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Abstract

Structures play a significant role in the field of signal processing. As a representative

of structural data, low rank matrix along with its restricted isometry property (RIP) has

been an important research topic in compressive signal processing. Subspace projection

matrix is a kind of low rank matrix with additional structure, which allows for further

reduction of its intrinsic dimension. This leaves room for improving its own RIP, which

could work as the foundation of compressed subspace projection matrix recovery. In

this work, we study the RIP of subspace projection matrix under random orthonormal

compression. Considering the fact that subspace projection matrices of s dimensional

subspaces in RN form an s(N−s) dimensional submanifold in RN×N , our main concern

is transformed to the stable embedding of such submanifold into RN×N . The result

is that by O(s(N − s) logN) number of random measurements the RIP of subspace

projection matrix is guaranteed.

Keywords: restricted isometry property, subspace projection matrix, low rank

matrix, manifold stable embedding, compressive signal processing

1 Introduction

Signal structure has always been a key point in the field of signal processing. Structural

data, such as sparse signal and low rank matrix, have been important research topics in

compressive signal processing [1, 2]. These structures invoke low intrinsic dimension, so the

restricted isometry property (RIP) can be established to guarantee both exact and robust

reconstructions from randomly compressed measurements [3, 4, 5].

For a given s dimensional linear subspace S in an Euclidean space RN , assuming that

s is less than N , the subspace projection matrix is a low rank matrix with rather specific

structure. In fact, it is not only symmetric, semi-definite, but also has merely eigenvalues 1
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and 0. Such additional structure invokes lower intrinsic dimension than a general low rank

matrix does, therefore theoretical improvement on the RIP can be expected.

According to the basic ideas in compressive sensing [6], the RIP of subspace projection

matrix could work as the foundation of compressed subspace projection matrix recovery.

Considering the fact that subspace projection matrix has a one to one correspondence

with subspace, the recovery from its compression could be viewed as compressed subspace

estimation. Subspace estimation has been a concerning problem in signal processing and

computer vision. In some scenarios, such as face recognition [7], motion segmentation [8],

and visual tracking [9], the objects belong to subspaces with much lower dimension than

the ambient space. In fact, subspace estimation from highly incomplete information has

recently appeared as an attractive research topic [10, 11, 12].

For subspaces with a given dimension in RN , their projection matrices form a manifold.

There are significant and solid works in manifold-modeled signal recovery from randomly

compressed measurements [13, 14, 15, 16]. These works extend classic compressed sensing by

generalizing low-dimension model from sparse signal to signal on low dimensional manifold,

and study stable manifold embeddings and nonadaptive dimensionality reduction of data

on manifold. One of the key ideas is to control the regularity of the manifold so that it

is well-conditioned. The work in [17] utilizes an instructive quantity called the condition

number of a manifold also known as the reach of a manifold, which studies submanifold

extrinsically and unveils its Riemannian geometry properties [18].

In this work, we aim to study the RIP of subspace projection matrix under random

orthonormal compression. A matrix manifold is used to model the set of subspace projection

matrices. By investigating the differential structure and the condition number of such

manifold, we are able to conclude that by O(s(N − s) logN) random measurements the

RIP of subspace projection matrices is guaranteed.

2 Main result

In this work, we study the RIP of subspace projection matrices under random orthonormal

compression.

Definition 1 The set of projection matrices corresponding to s dimensional subspaces in

RN is defined as

PN,s : = {PX = X(XTX)−1XT : X ∈ RN×s,dim(span(X)) = s}
= {PX = XXT : X ∈ GrN,s}, (1)

in which span(X) denotes the column space of X, and GrN,s is the Grassmann manifold of

s dimensional subspaces in RN .
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Remark 1 Equation (1) is obtained by ortho-normalizing the columns of X while keeping

span(X) fixed. Because different choices of X do not change PX as long as span(X) is

fixed, we have X ∈ GrN,s [19].

Remark 2 From Definition 1, we know that, for a linear subspace S, its projection matrix

is the matrix that a vector x ∈ RN has to multiply when projected onto S. This is the reason

that it is called a projection matrix.

PN,s is an s(N−s) dimensional submanifold in RN×N . The following theorem describes

the RIP of PN,s under random orthoprojector.

Theorem 1 For fixed 0 < ε < 1 and β > 0, assume that N ≥ 3. Let A : RN×N → Rm be

a random orthoprojector with

m ≥
(

2 + β

ε2 − ε3/3

)
O

(
s(N − s) log

N

ε

)
. (2)

If m < N2, then with probability exceeding 1 − e−c1βs(N−s), in which c1 is a universal

constant, the following property holds for every pair of PX , PY ∈ PN,s, PX 6= PY ,

(1− ε)
√
m

N
≤ ‖A(PX − PY )‖2
‖PX − PY ‖F

≤ (1 + ε)

√
m

N
. (3)

Proof The proof is postponed to section 4.

From Theorem 1, the number of measurements m ≥ O(s(N − s) logN) is enough to

guarantee the RIP under random orthonormal compression. For low rank matrices without

further specific structure, the number of measurements should be no less than O(sN logN)

[4]. One may notice that when s� N , the improvement from the latter to the former is not

much. Although it is true in that case, the result in Theorem 1 does improve the scaling

law of the number of measurements on s, and verifies the intuition that, compared with

low rank matrices, subspace projection matrices have additional structure which is able to

further reduce the number of compressed measurements needed for reconstruction.

Heuristically, the scaling law m ≥ O((N − s)s logN) is reasonable, in that the degree of

freedom of a subspace projection matrix is s(N −s). It should be highlighted that although

Theorem 1 is for an orthonormal random compression, the conclusion could be naturally

extended to random compressions satisfying the concentration property [20].

In the following text, the establishment of Theorem 1 will be demonstrated. The first

order differential structure and the condition number of PN,s are studied in section 3, and

then Theorem 1 is readily proved in section 4.

3 Manifold of Subspace Projection Matrix

Matrix manifold has been a powerful tool to structural matrix data recovery [21]. Typical

matrix manifolds, such as the Grassmann manifold, the orthogonal group, and the Stiefel

manifold, have been comprehensively studied, and one may read [22, 19, 23] for reference.
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Figure 1: P2,1 can be illustrated as a circle with radius 1/
√

2.

In this section, we study the set of subspace projection matrices of s dimensional sub-

spaces in RN denoted as PN,s and defined in (1). Because a subspace has a one to one

correspondence with a projection matrix, and such correspondence is continuous, PN,s is

an s(N − s) dimensional manifold which is homeomorphic to GrN,s.

Preceding the calculation of the differential structure and the condition number, we may

first illustrate PN,s for specific N = 2 and s = 1. From the definition, we know that

P2,1 ∼=
{

[x21,
√

2x1x2, x
2
2]
T : [x1, x2]

T ∈ Gr2,1

}
.

Because Gr2,1 ∼= S1, P2,1 can be expressed as a circle with radius 1/
√

2 as shown in Fig. 1.

3.1 Tangent space and normal space of PN,s
In this part, we study the first order differential structure of PN,s. The reason we need it is

that the condition number, which is an important quantity used for the stable embedding

of a manifold, will be defined by the normal bundle.

Denote skew(N) as the set of all N ×N skew symmetric matrices, and sym(N) as the

set of all N × N symmetric matrices. In the following lemma, the tangent space and the

normal space at every point of PN,s are unveiled. Remind that by stating PX = XXT, it

is indicated that X ∈ GrN,s.

Lemma 1 The tangent space of PN,s at a point PX = XXT is

TPX
PN,s = {X⊥KXT +XKTXT

⊥ : K ∈ R(N−s)×s}, (4)
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and the normal space is

NPX
PN,s = skew(N)

⋃
{S ∈ sym(N) : S = (PX − PX⊥)S0, S0 ∈ sym(N)}. (5)

X⊥ is the matrix such that [X,X⊥]T[X,X⊥] = IN .

Proof Denote the sets in (4) and (5) as U and V , respectively, both of which are subspaces.

Suppose that PX(t) = X(t)X(t)T is a curve on PN,s with PX(0) = PX . The tangent

vector along such curve at point PX is

d

dt

∣∣∣∣
t=0

PX(t) =
dX(t)

dt

∣∣∣∣
t=0

X(0)T +X(0)
dX(t)T

dt

∣∣∣∣
t=0

= ξXT +XξT ,

in which ξ is a vector in TXGrN,s. Because these tangent vectors all belong to the tangent

space of PN,s at PX , we have

TPX
PN,s ⊃ U = {ξXT +XξT : ξ ∈ TXGrN,s}.

To check that U⊥V , notice that any symmetric matrix is orthogonal to any skew-symmetric

matrix, and that

tr((X⊥KX
T +XKTXT

⊥)(XXT −X⊥XT
⊥)S0)

= tr((X⊥KX
T −XKTXT

⊥)S0)

= tr(X⊥KX
TST

0 )− tr(S0XK
TXT
⊥) = 0.

The dimension of V is

N(N − 1)/2 + s(s− 1) + (N − s)(N − s− 1)/2 +N = N2 −Ns+ s2,

and the dimension of U is Ns− s2, which is equal to the dimension of TPX
PN,s. Therefore,

we finish the proof that TPX
PN,s = U and NPX

PN,s = V .

3.2 Condition Number of PN,s
For the purpose of delineating the regularity of a manifold, a notion called the condition

number of a manifold, also known as the reach of a manifold [16], is introduced.

Definition 2 [17] Let M be a compact Riemannian sub-manifold of RN . The condition

number is defined as 1/τ , where τ is the largest number having property that the open normal

bundle about M of radius r is embedded in RN for all r < τ .

The condition number 1/τ controls both local properties, such as the curvature of any

unit-speed geodesic curve on the manifold, and global properties, such as how close the

manifold may curve back upon itself at long geodesic distance [18]. However, from its

definition, the condition number of a manifold is not easy to obtain in general. In this

section, we focus on the condition number of the manifold PN,s. In the next section, we

shall see that the following lemma is a key step to the main result.
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Lemma 2 The condition number 1/τ of PN,s is
√

2.

Proof The proof is based on the fact that τ is the radius of the largest possible non-self-

intersecting tube around the manifold.

The distance between PX and the set of skew matrices is ‖PX − 0‖F =
√
s, in that

‖PX‖F =
√

tr(XXTXXT) =
√

tr(XTX) =
√
s.

Thus, if the tube around the manifold intersects itself at a point of skew symmetric matrix,

then the radius of the tube is no less than
√
s.

For any X and Y in GrN,s, denote X̄ = XXT − X⊥X
T
⊥ and Ȳ = Y Y T − Y⊥Y

T
⊥ .

If the tube around the manifold intersects itself at a point of symmetric matrix Φ, then

∃X,Y ∈ GrN,s such that

X̄S1 = Ȳ S2 = Φ ∈ sym(N). (6)

Equation (6) is equivalent to the condition that Φ and X̄ share the same eigenvector matrix

X̃, and Φ and Ȳ share the same eigenvector matrix Ỹ , which is not necessarily to be

the same as X̃. One of the eigenspaces of X̄ is span(X) corresponding to eigenvalue 1,

and the other one is span(X⊥) corresponding to eigenvalue −1. Thus, X̃ is composed of

basis of span(X) and basis of span(X⊥). Without loss of generality, we can assume that

X̃ = [X,X⊥] and Ỹ = [Y, Y⊥]. Now we are able to prove that if ‖Φ − PX‖F < 1/
√

2 and

‖Φ− PY ‖F < 1/
√

2, then (6) can not hold.

First we consider the case where rank(Φ) = s. Suppose that (6) holds, and ‖Φ−PX‖F <
1/
√

2 and ‖Φ− PY ‖F < 1/
√

2. According to the discussion in the previous paragraph, we

have that ‖Φ−XXT‖F = ‖Λ1 −Λ‖F and ‖Φ− Y Y T‖F = ‖Λ2 −Λ‖F , in which Λ, Λ1, and

Λ2 are diagonal matrices. Λ = diag[1, · · · , 1, 0, · · · , 0], in which the number of 1 is s. Both

Λ1 and Λ2 have s non-zero elements and N − s zeros on the diagonal. Observe that if the

non-zeros of Λ1 is the first s elements on its diagonal, then the non-zeros of Λ2 can not be

the first s elements on its diagonal. Otherwise, X and Y span the same subspace. Thus, a

contradiction comes from the fact that at least one of ‖Λ1 − Λ‖F > 1 and ‖Λ2 − Λ‖F > 1

holds.

The second case is rank(Φ) < s. If (6) holds, then it is obvious that ‖Λ1−Λ‖F > 1 and

‖Λ2 − Λ‖F > 1, so ‖Φ− PX‖F < 1/
√

2 and ‖Φ− PY ‖F < 1/
√

2 can not hold.

The third case is rank(Φ) > s. Suppose that the eigenvalues of Φ are λ1 ≥ λ2 ≥ · · · ≥
λN . If (6) holds and ‖Φ − PX‖F < 1/

√
2, then we must have λ1 ≥ · · · ≥ λs > 1/2 >

λs+1 ≥ · · · ≥ λN , and eigenvalues λ1, · · · , λs correspond to the eigenspace span(X). Since

span(X) 6=span(Y ),

‖Λ2 − Λ‖F >
√

(1/2)2 + (1− 1/2)2 =
√

1/2,

so ‖Φ− PY ‖F < 1/
√

2 can not hold.
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These three cases show that ‖Φ−PX‖F < 1/
√

2, ‖Φ−PY ‖F < 1/
√

2, and (6) can not hold

simultaneously. From the discussion in the third case, it is obvious that ‖Φ−PX‖F = 1/
√

2,

‖Φ−PY ‖F = 1/
√

2, and (6) can hold simultaneously by choosing λ1 = · · · = λs−1 = 1, λs =

λs+1 = 1/2, λs+2 = · · · = λN = 0.

Consequently, for any PX , PY ∈ PN,s, Φ ∈ RN×N , if ‖Φ − PX‖F < 1/
√

2 and ‖Φ −
PY ‖F < 1/

√
2, their normal spaces can not intersect at point Φ. If ‖Φ−PX‖F = 1/

√
2 and

‖Φ−PY ‖F = 1/
√

2, then there exists a Φ at which their normal spaces intersect. Thus, for

PN,s, τ = 1/
√

2, and the condition number 1/τ is
√

2.

The condition number 1/τ of PN,s provides the regularity of this manifold, so its RIP

is able to be derived.

4 Proof of Main Result

Proof Basically, Theorem 1 is proved by applying the condition number of the manifold

of the projection matrix PN,s, calculating the covering number of the set of chords of PN,s,
and utilizing the Johnson-Lindenstrauss lemma.

The set of chords of a manifold M is denoted as

C(M) : =

{
X − Y
‖X − Y ‖F

: X,Y ∈M, X 6= Y

}
. (7)

From lemma C.1 in [13], we know that for any 0 < T ≤ 3τ/4, the set C(BT ) is a (4
√
T/τ, ‖·

‖2)-cover of C(PN,s), where BT is defined as

BT =
⋃

P∈N (PN,s,T )

{P + TPPN,s(T )}, (8)

in which N (PN,s, T ) is the (T, dg)-cover of PN,s, and TPPN,s(T ) := {ξ ∈ TPPN,s : ‖ξ‖F ≤
T}. It is easily shown in Part B of the proof of Theorem III.1 in [13] that the ε-cover of

C(BT ) satisfies

|N (C(BT ), ε)| ≤ |N (PN,s, T )|
(

1 +
2

ε

)s
+ |N (PN,s, T )|2

(
1 +

2

ε

)2s+1

.

Theorem 8 in [24] gives that the (T, dp) covering number of Grassmann manifold GrN,s

is (C0/T )s(N−s) with C0 being a universal constant. Remind that the projection distance

on GrN,s is defined as

d2p(X,Y ) :=
1

2
‖XXT − Y Y T‖2F .

Thus, the (
√

2T, d) covering number of PN,s is also (C0/T )s(N−s).

For any Z ∈ C(PN,s), there exist Z̃ ∈ C(BT ) and Ẑ ∈ N (C(BT ), ε) such that ‖(Z−Z̃)‖2 ≤
4
√
T/τ and ‖(Ẑ − Z̃)‖2 ≤ ε. We then have

‖A(Z)‖2 ≤ ‖A(Z − Z̃)‖2 + ‖A(Z̃ − Ẑ)‖2 + ‖A(Ẑ)‖2
≤ 4
√
T/τ + ε+ ‖A(Ẑ)‖2 (9)
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and

‖A(Z)‖2 ≥ ‖A(Ẑ)‖2 − ‖A(Z − Ẑ)‖2
≥ ‖A(Ẑ)‖2 − (‖A(Z − Z̃)‖2 + ‖A(Z̃ − Ẑ)‖2)
≥ ‖A(Ẑ)‖2 − 4

√
T/τ − ε. (10)

Equations (9) and (10) together with Lemma 1.1 in [17] (known as the Johnson-Lindenstrauss

lemma) give that

sup
Z∈C(PN,s)

‖A(Z)‖2 ≤ sup
Ẑ∈N (C(BT ),ε)

ε+ 4
√
T/τ + ‖A(Ẑ)‖2

≤ ε+ 4

√
T

τ
+ (1 + δ)

√
m

N2
, (11)

and

inf
Z∈C(PN,s)

‖A(Z)‖2 ≥ inf
Ẑ∈N (C(BT ),ε)

‖A(Ẑ)‖2 − (ε+ 4
√
T/τ)

≥ (1− δ)
√

m

N2
− ε− 4

√
T

τ
. (12)

Equations (11) and (12) hold simultaneously with probability exceeding 1−|N (C(BT ), ε)|−β
given that

m ≥
(

4 + 2β

δ2/2− δ3/3

)
log |N (C(BT ), ε)|.

From Lemma 2, we know that τ = 1/
√

2. Let δ = ε/2, ε = ε
√
m/(4N), and T =

τmε2/(256N2), then

|N (C(BT ), ε)| ≤
(√

2C0

T

)s(N−s)(
1 +

2

ε

)s
+

(√
2C0

T

)2s(N−s)(
1 +

2

ε

)2s+1

≤ 2

(
512N2C0

mε2

)2s(N−s)(
1 + 8

√
N2

mε2

)2s+1

≤ 2

(
512N2C0

ε2

)2s(N−s)(
1 + 8

N

ε

)2s+1

.

Thus, we conclude that if

m ≥
(

4 + 2β

ε2/8− ε3/24

)(
log 2 + 2s(N − s) log

(
512N2C0

ε2

)
+ (2s+ 1) log

(
1 +

8N

ε

))
∼
(

2 + β

ε2 − ε3/3

)
O

(
s(N − s) log

(
N

ε

))
then ∀Z ∈ C(PN,s), (1 − ε)

√
m/N ≤ ‖A(Z)‖2 ≤ (1 + ε)

√
m/N holds with probability

exceeding 1− |N (C(BT ), ε)|−β.
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In order to control the probability above, we need a lower bound on |N (C(BT ), ε)|.
Notice that

|N (C(BT ), ε)| ≥ |N (PN,s, T )|
(

1 +
2

ε

)s
≥ |N (PN,s, T )| =

∣∣∣∣N (GrN,s,
T√
2

)∣∣∣∣ ≥
(√

2c0
T

)s(N−s)
,

in which the last inequality holds when T ≤
√

2π/4 according to Theorem 8 in[24], and c0

is a universal constant. Because T = τmε2/(256N2) < τ/256 = 1/(256
√

2), we have

|N (C(BT ), ε)| ≥ (512c0)
s(N−s) = exp(c1s(N − s)).

Thus, the probability exceeding

1− |N (C(BT ), ε)|−β ≥ 1− exp(−c1βs(N − s)).

5 Conclusion

Subspace projection matrices are low rank matrices with additional structure that allows for

further reduction of its intrinsic dimension. In this work, the restricted isometry property

of subspace projection matrix under random orthonormal compression is studied.

The set of s dimensional subspace projection matrices PN,s is modeled as an s(N − s)
dimensional submanifold in RN×N , so the main concern is transformed to the problem of

the stable embedding of PN,s into RN×N . One of the key points is the calculation of the

conditional number 1/τ of PN,s. Once τ is obtained, the RIP is able to be established by

applying covering sets of the set of chords of PN,s and utilizing the JL lemma. In order to

calculate the condition number 1/τ , the tangent space and the normal space at every point

of PN,s are investigated. The result is that by O(s(N − s) logN) measurements the RIP of

subspace projection matrix is guaranteed.

This work is not exhausted. The condition number 1/τ of PN,s provides the regularity

of this manifold, so its RIP under other random compressions, such as i.i.d. Gaussian com-

pression, could also be established using such condition number. Furthermore, theoretical

analysis on algorithms for compressed subspace projection matrix recovery could be built

upon this work.
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