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Performance Analysis of Network Coded
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Abstract—Network Coded Cooperation (NCC) is known to
provide full diversity order and high spectral efficiency for
uncoded cooperative networks. However, the understanding of
NCC applied to signals that have been protected by some
Forward Error Correction (FEC) codes is still limited. This
letter analyzes the diversity order attainable by NCC with
channel coding (Coded-NCC) in a network topology with multiple
sources, one relay and in the presence of fast Rayleigh fading.
Due to the difficulty of characterizing the exchange of information
between the network decoder and the channel decoder, iterative
network and channel decoding algorithms are usually studied
with the aid of simulations. In this letter, we overcome this
limitation by proposing a near-optimal receiver that performs
network decoding and channel decoding in a single decoding
step of an equivalent super code. An upper bound and a tight
approximation of the Bit Error Rate (BER) for all sources are
derived. Based on the upper bound, we analytically show that
Coded-NCC achieves a diversity order equal to 2f , where f is
the minimum distance of the FEC code. This result generalizes
those available for cooperative networks in the absence of channel
coding (Uncoded-NCC), where the diversity order is equal to 2,
as well as those available for coded transmission but without
cooperation, where the diversity order is equal to f .

Index Terms—Convolutional codes, cooperative diversity, di-
versity order, network coding.

I. INTRODUCTION

Network Coded Cooperation (NCC) has recently gained
attention because of the potential improvement in terms of
diversity order and throughput that it can provide compared
to conventional cooperative techniques [1]. In NCC, some
network nodes, i.e., henceforth called relays, linearly combine
multiple input packets and forward their combination either
to the destination or to other relays. Therefore, the relays
are capable of serving multiple sources in a single resource
block, e.g., a time-slot. The spectral efficiency gain introduced
by Network Coding (NC), as a result, may become more
important in multiple-source networks. In [2], the capacity of
a cooperative network with NC is evaluated and it is shown
that a significant improvement with respect to classical relay-
aided networks is obtained. In [3], the diversity-multiplexing
tradeoff and NCC is analyzed. Recently, the authors of [4]
have derived the asymptotic Bit Error Rate (BER) of uncoded
multiple-access relay networks, which provides insight onto
the practical performance of NCC. The benefits introduced by
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NCC in multiple-source multiple-relay networks have recently
been studied in [5]-[7]. These papers, however, do not take
Forward Error Correction (FEC) coding into account, which
is usually adopted in modern communication standards. The
objective of the present paper is to address the achievable
performance of NCC with channel coding (Coded-NCC).

Iterative Network and Channel Decoding (INCD) is an
active field of research and various authors have investigated
its BER performance. For example, the performance of binary
NC with Convolutional Coding (CC) is studied in [8], [9]
for propagation over quasi-static block fading channels. The
generalization to non-binary NC is available in [10]. The
interplay of NC and Low Density Parity Check (LDPC) coding
is investigated in [11]. These papers, however, only resort to
numerical simulations and do not provide any results about
the achievable diversity order1. This mainly originates from
the complexity of characterizing iterative decoding.

It is known that channel coding is capable of increasing the
diversity order of non-cooperative networks for propagation
over general block fading channels, i.e., the channel is fast
varying and several channel gains are present in a codeword.
More specifically, the diversity order depends on the number
of channel gains in the codeword [13]. If channel coding
is used in relay-aided wireless networks, the diversity order
can be further increased. If relaying is replaced by NCC, the
diversity order can, in principle, be increased even further.
The objective of this letter is to mathematically characterize
the achievable diversity order of Coded-NCC. In particular, we
focus our attention on fully-interleaved (fast) Rayleigh fading
channels, i.e., the channel gains change independently from
symbol to symbol. This channel model can be seen as the limit
of a general block fading channel model, where the number
of channel gains is equal to the codeword length. In practice,
this operating regime may be achieved with the aid of an ideal
interleaver with infinite depth. Comments on the extension of
this paper to other fading channels are provided in Section V.

An upper bound and a tight approximation of the BER
for the sources are derived. Based on the upper bound, we
analytically show that Coded-NCC achieves a diversity order
equal to 2f , where f is the minimum distance of the FEC
code. This result generalizes those available for cooperative
networks without channel coding (Uncoded-NCC), where the
diversity order is equal to 2 [4], as well as those available
for coded transmission but without cooperation, where the
diversity order is equal to f [14]. Simulation results are used

1The diversity order is defined as the slope of the BER as a function of
the Signal-to-Noise-Ratio (SNR) in a log-log scale [12].
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to verify the accuracy of the mathematical analysis.
The paper is organized as follows. Section II describes the

system model and the decoding algorithm. Section III analyzes
the BER of Coded-NCC. Section IV studies coding gain and
diversity order. Finally, Section V concludes this paper.

II. SYSTEM MODEL

Let us consider a cooperative network composed of Ns
sources S = {S1, ...,SNs

}, one relay R and one destination
D. All nodes are equipped with a single-antenna. The protocol
is assumed to operate in orthogonal channels. For illustrative
purposes, a Time Division Multiple Access (TDMA) protocol
is considered. Perfect time synchronization is assumed. A
cooperation phase consists of Ns+1 time-slots. In the first Ns
time-slots, each source broadcasts a data message to the relay
and to the destination. In the (Ns + 1)-th time-slot, the relay
forwards a binary network-coded signal to the destination. A
fast-fading channel model is assumed, i.e., the fading gains
independently change from symbol to symbol.

A. Processing at the Sources
Let ui, 1 ≤ i ≤ Ns, be a message of length K emitted by

the source Si in the time-slot reserved for its transmission, i.e.,
the ith time-slot. The message ui is encoded by using a CC
with rate K/N , which provides a codeword ci = {ci,n}Nn=1

of N coded bits. The codeword ci is mapped, by using
Gray coding, into a signal xi = {xi,l}Ll=1 that contains
L = N/ log2M modulated symbols that belong to a M -
Quadrature Amplitude Modulation (M -QAM). The modulated
codeword xi is broadcasted to the relay and to the destination.
Let hSiR = {hSiR,l}Ll=1 and hSiD = {hSiD,l}Ll=1 be the
channel fading vectors of the links Si → R and Si → D,
respectively. The signals received at the relay and destination
from the source Si, 1 ≤ i ≤ Ns, can be formulated as follows:{

ySiR,l =
√
PSiRhSiR,lxi,l+ zSiR,l, 1 ≤ l ≤ L

ySiD,l =
√
PSiDhSiD,lxi,l+ zSiD,l, 1 ≤ l ≤ L (1)

where PXY , with X ∈ S and Y ∈ {R, D}, is the received
signal power at node Y from node X including the path
loss; hXY,l is the channel gain of the channel X → Y
corresponding to the lth modulated symbol. hXY,l is a complex
Gaussian distributed random variable with zero mean and unit
variance. From symbol to symbol, these random variables
are statistically independent. z(.) is the complex Gaussian
distributed noise term with zero mean and variance σ2.

B. Processing at the Relay
Upon receiving the Ns packets from the sources, the relay

applies the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm
[20] to estimate the transmitted codeword cRi from the received
vector ySiR. Let Θ , {Si/cRi = ci} be the set of sources
that successfully decode the transmitted codeword at the relay.
By definition, Θ ⊆ S. In practice, the relay is capable of
determining whether a codeword is received correctly or not
with the aid of an error detecting code, e.g., by applying Cyclic
Redundancy Check (CRC) decoding to the entire codeword.
After applying the CRC, the relay employs an Adaptive
Decode-and-Forward (ADF) protocol for data transmission
[15]. More specifically, the relay applies NC only to the

messages that are successfully decoded, i.e., those belonging
to Θ. If Θ = ∅, the relay remains silent. Let cR = {cR,n}Nn=1

denote the network-coded message at the relay. It can be
formulated as follows: cR,n = {⊕cRj,n}Sj∈Θ, where ⊕ denotes
binary XOR operation. In this paper, XOR is chosen since it
achieves full diversity order in single relay networks [7].

After NC, the relay modulates cR into the signal xR =
{xR,l}Ll=1 and forwards it to the destination. The signal
received at the destination in time-slot (Ns + 1) is yRD,l =√
PRDhRD,lxR,l + z, 1 ≤ l ≤ L. It is worth mentioning

that the relay needs to inform the destination of the messages
that are successfully decoded at the relay. This is possible by
adding Ns bits of side information in the transmitted packet.

C. Decoding at the Destination
After receiving the Ns + 1 packets from the sources and

from the relay, the destination performs joint network/channel
decoding. Let Θ = S�Θ denote the subset of messages
from the sources that are not network-coded at the relay. By
assuming that the channel state information of the relay-to-
destination links is available at the destination, the Maximum
a Posteriori (MAP) demodulator can be formulated as follows:

ûi = arg max
ui

Pr{ui|ySiD}, Si ∈ Θ, (2)

Û = arg max
U

Pr {U|Y} , Si ∈ Θ, (3)

where U = {ui1 , ...,ui|Θ|} is the collection of data messages
belonging to Θ, and Y = {ySi1

D, ...,ySi|Θ|D
,yRD}, with

|(.)| denoting the cardinality of a set.
As for the sources that are not network-coded at the relay,

(2) can be solved by applying the BCJR algorithm. In par-
ticular, each source can apply it independently of the others.
As for the sources that belong to Θ, (3) might be solved by
applying iterative decoding methods, as described in [9]. These
methods, however, have two limitations: they are sub-optimal
and they are not conveniently formulated for mathematical
analysis and for identifying the achievable diversity order.

To overcome these issues, we look at the problem from a
different point of view. In particular, (3) is interpreted as a
“super code” whose input data is U and whose output data
is Y. The key idea is to interpret the signal transmitted from
the relay as an additional parity bit (redundancy) that belongs
to a super code, whose trellis representation is constituted by
all the states of the individual trellises of the sources and that
originate from using the network code at the relay. Therefore,
both network and channel encoding/decoding are merged into
a single encoding/decoding process that can be directly applied
to the super code. If the channel code used by each source is
g = [g1 g2]1×2 with rate 1/2, for example, the super code
G(Θ) has a matrix form of size |Θ| × 2(|Θ|+ 1) that can be
formulated as follows:

G(Θ)=

 g1 g2 0 0 ... 0 0 g1 g2

. . .
0 0 0 0 ... g1 g2 g1 g2

 . (4)

With this interpretation at hand, (3) can (optimally) be
solved by applying the BCJR algorithm to the super code
G(Θ), whose super codeword is C = [ci1 , ..., ci|Θ| , cR],
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where cR = {cR,n}Nn=1 and cR,n = ci1,n⊕ ...⊕ ci|Θ|,n. Since
the trellis of the super code consists of all the combinations of
the trellis states of the sources, the complexity of the proposed
decoder exponentially increases with the number of sources
Ns. Although it is more computationally intensive than the
iterative decoding algorithms described in [9], it allows us to
analyze the BER of Coded-NCC systems.

III. PERFORMANCE ANALYSIS

Let A = a1...aNs with ai ∈ {0, 1} be the Ns bits of side
information that are used for informing the destination of the
sources that are network-coded at the relay. If the source Si is
correctly decoded at the relay, ai = 1; otherwise, ai = 0. As a
result, the successfully decoded set Θ can be better described
by ΘA. By definition, |ΘA| =

∑Ns

i=1 ai and Θ0...0 = ∅. Let
qi , Pr{cRi 6= ci} be the Frame Error Rate (FER) of the
link Si → R. The probability of ΘA, denoted by p(ΘA),
is p(ΘA) =

∏Ns

i=1(ai(1 − qi) + (1 − ai)qi). Let us denote
x , E{x} as the expectation of x, where the average is
computed with respect to the fading channels. Since the links
are assumed to be statistically independent, the BER of source
Si can be formulated as follows:

BERi =
∑

ΘA/ai=0

p(ΘA)PeSiD +
∑

ΘA/ai=1

p(ΘA)PeΘA , (5)

where PeSiD is the average BER of the Si → D link, which
is independent of ΘA, PeΘA is the average BER of the source
Si that belongs to the successfully decoded set, which depends
on ΘA. Also, p(ΘA) =

∏Ns

i=1((ai(1−qi)+(1−ai)qi), where
qi is the average FER of the link Si → R.

Mathematical expressions of PeSiD can be computed as
described in [14], since it is the average BER of classical CC.
Upper bounds of the FER qi of the Si → R links can be
obtained as described in [16], and they can be formulated as a
function of the BER and of the codeword’s length. The open
issue is the computation of PeΘA .

A. Computation of PeΘA

PeΘA is the BER of source Si after performing the joint
decoding that takes the super code G(ΘA) into account.
The successfully decoded set ΘA only contains |ΘA| ≤ Ns
sources, i.e., {Si1 , ...,Si|ΘA|}. We propose to compute PeΘA

by using the distance spectrum and the Pairwise Error Proba-
bility (PEP) of the super code G(ΘA).

If G(ΘA) is a CC, in fact, the BER of source Sj ∈ ΘA
can be formulated as PeΘA =

∑+∞
d=F wj(d)Pu(d), where F is

the minimum distance of the super code G(ΘA), wj(d) is the
input weight (i.e., the number of non-zero information bits)
of source Sj and Pu(d) is the Unconditioned PEP (UPEP) of
receiving the super codeword with an output weight d (i.e.,
the number of non-zero coded bits) and by assuming that the
all-zero codeword has been transmitted. The main challenge of
computing PeΘA lies in determining the minimum distance F
of G(Θ), the input weight wj(d) and how d non-zero bits are
distributed among the Sj → D and R→ D links. Let us denote
by Dd = {di1 , ..., di|ΘA| , dR} the weight pattern that specifies
how d weights are distributed among the Sj → D and R→ D
links, where dj is the output weight of the individual codeword

transmitted via the channel Sij → D with 1 ≤ j ≤ |ΘA| or via
the channel R→ D. Then, d = di1+...+di|ΘA|+dR. The input
weight and the pattern can be computed via heuristic searching
of the trellis of G(ΘA). The following result is important for
further analysis. Due to space limitation, its proof is omitted
but it can be obtained as described in [17].

Lemma 1: For any successfully decoded set ΘA 6= ∅, the
minimum distance F of the super code G(ΘA) is equal to two
times the minimum distance f of the individual code g, i.e.,
F = 2f , and the pattern DF = {di1 , ..., di|ΘA| , dR} that cor-
responds to the minimum distance path of the super code has
only two non-zero elements, i.e., dj1 = dj2 = f, dj 6=j1,j2 = 0,
with j1, j2, j ∈ {i1, ..., i|ΘA|, R}.

With the aid of Lemma 1, PeΘA can be formulated as a
function of the pattern Dd, as follows:

PeΘA =

+∞∑
d=F

∑
Dd

wj(Dd)Pu(d|Dd), (6)

where Pu(d|Dd) = E {Pc(d|Dd)} and Pc(d|Dd) is the Con-
ditioned PEP (CPEP), which depends on the channel fading
coefficients. In (6), it is assumed that an erroneous detected
symbol can only be one of the nearest neighbor symbols.
Since Gray mapping is assumed, a single bit error corresponds
to a symbol error. Therefore, the CPEP Pc(d|Dd) can be
approximated as follows [18]:

Pc(d|Dd) = βQ
(√

2αχ
)
, (7)

where χ =
∑i|ΘA|
j=i1

∑dj
k=1 γSjD,k +

∑dR
k=1 γRD,k, γXY,k =

PXY |hXY,k|2/σ2 is the instantaneous SNR of the link X →
Y that is associated to the kth signal symbol and α, β are
some constants that depend on the M -QAM constellation. For
example, β = α = 1 for 2-QAM and β = 3/4, α = 2/5
for 16-QAM. In Rayleigh fading channels, the instantaneous
SNR γXY,k is an exponentially distributed random variable
with average SNR equal to γXY,k = γXY , ∀k.

Upper Bound of Pu(d|Dd): By applying the Chernoff
bound to the Q-function defined as Q(x) ≤ 1

2e
−x2/2, we get:

Pu(d|Dd) ≤
β

2
E {exp (−αχ)}

≤ β

2
(αγRD + 1)

−dR
i|ΘA|∏
j=i1

(
αγSjD + 1

)−dj
, (8)

which originates from the fact that γSjD,k, γRD,k are statisti-
cally independent ∀j, k and γXY,k = γXY , ∀k.

Approximation of Pu(d|Dd): The Chernoff bound may
not be very accurate for some system setups [13]. A better
approximation may be obtained by formulating the Q-function
as Q(x) ' 1

12 exp
(
−x

2

2

)
+ 1

4 exp
(
− 2x2

3

)
[19, eq. (14)].

Then, Pu(d|Dd) can be approximated as follows:

Pu(d|Dd) '
β

12
E {exp (−αχ)}+

β

4
E {exp (−4αχ/3)}

' β

12
(αγRD + 1)

−dR
i|ΘA|∏
j=i1

(
αγSjD + 1

)−dj
+
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Fig. 1: Performance of Coded-NCC, Ns = 3. Setup 1: (γ, γ, γ), Setup 2: (γ, γ +
12dB, γ + 12dB).

β

4

(
4αγRD

3
+ 1

)−dR i|ΘA|∏
j=i1

(
4αγSjD

3
+ 1

)−dj
. (9)

The result in (9) is obtained from the fact that the fading
gains are independent. Therefore, the integral originating from
χ in (7) can be factorized into the product of single integrals
(of γXY,k). By direct inspection of (8) and (9), we note that a
diversity order equal to dR+di1 + · · ·+diΘA

= d corresponds
to Pu(d|Dd). By inserting (9) and (8) in (6) and (5), an upper
bound and an approximation for the BER of the source Si can
be obtained. It is worth noting that, even though the output
weight d in (6) can be infinity, the BER is usually determined
by a few first values of d [14].

B. Diversity Analysis for Coded-NCC
Let us use the notation X $ γ−η to state that X has

asymptotic diversity order η, where γ is the average SNR.
As for the direct links, qi $ PeSiD $ γ−f for 1 ≤ i ≤ Ns,
where f is the minimum distance of the individual code g
[14]. Consequently, we obtain p(ΘA) $ γ−f if Si /∈ ΘA, and
p(ΘA) $ 1 − γ−f if Si ∈ ΘA. The diversity order of PeΘA

is determined by the diversity order of Pu(d|Dd), since the
input weight wj(Dd) is constant. From (6) and (8), it follows
that PeΘA $ γ−2f . Finally, from (5) we obtain BERi $ γ−2f ,
from which we conclude that Coded-NCC achieves a diversity
order that is two times larger than that of non-cooperative
transmission with channel coding.

IV. SIMULATION RESULTS

All simulation results are obtained by assuming binary NC
and Gray mapping. Each message consists of 512 bits. Coded-
NCC employs the CC [13 15] (in octal) with 1/2-rate and
minimum distance equal to f = 6. As benchmarks, four state-
of-the-art transmission schemes are illustrated: Uncoded-NCC
[4], non-cooperative transmission with channel coding, time-
sharing relaying, and INCD [8]–[10]. For a fair comparison,
all schemes are assumed to have the same spectral efficiency
of 3/4 bits per channel use. As a result, time-sharing relaying
uses 8-QAM while for the other schemes 4-QAM is used.
The first 6 values of the weights d are used to compute the
mathematical expression of the upper bound of the BER. For
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Fig. 2: BER comparison of Coded-NCC and state-of-the-art schemes,
(γSD, γSR, γRD) = (γ, γ + 12dB, γ + 12dB).

simplicity, a symmetric network deployment is considered, i.e.,
γS1D = ... = γSNsD

= γSD and γS1R = ... = γSNsR
= γSR.

Fig. 1 illustrates the performance of Coded-NCC for Ns =
3. The proposed BER approximation is closely overlapped to
the simulation results for both considered setups and for the
SNR range of interest. In Setup 1, some gaps can be observed
in the low SNR regime. This is due to the approximation of
computing the FER of the source-to-relay links [16]. The up-
per bound overestimates the actual BER of approximately 1dB,
but it provides the same diversity order as the approximation.

Fig. 2 compares the BER of Coded-NCC against the bench-
marks. We observe that the proposed scheme outperforms
the other schemes. In particular, Coded-NCC is capable of
achieving a diversity order equal to 12, while non-cooperative
and Uncoded-NCC achieve a diversity order equal to 6 and to
2, respectively. Furthermore, Coded-NCC performs 1dB better
than INCD and 2dB better than time-sharing relaying at a BER
of 1e-4. It is worth mentioning that, by using non-binary NC,
the SNR gain between Coded-NCC and INCD may change
but full diversity order is still guaranteed. Furthermore, we
note that time-sharing relaying achieves the same diversity
order as the non-cooperative scheme at low SNR. This is
because the relay is not capable of successfully decoding the
source message at low SNR. As the SNR of the source-to-relay
links increases, however, time-sharing relaying is capable of
achieving full diversity order, similar to Coded-NCC.

V. CONCLUSION AND DISCUSSION

We have analyzed BER and diversity order of Coded-
NCC in fast Rayleigh fading channels. We have shown that
a diversity order equal to two times that of the constituent
channel code is achieved and it depends on the characteristics
of the fading channel. In [17], it is shown, for example, that
channel coding does not introduce any diversity gains in slow
fading channels. In practical operating scenarios, the channel
is usually in between slow fading and fast fading. In this case,
the benefits of channel coding highly depend on the number of
independent channels available in a codeword. The analysis of
general block fading channels is postponed to future research
work.
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