2 > 4k − 2, no two sparse vectors with ℓ0 norm ≤ k map to the same mixed measurements 

acquired using B and C.
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We note that for m1 > k, m2 = 4k − 1 − 2m1 < 2k − 1 phaseless equations suffice. Thus, we 

next consider the region m2 ≥ 2k − 1.

2) m2 ≥ 2k − 1—Suppose there are two distinct (or non-parallel if m1 = 0) vectors x, z ∈ 
ℂn, with supports ℐ,  respectively, mapping to the same mixed measurements, as in 

Equation (5). In other words,

(14)

for y = |b| and for some P′ ∈ ℘m2(ℂ).1 Similar to Section III-B1, b has at least (m2 − k + 1) 

≥ k non-zero elements, thus we assume b1, …, bk are non-zero and that b1 = 1. We now re-

write Equation (14) as:

(15)

(16)

and

(17)

(18)

We note d′ = b[k] and .

Similar to Section III-B1, ( , ) satisfy the distinct-(m1,m2)-mapping property, if there 

exists  for j ∈ [k] and b2, …, bk ∈ ℂ\0 (since b1 = 1) such that

1For the case m1 = 0 and ℐ = , we have P′ ∈ ℘m2 (ℂ)\{αIm2 : α ∈ ℂ, |α| = 1}, where Im2 is the m2 × m2 identity matrix, since 
one can only guarantee uniquness up to global phase.
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(19)

for k < i ≤ m2, and

(20)

for 1 ≤ i ≤ m1, where  and  are the (i, j)th elements of V(3), V(4), W(3) and 

W(4) respectively.

We consider the following variety of all tuples

(21)

For |ℐ ∩  | = l, with 0 ≤ l ≤ k, the variety in (21) is locally isomorphic to 

ℂl(m−l)+2(k−l)(m−k+l) × (ℂ\0)k−1 × (ℂ)k, corresponding to a real dimension of 2l(m−l)+4(k 
−l)(m−k +l)+3k −2. The set of 2-tuples in Gr(k,m) × Gr(k,m) that satisfy the distinct-

(m1,m2)-mapping property is the image of the projection onto the first factor of the variety in 

(21) subject to the 2m1 equations in (20) and the m2 − k equations in (19). Since b2, …, bk ≠ 

0, and since P′ is not a multiple of identity when ℐ =  and m1 = 0, these equations are 

non-degenerate. They are also independent, similar to Section III-B1. Thus, Equations (19) 

and (20) define subspaces of real codimensions ≥ m2 −k and ≥ 2m1 respectively.

Therefore, the set of 2-tuples with an l-dimensional intersection in Gr(k,m) × Gr(k,m) that 

satisfy the distinct-(m1,m2)-mapping property have real dimension ≤ 2l(m − l) + 4(k − l)(m 
− k + l) + 3k − 2 − (m2 − k) − 2m2 = 2l(m − l) + 4(k − l)(m − k + l) + 4k − 2 − (2m1 + m2). 

Finally, we also note that if m1 = 0, then  can be set to 1 without loss of generality, since 

uniqueness is guaranteed only up to global phase in this case. Hence, for m1 = 0, the 2-tuples 

will have real dimension ≤ 2l(m − l) + 4(k − l)(m − k + l) + 4k − 3 − m2.

Thus if m2 ≥ 2k−1 and max(2m1, 1)+m2 > 4k−2, then this set of 2-tuples cannot be the 

whole set of 2-tuples in Gr(k,m) × Gr(k,m) with an l-dimensional intersection. Furthermore, 

if the measurements are generic, then this set has measure 0, similar to Section III-B1. A 

union bound argument over finitely many choices of ℐ and  (and thus l) shows that if the 

rows of A ∈ ℂ(m1+m2)×n (equivalently B ∈ ℂm1×n and C ∈ ℂm2×n) are a generic choice of 

vectors, m2 ≥ 2k − 1 and max(2m1, 1) + m2 > 4k − 2, no two sparse vectors with ℓ0 norm ≤ k 
map to the same mixed measurements acquired using B and C.
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Figure 1. 
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