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Abstract—Blind gamma estimation is the problem of estimating
the gamma function that is applied to a linear image both for
perceptual reasons and for the compensation of the non-linear
behavior of displays. Gamma values change both inter- and intra-
camera. In the latter case, the change comes from the use of
different scene settings. In this paper we propose a new approach
that relies on the use of more than a single image from the same
scene. We estimate the gammas for all the different images at the
same time with a method based on exploiting the structure of
the standard in-camera processing pipeline. Our results improve
over the state-of-the-art.

Index Terms—Blind gamma estimation, image enhancement

I. INTRODUCTION

Digital cameras process visual information in a non-linear
manner. The main stages of the color processing pipeline can
be summarized as follows [1], [2]
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where A is a 3 x 3 matrix comprising white balance and color
encoding, RGB;, is the camera raw triplet at a given pixel
location, and a pixel-based non-linear function defined as a
power law of exponent +, called gamma-correction, is applied
to each pixel value [1], [3]-[6].

Eq. 1 tells us that to perform any image processing task
on linear sensor values, the non-linear function should be first
undone. This problem is known as blind gamma estimation
and it is well-known in many different tasks, e.g. color
constancy [7], [8] or camera shake removal [9].

A problem related to blind gamma estimation is camera
response function (CRF) estimation. The main difference is
that CRF estimation aims to obtain physical reliable values,
therefore considering other non-linearities processed by the
camera, such as gamut mapping. This premise deviates CRF
estimation from our problem as the non-linearity is different
for each of the three color channels, and converts the problem
in a scene-dependent one: for a fixed value R a different
gamut mapping is applied depending on the G and B values.
Nonetheless, we review CRF estimation works in the next
section and compare our results versus a well-known one [10].

This paper presents a novel, accurate, and practical method
for blind gamma estimation by exploiting the information
given by the pipeline of Eq. 1 when different images of the
same scene are available. To the best of our knowledge, this is
the first work to address blind gamma estimation with several
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images, therefore opening the door for further works in this
direction. Our method does not require neither any knowledge
about the cameras used (model, settings, etc.), nor a geometric
calibration of the views, in contrary to [11] or [12], and
it can be used under large variations of point of view and
illumination. Our method is useful under different scenarios.
Let us suppose we have a camera whose output we know
we will want in linear form. In this case three options are
possible. First, we can store the full RAW image; however,
this approach requires a significant amount of memory space
and therefore does not allow to take a large number of images.
Also, RAW images require the user to specifically perform
a number of essential operations (like demosaicing, conver-
sion to a standard color space, color correction) which are
automatically handled by the camera when the output image
is in gamma-corrected, non-linear form. A second approach
would be to color calibrate the camera, which allows to
linearize a non-linear output. This process is time-consuming
and expensive, requiring high-level technology unavailable to
most users. Finally, another possibility is the use of blind
gamma estimation methods. In this work we focus on this
third approach and show that, if we know beforehand that
we want our images to be linearized later (which is crucial
for some applications such as illuminant estimation), we just
need to take two or more versions of each photo, with different
settings, and use our proposed method to estimate the gamma
value for each one afterwards. Furthermore, even in the case
that we only have one image, we just need to find another
picture sharing part of the scene content (e.g. by searching on
internet for another view of the same location): in this case, our
method will also work as it does not require any knowledge
about the camera.

We point out that this work extends an earlier idea presented
in [13], where the computation of gamma ratios between two
images was proposed as a pre-processing step for a color
stabilization algorithm. Our contributions in this paper are
twofold. First, we extend the blind gamma estimation process
to more than two images. Second, we present an extensive set
of experiments to demonstrate the adequacy of our method.

II. RELATED WORK

Farid [14] proposed the first major work on blind gamma es-
timation. He noticed that gamma correction introduces higher-
order correlations in the frequency domain, and therefore he
looked for the value of v where these correlations were mini-
mized. Stamm and Liu [15] proposed a method for detecting
global contrast enhancement by seeking out unique artifacts
in the image histogram. Cao et al. [16] estimated ~y from the
fact that gamma correction creates peaks in the histogram for
low intensity values and gaps for high intensity values.



In terms of CRF estimation from a single image, Lin et
al. [10] focused on the color changes at the edges between
objects in order to look for the CRF. The same authors
adapted their work to grey-scale images obtained from an
RGB original image [17]. Ng et al. [18] proposed the use of
geometry invariants to select locally planar irradiance points.
Tai et al. [19] presented a method for obtaining CRFs from
blurred images, and Chen et al. [20] from a pair of sharp
and blurred images. CRF estimation from multiple images
was tackled before the single image estimation case. The
seminal work of Debevek and Malik [11] is the first major
work on the topic, where images obtained at different exposure
values were used to approximate a single CRF function. Other
important works are those of Mitsunaga and Nayar [21] and
Mann [22]. Recently, methods obtaining the camera CRF from
differently illuminated images have appeared [23]-[25]. We
want to stress that our method, although using more than one
image, is different in nature to the multiple image approaches
just mentioned. Those methods need a set of images taken with
the same settings in order to obtain a single CRF, while our
method obtains as many gamma estimates as there are images.
A method that, similarly to ours, obtains as many CRFs as
images used is the one of Diaz and Sturm [12]; however, it
relies in strong computer vision assumptions: the cameras must
be geometrically calibrated and a 3D scene model is required.

Let us also remark that none of the single-image methods,
neither the blind gamma estimation [14], [15], [16], nor the
CREF estimation ones [10], [17], are capable of improving their
performance if extra images are available.

III. GAMMA ESTIMATION FROM MULTIPLE IMAGES OF THE
SAME SCENE

A. Ratio estimation as a pre-processing for color stabilization

Let us consider two images fl, fg of the same scene, not
necessarily registered, taken under two different settings of the
same camera. Let us also assume that the illumination has not
changed, so if p is a scene point appearing in both images
then it has produced in the sensor the same triplet (R, G, B),,
in both pictures. In each of the two images the value of
the pixel p will most likely appear at different locations
and with different pixel values, (R, G, B),1 and (R, G, B)p2,
where the number subscript represents a particular setting.
Recently, Vazquez-Corral and Bertalmio [13] proposed a color
stabilization method which is based on the imaging formation
model presented by Bianco et al. [1]. Following this model,
Vazquez-Corral and Bertalmio represent the pixel values as:
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where A; and Aj are 3 x 3 matrices. From here, they got the
following relation
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Fig. 1. log(|ay, ~, — 1|) depending on the different values of the gammas.

We see that a set of minima is achieved for a particular ratio of gamma values:

all the local minima lie on a line, corresponding to the correct ratio %

where H = A, -AQ_I.

This relationship holds for all pairs pl, p2 of corresponding
pixels between the two images. Therefore, each pair of pixel
correspondences gives us an equation, and we can find H by
solving a system of equations, assuming we know v, and ~».
For color stabilization it was shown in [13] that it suffices with
computing the ratio % which was done as explained below.

Let us suppose that we have obtained a set of pixel matches
(P;,Q;) between I; and I, i.e. I, (P;) ~ I5(Q;)Vi. Then, our
previous Eq. 3 can be written in the form

L) = HIy (@), Vi 4)

Eq. (4) tells us that for the actual v; and o values there exists
a matrix H yielding a perfect equality. Generalizing Eq. (4)
to cases where this equality is not satisfied we obtain
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where ay, v, and by, v, are found by correlation between
I (P;)™ and Hy, +,15(Q;)7 for each pre-set value of 7y, 7a.

Therefore, to obtain the values of +; and ~» that better
approximate Eq. 4 we look for the pair (71,72) that minimizes

71

I(P)

(71,72) = arg min |ay, 5, — 1]. (6)
Y1,72

This minimization is performed via a brute-force search, i.e.,
all the values for a particular range of gammas are tested.
Fig. 1 shows the result of this process for two images. We
can see that a clear set of minima is achieved for a particular
ratio of gamma values: all the local minima lie on a line,
corresponding to the correct ratio % We believe this can be
explained by the fact that, for the correct values of v, 72, we
have ay, v, = 1 and by, v, = 0, and therefore for other values
k1, k2 satisfying the same ratio Eq. 5 can be approximated
by Eq. 4 with only a minor change in the values for the matrix
H, which is able to encode most of the error committed. Fig.
1 shows us that two images are enough to compute the ratio
of the ~ values but might not be enough for the computation
of the exact values since the real solution might not fall on
the global minimum, but in a local one.

B. Estimating the gamma values of multiple images

First, let us note that the range of ~ values introduced by
cameras is limited. In particular, most of the cameras embed



Algorithm 1 Simultaneous blind gamma estimation algorithm
for Any pair of images ¢, j do
for ; in range do
for +; in range do
Compute ay, +;
end for
end for
Obtain r; ;: the ratio i associated to the global minimum
of Hl = 0,75 H
Obtain the m pairs ;,7; that produce the m smallest
local minima at ||1 — ay, || and store them in I';, T';
end for
Apply Eq. (7) to obtain vy, -+, yn.

a gamma value ranging between 2 and 3. This fact, combined
with the ratio estimation from the previous section, allows us
to devise a new method for multiple blind gamma estimation.

Let us start by a detailed explanation of our idea. Let us
suppose we have two images I; and /5. From the previous sec-
tion, we find the ratio between their respective gamma values:
1 = 71,272. As an example, let this ratio be r1 o = 0.9. In this
case, y; will take values in the interval [2—2.7] as both y; and
2 values should be in the range [2 — 3] and the ratio between
them should be kept. Let us suppose we take a third image
I5. Following the same procedure we find the ratio relating
the gamma value of this third image to I1: 7 = 71 373.
Let this ratio be 713 = 1.25. From this second ratio, the
value of 7 should be in the interval [2.5 — 3]. Intersecting the
intervals where v, should be, we find that 4, € [2.5 — 2.7].
As further images are added to the computation the possible
interval where v; is located gets further reduced, therefore
helping the estimation process. This process is analogously
performed for the gamma values of the other images.

Let us now detail how to automatize the procedure just
explained. From Fig. 1 we see that the minimization proposed
by Eq. 6 presents a set of local minima. Let us select for each
comparison the set of the m smaller local minima, and the
ratio of the comparison, 7; ;, as the ratio between the global
minimizers of Eq. 6. Let us now suppose that we have N
different images of the same scene under different settings:
{fi}i:L ~. As for each comparison we have extracted m local
minima, we end up with K = (N — 1) x m possible values
of gamma for each particular image (i.e. the number of pairs
the image is involved in multiplied by the possible solutions
extracted for each pair). Let us call the set of these possible
solutions {T';};—1.n. From this set we need to select the best
possible {7;}i=1.n for each image. The novelty is that to this
end, we define a paradigm to obtain the best gamma estimates
for all images at once by searching in the possible solutions
of I'y,--- ,I',,. We find the values 71, - - ,yny minimizing the
differences with the ratios r; ;, which we assume have been
accurately estimated
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In this last equation we use both the ratio r; ; and its inverse
to not prioritize errors committed in ratios smaller than 1.
An algorithmical explanation is presented in Algorithm 1.
Our method takes around 6 seconds per pair comparison
using a Matlab prototype on images of 900 x 1600 pixels,
and considering gammas between 2 and 3 at 0.05 intervals.
This runtime may be further reduced with an optimized C++
implementation or using a language such as CUDA, given that
our algorithm is easily parallelizable.

Let us note that our method fails when both the camera
settings and the scene conditions are the same for both images,
since in that case we have H = Id and any 73 = 7
combination will yield the same result, therefore not obtaining
any local minima. However, this is a very unrealistic situation,
almost limited to the use of the same image twice, since just a
minor change on the illumination, or the use of any automatic
option of the camera will break this assumption.

IV. EXPERIMENTS AND RESULTS

We have run three different experiments designed to emulate
different real-world situations: (1) registered images from
the same camera under different settings, (2) unregistered
images from the same camera under different settings, and (3)
unregistered images from different cameras and illuminations.

A. Registered images from the same camera

We captured 48 different RAW images with a Nikon D3100
camera. For each RAW image we obtained 7 different JPEG
images by multiplying the RAW image by a 3x 3 matrix A that
varies in every case and then applying gamma correction with
arandom 7 € [2, 3]. All these computations were performed in
12 bits, emulating the camera in-processing behavior. Finally,
we quantized the images to 8 bits and saved them in JPEG
format. Top rows of Fig. 2 present an example of these images.

In this experiment, since the images are registered, our
method considers all points as matches. We have run Eq. 7 for
a different number of input images considering 3 local minima
for each comparison (m = 3). For the sake of fair comparisons
one image of the set is randomly designed as anchor and
results for all the methods are computed for this image. We
compare versus the well-known methods of Farid [14] and Lin
et al. [10]. In the case of Lin ef al. the v value was computed
by looking for the value that best approximated the CRF
obtained from the implementation of [26]. Estimates of the
~ value for all the methods were computed in the range [2, 3].
Table I shows the results. Our method improves the others even
in the case of considering just two images, and better results
are achieved when using a higher number of images, reaching
to an error close to only 5%. Our improvement ranges between
25% in the worst case (RMS-2 images) and 70% in the best
case (median-7 images). Our method performs extremely well
for the median, which was proven to be the best error measure
for a related problem as computational color constancy [27].
Let us recap here that our method is different from those using
several images for obtaining a single CRF: in our case, every
time a new image is added, also a new ~ value is estimated.
Finally, we want to stress again that none of the other methods
improve accuracy if more than a single image is available.



B. Unregistered images from the same camera

We collected 10 different ‘scene’ sets with a single camera,
a Panasonic Lumix DMC-FZ8. Each scene set is composed
by a RAW image and 5 JPEG images that vary in the camera
settings. The selected settings were: portrait, landscape, sunset,
snow and aerial. All the images were captured without flash.
From the RAW image of the scene set we create a JPEG image
in a procedure that is analogous to the previous experiment,
now with v € [1.6,2.6]. This last image is the one we are
going to use as ground truth since we do know the value of
~. Middle rows of Fig. 2 present an example of these images.

We have run our method considering as matches those
obtained by a SIFT procedure (using the code in [28]), and
automatically discarding those that were incorrect in terms of
color or image geometry. We have again used 3 local minima.
In this case, the estimators were computed in the range
[1.5 — 2.75]. We evaluate the methods in a slightly bigger
range from that -y so as to allow the methods to deviate from
the solution in case they fail. Results are presented in Table I.
We can see how our method outperforms the other two also in
this scenario. Again, we want to focus the reader’s attention
in the median, where the improvement ranges between 12%
and 48%.

It is interesting as well to analyze what happens to the other
5 images that have been obtained with the different camera
settings. All the images sharing the same settings should
theoretically have the same ~ value. Therefore, to further
evaluate our method we have computed the standard deviation
of our y estimate between images with the same settings, and
found that it is always below 10% of the ~ value.

C. Multi-camera and illuminant variation case

The goal of this last experiment is to check if our method
can be used when not all of our original assumptions hold, i.e.
when the images come from different cameras and when there
is a change in the scene illumination. To this end, we captured
9 RAW scenes at midday with two different cameras: a Nikon
D3100 (camera 1) and a Panasonic Lumix DMC-FZS8 (camera
2). From these 18 RAW images we created JPEG versions
following the procedure of Section I'V-A, with v values ranging
between 1.6 and 2.6. We also captured at late afternoon the
same 9 scenes with the second camera. In these new images,
larger point of view changes were also allowed. From these
new 9 RAW images we also created JPEG versions. Example
images can be found in the bottom rows of Fig. 2.

We have run our experiment twice: First, we consider
the images of camera 1 and those of camera 2 at midday,
and second, we consider the images of camera 1 and those
of camera 2 at late afternoon. As in the previous section,
image matches were computed via a SIFT descriptor and
three local minima were considered. Results are presented in
Table I. We can see from these numbers that our proposed
approach outperforms the other two methods both in the case
of same illumination and in the case of different time-of-the-
day illumination reaching to at least 30% improvement for
the median measure. These results make us confident of the
applicability of our method to images where there does not

Fig. 2. Example images for the three datasets. First dataset (top 2 rows): each
scene has 7 different images, varying both in the color matrix A and in the
gamma value ~. Second dataset (middle 2 rows): the first column shows the
image created from the original RAW using a known ~ value and the other
columns show camera JPEGs obtained with different scene settings. Third
dataset (last 2 rows): the first column shows the camera 1 at midday, the
second one the camera 2 at midday, and the third the camera 2 at evening.

TABLE I
PERCENTAGE ERROR OF THE GAMMA ESTIMATION OF 1 IMAGES
Method Median [ Mean [ RMS
Experiment 1
Farid [14] (single image) 14.15% | 14.52% | 16.96%
Lin et al. [10] (single image) 15.25% | 15.90% | 17.43%
Proposed: 2 images 7.69% 10.02% | 12.65%
Proposed: 3 images 8.64% 9.26% | 11.19 %
Proposed: 4 images 6.92% 7.40% 9.04 %
Proposed: 5 images 5.65% 6.93% 8.94 %
Proposed: 6 images 5.16% 6.07% 777 %
Proposed: 7 images 4.32% 5.32% 6.76 %
Experiment 2
Farid [14] (single image) 23.19% | 24.36% | 24.84%
Lin et al. [10] (single image) 8.99% 9.85% 11.53%
Proposed: 2 images 7.62% 9.36% 11.04%
Proposed: 4 images 5.62% 7.65% 10.34%
Proposed: 6 images 4.47% 6.17% 8.04%
Experiment 3
Farid [14] (single image) 28.88% | 27.13% | 29.62%
Lin et al. [10] (single image) 17.14% | 14.25% | 16.06%
Proposed, same illum. (2 images) 9.35% 10.66% | 13.09 %
Proposed, different illum. (2 images) 12.10% | 13.16% | 16.03 %

exist any information about their capture conditions. In fact,
the second setting is equivalent to the download of an internet
image, where neither camera nor illumination are known.

V. CONCLUSION

We have presented a method for blind gamma estimation
from and for multiple images. The expression “from and for” is
used as we need more than a single image to obtain the gamma
estimation but, at the same time, we recover as many estimates
as images are used. Our method does not require any particular
prior since it relies on a very simple relationship that linear
images captured with different settings must accomplish. It can
be used on images of the same scene where we know nothing
of the cameras used (model, settings, parameter values).

Rigorous experiments were performed to evaluate the capa-
bility of our method to deal with different real life situations
showing that it outperforms the state-of-the-art.

Further work will focus on improving the selection of pixel
correspondences and studying possible alternatives to Eq. 7,
striving for even better accuracy and robustness to changes of
illumination and point of view.
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