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Abstract

In this paper, the interplay between a class of nonlinear estimators and strategic sensors is studied in several participatory-

sensing scenarios. It is shown that for the class of estimators, if the strategic sensors have access to noiseless measurements of

the to-be-estimated-variable, truth-telling is an equilibrium of the game that models the interplay between the sensors and the

estimator. Furthermore, performance of the proposed estimators is examined in the case that the strategic sensors form coalitions

and in the presence of noise.

I. INTRODUCTION

With a yearly expansion rate of 30% for mobile broadband subscriptions and smartphones accounting for 65-70% of all

the sold mobile phones [1], we are truly living in a connected world. This constant state of connectedness has enabled new

technologies, such as participatory- and/or crowd-sensing applications, in which consented participants, with their smartphones,

act as sensing units to estimate a variable1. Examples of commercial products using participatory-sensing schemes are Waze

(for traffic estimation), Sensorly (for mobile coverage), Amazon review (for quality of service or product), or Mobile Water

Management (for user data collection in control of irrigation canals) [2], [3]. These systems, so far, have mainly relied on the

benevolence of participants. However, due to various reasons, participants might provide false data. For instance, smartphones

can be hacked or fake bots can be created by a hacker to feed false measurements to a sensing scheme [4]. Another reason

could be that the individual participants might want to change the outcome of participatory-sensing schemes for their benefit.

For instance, in crowd-sensing applications for traffic estimation, such as Waze, people inevitably realize that their reports

change the traffic estimates which, in turn, diverts vehicles to and from their neighbourhoods [5]. Finally, it could also be that

the participants wish to retain their privacy. For instance, people might provide inaccurate and misleading reports to a polling

organization (one of the oldest forms of crowd-sensing applications) to avoid revealing private and/or sensitive information

to governments or for-profit organizations. Therefore, we are interested in designing robust participatory-sensing schemes that

can work reliably in the face of strategic false-data injection.

An earlier study in estimation with strategic sensors showed that, counter-intuitively, the performance of linear estimators

degrades as the number of sensors increases [6]. Further, it was shown that when the sensors are herding, i.e., they are imitating

each other’s policies, the quality of the estimation improves with the summoning of more sensors. Herding behaviour could be

caused by the bounded rationality of the sensors. However, it can be also induced by designing an appropriate estimator that

pushes each sensor to “behave the same as the rest”. Here, to utilize this observation, we design nonlinear estimators that can

reject outlier reports and, hence, induce a herding behaviour among the sensors. A median estimator is an example of such an
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1In this paper, we use the terms state, variable, and to-be-estimated-variable interchangeably based on the context.
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estimator. The fact that median is robust in the presence of noisy and corrupted data is well known, e.g. see [7]. However, to

the best of our knowledge, the benefits of using a median estimator in the presence of strategic sensors and in a game-theoretic

framework has not been formalized in the literature.

The main contributions of the paper are as follows. First, two linear estimators are considered and it is shown that sensors

engaging in a truth-telling behaviour, i.e. reporting the correct variable that the participatory-sensing scheme wishes to estimate,

does not correspond to an equilibrium of the game modelling the interaction between the sensors and the estimator. Next, it is

demonstrated that for a class of nonlinear estimators truth-telling is in fact an equilibrium of this game. Third, the scenarios

where strategic sensors might be colluding and form coalitions is studied. Particularly, the link between the size of the coalitions

and the performance of the estimators in the aforementioned class is established. Fourth, the case where the measurements

carried out by the sensors are noisy is studied.

Many participatory-sensing mechanisms adopt quality assessment procedures and provide appropriate incentives to extract

useful data. In this paper, however, we show that even if the participatory-sensing services do not adopt quality-assessment

procedures or provide incentives, they can shape the behaviour of strategic sensors to elicit a truthful message. This is certainly

a favourable approach as (i) there is no need for incentives (in either monetary or psychological forms) in the often large

groups of recruited participants and (ii) it further reduces the complexity of the employed estimators.

The rest of the paper is as follows. In Section II, we investigate the interplay between the strategic sensors and the linear as

well as nonlinear estimators. Section III extends these results to the case where the sensors can form coalitions. In Section IV,

we study nonlinear estimators when the sensors are noisy. Finally, we conclude the paper in Section V.

II. NOISELESS MEASUREMENTS

Let us consider the case where a receiver is interested in measuring the variable x ∈ R. Hence, it employs n > 1 sensors

to measure this variable and report it back. Each sensor transmits a measurement yi ∈ R. We assume that the transmissions

occur simultaneously and, thus, the sensors do not have access to the messages communicated by each other. The receiver

subsequently uses these messages to construct an estimate of x, denoted by x̂ ∈ R. The receiver wants to guarantee that the

estimation error E{‖x − x̂‖2} is small, where E{·} denotes the expectation of its argument. In this section, we assume that

the sensors have access to the noiseless measurements of x. However, their interests are not aligned with that of the receiver

and each other, that is, sensor i ∈ JnK wishes to minimize the cost E{‖(x+θi)− x̂‖2}, where θi ∈ R is its private information

(i.e., it is not known by the other sensors and the receiver). Here, JnK denotes the set {1, . . . , n}.

ASSUMPTION 2.1: x and (θi)i∈JnK are jointly distributed Gaussian random variables with zero mean.

We are interested in large groups of homogeneous sensors to mimic the behaviour of large crowds. Therefore, we make the

following assumption.

ASSUMPTION 2.2: (θi)i∈JnK are identically and independently distributed random variables. Moreover, x and θi are inde-

pendent for all i ∈ JnK.

Let gi(·|x, θi) denote the conditional distribution that sensor i uses for generating its message yi (i.e., its policy). Therefore,

for any Lebesgue-measurable set Yi ⊆ R, we get

P{yi ∈ Yi} =
∫
ξ∈Yi

gi(ξ|x, θi)dξ.
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We use the notation Gi to denote the set of all such conditional distributions for each sensor i. Moreover, since the dimension

of the messages for all the sensors is the same, G1 = · · · = Gn = G. Let us define a cost for sensor i ∈ JnK as

Vi((gi)i∈JnK;π) = E{‖(x+ θi)− π((yi)i∈JnK)‖2}

=

∫ ∞
−∞
· · ·

∫ ∞
−∞
‖(x+ θi)− π((yi)i∈JnK)‖2

∏
j∈JnK

[gj(yj |x, θj)dyj ]
∏
j∈JnK

[pθ(θj)dθj ]px(x)dx,

where (gi)i∈JnK ∈ Gn is the policy of all the sensors, π : Rn → R is the policy of the receiver, i.e., x̂ = π((yi)i∈JnK), and px

and pθ are probability density functions. Note that this is an ex ante cost function as the sensors do not wait until they receive

their private information and the state measurement in forming the cost function (it leads to a setup in which the sensors select

their policies before entering the game). Hence, at the equilibrium induced by this cost function, the parameters of the policy

are not a function of the private information and the state measurement, however, the transmitted message can be a function

of these measurements2. Alternatively, we can form an ex post cost function

Ui((gi)i∈JnK;π) = E{‖(x+ θi)− π((yi)i∈JnK)‖2|θi, x}

=

∫ ∞
−∞
· · ·

∫ ∞
−∞
‖(x+ θi)− π((yi)i∈JnK)‖2

∏
j∈JnK

[gj(yj |x, θj)dyj ]
n∏

j∈JnK\{i}

[pθ(θj)dθj ].

DEFINITION 1 (π-STACKELBERG EQUILIBRIUM): A tuple of conditional distributions (g∗i )i∈JnK ∈ Gn constitutes an ex ante

π-Stackelberg equilibrium if

g∗j ∈ argmin
gj∈G

Vj(gj , (g
∗
i )i∈JnK\{j};π), ∀j ∈ JnK.

The tuple constitutes an ex post π-Stackelberg equilibrium if

g∗j ∈ argmin
gj∈G

Uj(gj , (g
∗
i )i∈JnK\{j};π), ∀j ∈ JnK.

In statements where we do not distinguish between ex ante and ex post equilibria, the statement holds in both senses.

Note that π, in π-Stackelberg equilibrium, is a generic place-holder for an arbitrary policy π and indicates that the equilibrium

corresponds to this policy.

In this paper, our interest is to find an estimator π that can extract useful information from strategic sensors. This is motivated

by the observation that, for linear estimators, the quality of the estimation degrades as the number of participating sensors

increases [6]. Let us start with a simple, yet widely used, linear estimator to illustrate the problem.

DEFINITION 2 (AVERAGING ESTIMATOR): The receiver employs the estimator

x̂ = ψ((yi)i∈JnK) := (y1 + · · ·+ yn)/n.

A tuple of conditional distributions ((g∗i )i∈JnK) ∈ Gn constitutes an ex ante (ex post) equilibrium for the averaging estimator

if it is an ex ante (ex post) ψ-Stackelberg equilibrium.

DEFINITION 3 (TRUTH-TELLING PORTFOLIO): Sensor i follows the truth-telling strategy if3 gi(yi|x, θi) = δ(yi−x), where

δ is the Dirac delta distribution4. The truth-telling portfolio is a tuple of conditional distributions such that all the sensors are

employing the truth-telling strategy.

Now, we can prove the following negative result regarding the averaging estimator.

2Using an ex ante optimal policy can be motivated by the lack of enough computational resources for online calculation of the policy based on the realization

of the private information and the state.
3This is the same as saying P{yi = x} = 1.
4The Dirac delta distribution is a mapping δ : R→ R ∪ {±∞} such that δ(t) = 0 for all t ∈ R \ {0} and

∫∞
−∞ δ(t)dt = 1.
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THEOREM 4: The truth-telling portfolio is not an equilibrium for the averaging estimator.

Proof: Let all the players except player i ∈ JnK employ the truth-telling strategy. Therefore, yj = x for all j ∈ JnK \ {i}.

Hence, we have x̂ = (1−1/n)x+(1/n)yi. Now, sensor i using the policy yi = x+nθi results in E{‖(x+θi)− x̂‖2|θi, x} = 0

and E{‖(x+ θi)− x̂‖2} = 0, which is strictly less than, respectively, substitution of the truth-telling strategy in both ex post

and ex ante cost functions.

Even with the optimal linear estimator E{x | y1, . . . , yn}, it was observed in [6] that the truth-telling is not an equilibrium

of the game and that, at the equilibrium, the quality of the estimation degrades as the number of sensors increases. In limit,

no information can be recovered from the transmitted messages. This observation, together with Theorem 4, motivates us to

find estimators for which the truth-telling portfolio is an equilibrium. We address this concern in the remainder of this section.

DEFINITION 5 (2`-REJECTION AVERAGING ESTIMATOR): Assume that n ≥ 2`+1. Let (ij)j∈JnK be given such that yi1 ≤

yi2 ≤ · · · ≤ yin . The receiver employs the estimator

x̂ = ψ`((yi)i∈JnK) :=
1

n− 2`

n−∑̀
j=`+1

yij .

A tuple of conditional distributions ((g∗i )i∈JnK) ∈ Gn constitutes an ex ante (ex post) equilibrium for the 2`-rejection averaging

estimator if it is an ex ante (ex post) ψ`-Stackelberg equilibrium.

REMARK 2.1: In the statistics literature (e.g., [8, p. 16]), 2`-rejection averaging estimators are alternatively known as trimmed

averaging estimators (since they are derived from an averaging estimator by excluding the extreme values). Here, we use the

name 2`-rejection averaging estimator because of our desire to work with integer values of ` rather than percentages of rejection

`/n.

THEOREM 6: The truth-telling is an equilibrium for the 2`-rejection averaging estimator for all ` ∈ Jb(n− 1)/2cK.

Proof: Let all the players except player i ∈ JnK employ the truth-telling strategy. Therefore, yj = x, ∀j ∈ JnK \ {i}.

Hence, we have x̂ = x irrespective of yi (as it will be rejected). Thus, truth-telling (among all the other policies) minimizes

the cost of sensor i in both ex ante and ex post senses.

DEFINITION 7 (MEDIAN ESTIMATOR): Let (ij)j∈JnK be given such that yi1 ≤ yi2 ≤ · · · ≤ yin . The receiver employs the

estimator

x̂ = φ((yi)i∈JnK) :=

(yin/2
+ yin/2+1

)/2, n ∈ E,

yi(n+1)/2
, n ∈ O,

where E and O represent the sets of even and odd integers, respectively. A tuple of conditional distributions ((g∗i )i∈JnK) ∈ Gn

constitutes an ex ante (ex post) equilibrium for the median estimator if it is an ex ante (ex post) φ-Stackelberg equilibrium.

LEMMA 8: The median estimator is equivalent to the 2`-rejection averaging estimator if ` = (n − 2)/2 for n ∈ E and

` = (n− 1)/2 for n ∈ O.

Proof: The proof follows from simple algebraic manipulations and is hence omitted.

COROLLARY 9: The truth-telling is an equilibrium for the median estimator.

So far, we have assumed that the sensors do not form coalitions to deceive the receiver. In the next section, we define a

different game in which sensors can act together.

III. EXTENSION TO COALITIONS

Assume that sensor i ∈ JnK can submit ci ∈ N messages instead of one. This setup has two interpretations. First, each sensor

represents a coalition of size ci instead of a single sensor. Alternatively, we can assume that each sensor represents an array of
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sensors introduced by a single hacker. Therefore, the receiver has access to (yi)i∈JcK where c =
∑
j∈JnK cj . The receiver does

not know (cj)j∈JnK. Here, the definition of the 2`-rejection averaging estimator is the same as in Definition 5 with c denoting

the number of messages instead of n.

Examples of participatory-sensing services that admit coalitions are legislative bodies, e.g. the U.S. congress, and truth-

finding committees, e.g. royal commissions in most of the Commonwealth countries. Here, the coalitions are political parties

because their members most often, persuaded by the party whip, vote on party lines. Therefore, it would be nice to construct

estimators that can recover the truth despite the ever-growing partisanship.

THEOREM 10: Let
∑
j∈JnK\{i} cj ≥ ci+1 for all i ∈ JnK. The truth-telling is an equilibrium for the 2`-rejection averaging

estimator if maxi∈JnK ci ≤ ` ≤ b(
∑
j∈JnK cj − 1)/2c.

Proof: The proof is similar to the proof of Theorem 6 and is hence omitted.

REMARK 3.1: Theorem 10 shows that, for a given `, the estimator is robust to admitting a coalition of sensors with the

size of, at most, ` assuming that no coalition has more sensors than the sum of the size of all other coalitions minus one (i.e.,

there is a balance of power between the competing coalitions).

COROLLARY 11: Let

min
i∈JnK

 ∑
j∈JnK\{i}

cj

− ci
 ≥

1,
∑
j∈JnK cj ∈ O,

2,
∑
j∈JnK cj ∈ E.

The truth-telling portfolio is an equilibrium for the median estimator.

REMARK 3.2: Corollary 11 shows that the truth-telling portfolio is an equilibrium if no individual coalition has the majority.

Thus, the median estimator is extremely robust to manipulation by strategic entities even if they cooperate. This observation

has interesting implications in politics, that is, any truth finding committee, as a whole, can only recover the truth so long as

no single party has the majority because, in such case, they can silence the voice of the others.

IV. EXTENSION TO NOISY MEASUREMENTS

Consider the case where sensor i ∈ JnK has access to noisy measurements of the state denoted by zi = x + wi, where

(wi)i∈JnK are independent zero-mean Gaussian random variables. Similarly, sensor i uses the conditional distribution gi(·|zi, θi)

to generate its message yi. In this case, we say that sensor i follows the truth-telling strategy if gi(yi|zi, θi) = δ(yi − zi).

Unfortunately, access to noisy measurements destroys the truth-telling property of the median estimator.

THEOREM 12: The truth-telling portfolio is not an equilibrium for the 2`-rejection estimator in the presence of noise.

Proof: Let us pick a sensor k ∈ JnK. Set yj = zj for all j ∈ JnK \ {k}. Assume that yk = (n − 2`)θk + zk. Let

(ij)
n−1
j=1 be given such that ij 6= k for all 1 ≤ j ≤ n − 1 and yi1 ≤ yi2 ≤ · · · ≤ yin−1 . Note that k ∈ {` + 1, . . . , n − `}

with a positive probability. In that case, we have x̂ = 1/(n − 2`)
∑n−`
j=`+1 yij . This results in a cost equal to E{‖(x + θk) −

x̂‖2|zk, θk, y1, . . . , yn} = E{‖x − 1/(n − 2`)
∑n−`
j=`+1 zij‖2|zk, θk, y1, . . . , yn} which is strictly smaller than sensor k’s cost

had it been truthful: E{‖(x+ θk)− 1/(n− 2`)
∑n−`
j=`+1 zij‖2|zk, θk, y1, . . . , yn}. Hence, by taking expectation of these terms

over y1, . . . , yn, we can show that the cost of sensor k can be reduced by not acting truthfully. This concludes the proof.

A similar result can be proved for the median estimator.

THEOREM 13: The truth-telling portfolio is not an equilibrium for the median estimator in the presence of noise.
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Proof: Let n ∈ O as, with a similar idea, we can prove the result for n ∈ E. Pick a sensor k ∈ JnK. Let (ij)n−1j=1 be given

such that ij 6= k for all 1 ≤ j ≤ n− 1 and yi1 ≤ yi2 ≤ · · · ≤ yin−1
. Hence, we have

x̂ =


yi(n−1)/2

, yk < yi(n−1)/2
,

yk, yi(n−1)/2
≤ yk ≤ yi(n+1)/2

,

yi(n+1)/2
, yk > yi(n+1)/2

,

This gives

E{‖(x+ θk)− x̂‖2|y1, . . . , yn} =


E{‖(x+ θk)− yi(n−1)/2

‖2}, yk < yi(n−1)/2
,

E{‖(x+ θk)− yk‖2}, yi(n−1)/2
≤ yk ≤ yi(n+1)/2

,

E{‖(x+ θk)− yi(n+1)/2
‖2}, yk > yi(n+1)/2

.

Selecting yk = E{x+ θk|θk, zk} = zk + θk minimizes E{‖(x+ θk)− yk‖2}. This results in a strictly smaller cost than using

a truthful strategy since yi(n−1)/2
≤ zk + θk ≤ yi(n+1)/2

occurs with a positive probability. This concludes the proof.

Although truth-telling is no longer an equilibrium, we can characterize another equilibrium that can reveal some information

about the to-be-estimated-variable.

REMARK 4.1: Notice that, without loss of generality, we can consider an odd number of measurements because we can

always transform an even number of measurements into an odd number by either discarding a measurement randomly or by

introducing a very large or a very small measurement (that always gets discarded).

THEOREM 14: Let n ∈ O. The tuple (g∗i )i∈JnK ∈ Gn defined as g∗i (yi|zi, θi) = δ(yi − (zi + θi)), i ∈ JnK, is an equilibrium

for the median estimator in the presence of noise.

Proof: Following the same line of reasoning as in the proof of Theorem 13, selecting yk = zk + θk is the best response

of each sensor irrespective of the others in both ex ante and ex post senses.

REMARK 4.2: It is interesting to note that reporting yk = zk + θk is a dominant strategy, i.e., it is in the benefit of players

irrespective of other reports (when the players do not form collations). Therefore, even if some sensors are randomly-behaving

or faulty, the rational ones report zk + θk.

REMARK 4.3: The captured equilibrium in Theorem 14 is not unique. This can be observed from the fact that the sensors

can employ any stochastic or deterministic mappings for constructing their messages yk when it is very large or very small,

since the message will be discarded regardless and has no impact on the outcome of the estimation.

PROPOSITION 15: The equilibrium in Theorem 14 results in limm→∞,n=2m+1 E{‖x− φ((yi)i∈JnK)‖2} = 0.

Proof: At the equilibrium, we have yk = zk+θk = x+wk+θk. Therefore, x̂ = φ((x+wi+θi)i∈JnK) = x+φ((wi+θi)i∈JnK).

From [9], we know that limm→∞,n=2m+1 φ((wi + θi)i∈JnK) = 0, a.s. This concludes the proof.

EXAMPLE 1: Consider an estimation problem in which Vxx = 1, Vθiθi = 1, and Vwiwi = 0.1 for all i where Vxx, Vθiθi , and

Vwiwi
are the variances of x, θi, and wi, respectively. When using the median estimator, at the equilibrium in Theorem 14, the

sensors report yi = zi+θi,∀i. The blue curve in Fig. 1 shows the estimation error E{‖x−φ((yi)i∈JnK)‖2} approximated using

10000 random samples. If, for the signals transmitted at this specific equilibrium, we were to use the averaging estimator, the

estimation error would follow the red curve in Fig. 1, which is certainly smaller. This degradation in the performance is the

price of robustness. One way to capitalize on this difference is to lie to the players that the utilized estimator is the median one

but use an averaging policy and, hence, nudge them towards a good behaviour (from the perspective of the estimator) [10].
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Fig. 1. Estimation error variance for median (blue) and mean (red) estimators at the equilibrium captured in Theorem 14.

Note that this is applicable if the players cannot infer the correct mechanism by experimenting, e.g., when the players interact

with a given participatory-sensing scheme very infrequently. ♦

V. CONCLUSIONS

In this paper, the problem of designing participatory-sensing mechanisms is considered. Particularly, it is shown that for a

class of nonlinear estimators, truth telling is an equilibrium of game modelling the interaction between the sensors and the

estimator. Later, it is established, for the case where the sensors collude and form coalitions that are no lager than half of the

total participants, that there is always an estimator, specifically the median estimator, which results in truth telling being an

equilibrium. Future research can focus on dynamic estimation problems.
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