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Acoustic recognition of multiple bird species based
on penalised maximum likelihood

Peter Jančovič1* and Münevver Köküer2,1

Abstract—Automatic system for recognition of multiple bird
species in audio recordings is presented. Time-frequency segmen-
tation of the acoustic scene is obtained by employing a sinusoidal
detection algorithm, which does not require any estimate of noise
and is able to handle multiple simultaneous bird vocalisations.
Each segment is characterised as a sequence of frequencies over
time, referred to as a frequency track. Each bird species is
represented by a hidden Markov model that models the temporal
evolution of frequency tracks. The decision on the number and
identity of bird species in a given recording is obtained based
on maximising the overall likelihood of the set of detected
segments, with a penalisation applied for increasing the number
of bird models used. Experimental evaluations used audio field
recordings containing 30 bird species. The presence of multiple
bird species is simulated by joining the set of detected segments
from several bird species. Results show that the proposed method
can achieve recognition performance for multiple bird species not
far from that obtained for single bird species, and considerably
outperforms majority voting methods.

Index Terms—bird species recognition, multiple bird species,
maximum likelihood, penalisation, partition, BIC, hidden
Markov models, frequency track, sinusoid detection

I. INTRODUCTION

AUTOMATIC recognition of bird species from their vocal-
isations typically starts with segmenting the audio signal

into isolated segments. In many works, this is performed based
on estimating noise level and using an energy-based threshold
decision, e.g., [1], [2]. An approach based on decomposing
the acoustic scene into sinusoidal components was used in [3],
[1], [4], [5], [6], [7], [8]. In [3], [4], this was performed using
a threshold-based assessment of the continuity in frequency
and amplitude of all the peaks in the short-time spectrum
and included a manual or automated energy-based pruning of
the obtained segments. We introduced in [9] a probabilistic
method, which does not require any noise estimate, to de-
tect only those spectral peaks that correspond to sinusoidal
components. This was employed in [6], [7], [8] to obtain
time-frequency segmentation and also representation of each
segment as a temporal sequence of frequencies, which we refer
to as frequency track. This feature representation, unlike spec-
tral or cepstral coefficients extracted from a wide frequency
bandwidth which has been used in some previous works, is
suitable for representing birds vocalising concurrently. Several
types of modelling approaches of bird vocalisations have been
explored. The use of dynamic time warping [10], [11], [6] and
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hidden Markov models (HMMs) [1], [2], [7] is compelling as
these allow to model the temporal evolution of sequences.

Recordings made in the field often contain vocalisations of
multiple bird species. This issue has been addressed only in
few recent works. The authors in [12] dealt with the problem
of having the training data associated with multiple class labels
by employing a multi-instance multi-label (MIML) approach.
This required that each segment was represented as a single
feature vector and as such did not allow for temporal modelling
of segments. On a similar task and data, there have recently
been two bird classification challenges. A summary paper
presented in [13] provided only a brief description of the
methods used by all contributors to the first challenge. The
contributions to the second challenge are described in [14]. In
both challenges, most of the contributions were based on using
MIML approach or a variety of pattern recognition techniques
that did not model the temporal evolution of segments.

This paper extends our recent work on HMM-based recog-
nition of single bird species [7] to recognition of multiple
species. An HMM modelling frequency track features is used
to represent each bird species. Processing a given recording
provides a set of variable length segments. The probability of
each segment on each bird species HMM is calculated using
the Viterbi algorithm. A method for finding the maximum
likelihood of a set of segments for a given number of bird
species models in an efficient way is proposed. This also
allows to incorporate constraints on the minimum length of
signal assigned to each species model. The decision on the
number and identity of bird species is based on maximum like-
lihood subjected to a penalisation for increasing the number
of models used. Experimental evaluations are performed on
field recordings from [15]. Over 33 hours of field recordings
from 30 bird species is processed. Experimental data with
multiple bird species are created by artificially mixing detected
segments of several bird species. Results indicate that the
proposed method can achieve performance not far from that
obtained when vocalisations of only single bird species are
present and outperforms considerably majority voting meth-
ods.

II. BIRD SPECIES RECOGNITION SYSTEM BASED ON
HMM MODELLING OF FREQUENCY TRACKS

This section briefly summarises the developed bird species
recognition system, with further details provided in [7].

A. Segmentation and Estimation of Frequency Tracks
The segmentation of the audio signal and estimation of

frequency tracks is performed based on detecting sinusoidal
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components in the signal using a modified version of the
method we introduced in [9] and this is summarised below.

The detection of sinusoidal components in a given signal
frame is considered as a pattern recognition problem. Each
peak in the magnitude short-time spectrum |S(k)| of the
signal is considered as a potential sinusoidal component. A
peak at the frequency bin kp is characterised by a feature
vector y, formed using M points of the short-time magni-
tude and phase spectrum around kp. Specifically, y=(y1,y2),
with y1=(|S(kp−M |/|S(kp)|, . . . , |S(kp +M |/|S(kp)|) and
y2=(∆φ(kp −M), . . . ,∆φ(kp + M)), where ∆φ(k) is the
phase difference between the current and the previous signal
frame. The distribution of the feature vector y is modelled
using a multi-component Gaussian mixture. A model is ob-
tained for spectral peaks corresponding to sinusoidal signals
at various SNRs, denoted by λs, and noise, denoted by λn. A
spectral peak is detected as a sinusoid if p(y|λs) > p(y|λn).

The following parameter setup is used. The signal, sampled
at 48 kHz, is divided into frames of 256 samples with a
shift of 48 samples between the adjacent frames. Rectangular
analysis window is used. The DFT size is set to 512 points.
The parameter M is set to 6 frequency bins. Models consist
of 32 Gaussian mixture components.

The above provides a set of detected sinusoidal components
at each signal frame. In order to determine individual isolated
segments, we assess the continuity of the detected components
over time. Finally, we discard all segments whose length is
too short (set here as 15 ms), whose median frequency is
below 2 kHz, or whose average energy is 15 dB lower than
the highest average segment energy in each recording. Each
detected segment is represented as a sequence of the sinusoidal
frequency values, which is referred to as frequency track.

An example of a spectrogram of an audio field recording
containing concurrent vocalisations of two bird species and
the obtained frequency tracks are depicted in Figure 1. It can
be seen that detected frequency tracks correspond well to bird
vocalisations.

B. HMM-based Modelling of Frequency Tracks
A model for each bird species is obtained by modelling

the temporal evolution of frequency tracks. A single left-to-
right (no skip allowed) hidden Markov model (HMM) is built
for each bird species by training the model using the entire
collection of detected segments from all training recordings
of that species. To account for the variety of syllable patterns
and the variations of individual instances of vocalisations, the
probability density function at each HMM state is a multi-
component Gaussian mixture. Gaussian distributions with a
diagonal covariance matrix are used due to computational
reasons, as is typically done in audio pattern processing.

The static frequency track features are appended by their
temporal derivatives, referred to as delta and acceleration
features, which capture local temporal dynamics. The included
delta and accelleration features were calculated as in [16] with
window set to 3 and 2, respectively. This resulted in a sequence
of 3 dimensional feature vectors. Each HMM consists of
13 states, with each state output probability density function
having 80 Gaussian mixture components.
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Fig. 1. An example of a spectrogram of an audio field recording (a) and the
corresponding estimated frequency tracks (b).

III. RECOGNITION OF MULTIPLE BIRD SPECIES

We consider the identification of bird species from a finite
set of N bird species models based on a given ‘utterance’ of
signal recording. For a given utterance, the segmentation and
frequency track feature extraction step, as described in Sec-
tion II-A, provides a set of R detected segments O={Os}Rs=1,
with each segment being represented by a sequence of features
Os=(o1

s, . . . ,o
Ts
s ), where Ts is the number of frames in the

segment s. For each segment s, the likelihood p(Os|λbi) on
each bird species HMM λbi is calculated. We used the Viterbi
algorithm to provide an approximation of this likelihood.
Considering that a given utterance may contain vocalisations
of one or more bird species, we are facing the problem of how
to combine the scores obtained for each individual segment by
each bird species model in order to obtain the decision on the
number and the identity of the recognised bird species.

To indicate the difficulty of the problem we are dealing with,
we analysed recognition results obtained for each individual
segment when vocalisations of only single bird species are
present. Figure 2 shows the histogram of the rank of the correct
bird species model, where the statistics were collected over
all the segments of all bird species. Results indicate that the
correct model was ranked as the one achieving the highest
probability for only around 28.5% of the segments.

A possible approach to deal with this score combination
problem could be based on counting the number of segments
classified to each bird species model. The identity of the
recognised bird species would be obtained as the first top
most used models, with some threshold-based decision needed
to estimate the number of species present. We refer to this
method as ‘majority’ combination. As this method disregards
the differences in lengths of the segments, all segments would
have an equal contribution to the final decision, which may
not be desirable. A modified version of this majority com-
bination method could count the accummulated length of all
the segments classified to each bird species model. Although
the majority approach may work well in some situations,
the fact that it uses for each segment only the information
about the single best model may prove problematic in more
realistic scenarios when there may be a larger ambiguity in
recognising individual segments. This is also the case here
as demonstrated by the statistics presented in Figure 2. Such
ambiguity typically increases with increasing the number of
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classes and with noise presence in input features.

1 2 3 4 5 6 7 8 9 10 11 12 13 14>=15
0

5

10

15

20

25

30

Rank of the correct model

Pe
rc

en
ta

ge
 (%

)

Fig. 2. Histogram of rank statistics of the correct bird species models,
collected over all segments of all bird species.

The authors in [12] used the maximum posterior probability
over all segments in the utterance as the utterance-level score
for each bird species bi, i.e., maxs P (bi|Os), and then used
a threshold-based decision on this posterior probability to
decide the number and identity of the bird species present.
This approach is problematic because the decision is based
on a single segment, which may accidentally be recognised
incorrectly with a high posterior probability.

To deal with this score combination problem we propose a
method that partitions the entire set of segments and assigns
each partition to a bird species model in a way that the
overall likelihood is maximised. Let us consider that the set
of segments O is to be partitioned into K subsets, each subset
being denoted as Bi, i.e., O=∪{Bi}Ki=1 and Bi∩Bj=∅. Each
subset Bi is considered to belong to a different bird species
bi and the value of K corresponds to the number of bird
species present. The aim is to calculate the maximum overall
likelihood of the set O, denoted by P (K), i.e.,

P (K) = max
∀Bi;b1,...,bK

K∏
i=1

∏
Os∈Bi

p(Os|λbi) (1)

where the maximisation is over all the possible partitionings
of the set O into K subsets as well as over all the K partial
permutations out of the total number bird species models. The
direct implementation of Eq. 1 is computationally not feasible.
For instance, the number of ways to partition the set O into
K subsets is the Stirling number of the second kind and this
increases exponentially with increasing both the number of
segments R in the set O and the value of K, e.g., it is over
2.3 million when R=15 and K=3. However, we can split
the maximisation in Eq. 1 into two steps. First, calculate the
likelihood of the best partitioning of O for a given subset of
models {b1, . . . , bK}, which we denote by P (K)

b1,...,bK
, and then

maximise over all the K model combinations.
The likelihood P (K)

b1,...,bK
can be calculated simply by assign-

ing each segment Os, s=1, . . . , R to a model from the subset
{b1, . . . , bK} that achieves the highest likelihood. If constraint
on the minimum length of signal assigned to each bird species
is required, binary linear programming can be employed.
This finds the values of binary variables, which express the
assignment of each segment to each model. The cost function
to optimise is the summation of terms consisting of each of the
binary variable multiplied by the corresponding log-likelihood
of the segment on the model. The length of each segment is

used to formulate the minimum length criteria constraint plus
constraints to ensure that each segment is assigned to only one
model are used. Alternatively, we observed that the following
procedure can find P

(K)
b1,...,bK

, or its close approximation, in
a faster way. This procedure needs to be performed for all
model permutations. First, for each segment in O, calculate
log(p(Os|λb1))−maxK

i=2 log(p(Os|λbi)). Then, a subset from
O where the above difference is positive is assigned to B1,
subject to leaving enough segments for the remaining K−1
bird models. If the minimum signal length constraint is not
satisfied, next segments with the above difference being least
negative are included in B1. This procedure is repeated with
the remaining subset of segments O\B1 and models until the
set O is partitioned into K subsets.

The likelihood P (K) is obtained by maximising over the
likelihoods P (K)

b1,...,bK
, calculated for all K model combinations

(or permutations), using one of the above ways.
The final step is to select parameter K, i.e., number of

bird species present in signal. This can be performed based
on principles used in model selection research, e.g., Bayesian
information criterion (BIC). Increasing the value of K effec-
tively means that we are allowing a more complex model to fit
the data. As such, the likelihood P (K) needs to be subjected
to a penalisation. The estimated K∗ can be obtained as

K∗ = arg max
K∈<1,...,Kmax>

logP (K) − α(K) (2)

and the set of recognised bird species {b1, . . . , bK}∗ is then
obtained as corresponding to P (K∗). The value of the pe-
nalisation α(K) increases with increasing the number K of
models used. Various ways of setting the penalisation function
have been proposed, e.g., [17], [18]. As we may in general
have different amount of signal being assigned to each model,
we based the penalisation α(K) on segmental BIC [18] and
calculated it as λC(K)

∑K
i=1 log T (i), where C(K) denotes the

number of parameters of using K models, T (i) is the number
of signal frames assigned to the ith model, and λ is a tuning
factor. We observed that using a different value for the tuning
factor λ for each K provided slightly better performance than
using a fixed value. Values of λ used during testing are found
based on the best performance obtained on simulated mixture
using the training data.

IV. EXPERIMENTAL EVALUATIONS

A. Data Description and Experimental Setup

Experimental evaluations were performed using audio field
recordings from [15], collected over several decades, mostly in
the western United States. Each bird species contains several
audio files, each file being typically several minutes long.
There is no annotation of the recordings other than the label
indicating the single bird species name. As these are field
recordings, there are sometimes vocalisations of other birds
and animals. Data from a set of randomly chosen 30 bird
species was used. The list of bird species is given at [19].
This contained in total over 33 hours of audio recordings. Each
recording was split into training and testing part in proportion
of two to one, respectively. The data used for testing was
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further split into utterances, where each utterance consisted
of signal containing approximately a given length of detected
segments. In total, there was 2126 utterances. The utterances of
one, two, and three seconds of the detected segments contained
by average 13, 20, and 40 segments, respectively.

In order to conduct methodological evaluations of the pro-
posed score combination method, vocalisations of multiple
bird species were created by randomly mixing set of detected
segments from several bird species. This effectively means that
the segment detection method is considered to detect the same
set of segments it would have detected if recordings contained
individual bird species vocalisations.

Performance is evaluated in terms of recognition correct-
ness, 100·Nc/N , and recognition accuracy, 100·(Nc−Ni)/N ,
where Nc, Ni and N is the number of correctly recognised,
inserted and total number of bird species in recordings.

B. Experimental Results

First, we report performance for the case when only a single
bird species is present. The developed recognition system
achieved bird species recognition correctness of 92.0%, 88.8%
and 83.3% when using, respectively, utterances containing
three, two and one seconds of the detected signal.

Now, we present results with multiple bird species present.
First, we consider that there are separately one, two, or three
bird species present, each species with 3 seconds of the de-
tected segments and we assume that the number of bird species
is known. Evaluations of the proposed maximum-likelihood
method without and with constraints on the minimum length of
the signal assigned to each bird species model are performed.
The latter uses constraint matching the length of the bird signal
present, i.e., 3 seconds here, and as such, this represents an
idealised best performance the method can achieve. Experi-
ments were also performed using the majority voting method,
either based on the number of segments or the cummulated
length of segments. Results are presented in Table I. It can be
seen that the proposed maximum likelihood method obtains
considerably better performance than majority-based methods
in all cases of 1, 2 and 3 bird species present. The idealised
case of incorporating strong constraints on minimum signal
length achieves relatively small performance improvements in
comparison to using no constraints.

TABLE I
Bird species recognition correctness (%) as a function of the number of bird
species present when each species contains 3 seconds of the detected signal.

Number of bird Score combination method
species present majority max-likelihood

count length with constraint: yes / no
1 species 63.1 63.7 92.0 / 92.0
2 species 54.9 61.4 84.7 / 81.2
3 species 51.7 61.3 77.6 / 72.5

Next, we assess how the presence of different length of
bird vocalisations in the mixture affects the recognition per-
formance. These experiments are performed using two bird
species present, with the vocalisation length being 3 seconds
for the first species and varying from 1 to 3 seconds for the

second species. Results are presented in Table II. It can be
seen that the first bird species are recognised in all cases with
a similar correctness, in the range from 83.5% and 86.1%. The
correctness of recognising the second bird species decreases
only little when 2 seconds of vocalisation is present and drops
down more when only 1 second of vocalisation is available.

TABLE II
Bird species recognition correctness (%) when two bird species are present,
one with 3 seconds and the other with various length of the detected signal.

Length of 2nd bird Rec. Corr. (%)
species (sec) species 1 species 2

3 84.4 84.7
2 83.5 80.1
1 86.1 65.0

Finally, we present experiments demonstrating the perfor-
mance when also the number of bird species is estimated.
For these experiments, the number of bird species in the data
was chosen randomly in the range from 1 to 3 and the data
contained vocalisations of around 3 seconds of the detected
signal as follows: either 3 sec from 1 bird species, 1.5 sec
from 2 bird species, or 1 sec from 3 bird species. Constraint
on the minimum length of the signal assigned to a bird species
model was set to 1 second. Results are presented in Table III.
It can be seen that recognition correctness/accuracy of 78.1%
is achieved when the number of bird species is known and
this drops to 72.5% and 69.4%, respectively, in the case of
automatically estimating the number of species.

TABLE III
Bird species recognition performance when one, two, or three bird species

are present in a given utterance of 3 seconds of the detected signal.

Number of bird species Rec. Corr. (%) Rec. Acc. (%)
Known a-priori 78.1 78.1

Estimated 72.5 69.4

V. CONCLUSION

In this paper, we presented an automatic system for recog-
nition of multiple bird species. The system employed a
method for detection of sinusoids to obtain time-frequency
segmentation of acoustic signal and extract frequency track
features to characterise each segment. Each bird species was
represented by a hidden Markov model modelling frequency
track features. In a given recording, a set of segments is
detected. The recognition decision on the number and identity
of bird species was performed based on finding a subset of
models that achieved maximum likelihood aggregated over all
the segments. An efficient method for finding the maximum
likelihood, which also allowed to incorporate constraints in the
decision, was proposed. Based on the principles of Bayesian
information criterion, the obtained likelihood was penalised
according to the number of models used. Experimental results
demonstrated that the proposed method performed well and
considerably outperformed majority voting approach.
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