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Abstract

The Kaczmarz algorithm (KA) is a popular method for solving a system of linear equations. In this

note we derive a new exponential convergence result for the KA. The key allowing us to establish the

new result is to rewrite the KA in such a way that its solution path can be interpreted as the output from

a particular dynamical system. The asymptotic stability results of the corresponding dynamical system

can then be leveraged to prove exponential convergence of the KA. The new bound is also compared

to existing bounds.

Index Terms

Kaczmarz algorithm, Stability analysis, Cyclic algorithm.

I. PROBLEM STATEMENT

In this note, we discuss the exponential convergence property of the Kaczmarz algorithm

(KA) [1]. Since its introduction, the KA has been applied in many different fields and many

new developments are reported[2]-[13]. The KA is used to find the solution to the following

system of consistent linear equations

Ax = b, (1)
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where x ∈ Rn denotes the unknown vector, A ∈ Rm×n,m ≥ n, rank(A) = n and b ∈ Rm.

Define the hyperplane Hi as

Hi = {x|aTi x = bi},

where the i-th row of A is denoted by aTi and the i-th element of b is denoted by bi. Geometri-

cally, the KA finds the solution by projecting (or approximately projecting) onto the hyperplanes

cyclically from an initial approximation x0, which reads as

xk+1 = xk + λ
bi(k) − aTi(k)xk

‖ai(k)‖22
ai(k), (2)

where i(k) = mod(k,m) + 1. In the update equation (2), λ is the relaxation parameter, which

satisfies 0 < λ < 2. We use the Matlab convention mod(·, ·) to denote the modulus after division

operation and ‖ · ‖2 to denote the spectral norm of a matrix.

It is well-known that the KA is sometimes rather slow to converge. This is especially true

when several consecutive row vectors of the matrix A are in some sense "close" to each other. In

order to overcome this drawback, the Randomized Karczmarz Algorithm (RKA) algorithm was

introduced in [4] for λ = 1. The key of the RKA is that, instead of performing the hyperplane

projections cyclically in a deterministic order, the projections are performed in a random order.

More specifically, at time k, select a hyperplane Hp to project with probability ‖ap‖22
‖A‖2F

, for p =

1, · · · ,m. Note that ‖·‖F is used to denote the Frobenius norm of a matrix. Intuitively speaking,

the involved randomization is performing a kind of "preconditioning" to the original matrix

equations [6], resulting in a faster exponential convergence rate, as established in [4].

The specific and predefined ordering of the projections in the KA makes it challenging to

obtain a tight bound of the convergence rate of the method. In [16], the authors build up the

convergence rate of the KA by exploiting the Meany inequality [17], which works for the case

λ = 1 in (2). [18], [20] also established convergence rates for the KA, for λ ∈ (0, 2). In

Section III, we will compare these results in more detail.

In this note, we present a different way to characterize the convergence property of the KA

described in (2). The key underlying our approach is that we interpret the solution path of the KA

as the output of a particular dynamical system. By studying the stability property of this related

dynamical system, we then obtain new exponential convergence results for the KA. Related to

this, it is interesting to note that the so-called Integral Quadratic Constraints (IQCs) has recently

August 30, 2018 DRAFT



3

been used in studying the convergence rate of first-order algorithms applied to solve general

convex optimization problems [19].

The note will be organized as follows. In the subsequent section we make use of the sub-

sequence {xjm − x}∞j=0 to enable the derivation of the new exponential convergence result. In

Section III we discuss its connections and differences to existing results. Conclusions and ideas

for future work are provided in Section IV.

II. THE NEW CONVERGENCE RESULT

First, let us introduce the matrix B ∈ Rm×n, for which the i-th row bTi is defined as bi ,
ai

‖ai‖2 , i = 1, · · · ,m. Furthermore, let Pi , bib
T
i for i = 1, 2, · · · ,m and let θk , xk − x for

k ≥ 0. Using this new notation allows us to rewrite (2) according to

θk+1 = (I− λPi(k))θk, (3)

which can be interpreted as a discrete time-varying linear dynamical system. Hence, this relation

inspires us to study the KA by employing the techniques for analyzing the stability properties

of time-varying linear systems, see e.g. [14], [15].

In what follows we will focus on analyzing the convergence rate of the sub-sequence {‖θjm‖2}∞j=0.

Given the fact that i(k) = mod(k,m) + 1, we have

θ(j+1)m =

(
m∏
i=1

(I− λPi)

)
θjm , Mmθjm.

The following theorem provides an upper bound on the spectral norm of Mm.

Theorem 1: Let ρ , ‖Mm‖2 and 0 < λ ≤ 2, then it holds that

ρ2 ≤ ρ1 , 1− λ(2− λ)
(2 + λ2m2)‖B†‖22

, (4)

where B† denotes the pseudo-inverse of the matrix B.

Proof: Let v0 ∈ Rn be a vector satisfying Mmv0 = ρv0, ‖v0‖2 = 1 and let vi = (I −
λPi)vi−1 for i = 1, · · · ,m. It follows that vm = Mmv0 and ‖vm‖2 = ρ2.

Notice that P2
i = Pi, so we have

(I− λPi)
2 = I− (2λ− λ2)Pi,
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for i = 1, · · · ,m. Hence it holds that

‖vi‖2 = vTi−1(I− λPi)
2vi−1

= vTi−1(I− λ(2− λ)Pi)vi−1

= ‖vi−1‖2 − λ(2− λ)‖Pivi−1‖2,

which in turn implies that

λ(2− λ)
m∑
i=1

‖Pivi−1‖2 = ‖v0‖2 − ‖vm‖2 = 1− ρ2. (5)

Also, for any i ∈ {1, · · · ,m}, we have that

‖vi − v0‖

=

∥∥∥∥∥
i∑

k=1

(vk − vk−1)

∥∥∥∥∥ = λ

∥∥∥∥∥
i∑

k=1

Pkvk−1

∥∥∥∥∥
≤ λ

i∑
k=1

‖Pkvk−1‖ ≤ λ
√
i

√√√√ i∑
k=1

‖Pkvk−1‖2

≤
√
λi

√√√√λ
m∑
k=1

‖Pkvk−1‖2

Together with (5), we get

‖vi − v0‖2 ≤
λi

2− λ(1− ρ
2). (6)

Meanwhile, we have that

λvT0 B
TBv0

= λ

m∑
k=1

vT0 Pkv0 = λ

m∑
k=1

‖Pkv0‖2

= λ
m∑
k=1

‖Pk[vk−1 + (v0 − vk−1)]‖2

≤ 2λ
m∑
k=1

‖Pkvk−1‖2 + 2λ
m∑
k=1

‖Pk(vk−1 − v0)‖2

≤ 2λ
m∑
k=1

‖Pkvk−1‖2 + 2λ
m∑
k=1

‖vk−1 − v0‖2. (7)
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Together with (5) and (6), we have that

λvT0 B
TBv0 ≤

2(1− ρ2)
2− λ + 2λ

m∑
k=1

λ(k − 1)

2− λ (1− ρ2)

or equivalently

λvT0 B
TBv0 ≤

1− ρ2
2− λ

(
2 + λ2m(m− 1)

)
, (8)

hence it follows that

ρ2 ≤ 1− λ(2− λ)vT0 BTBv0

2 + λ2m(m− 1)
.

Since vT0 B
TBv0 ≥ 1

‖B†‖22
, we conclude that

ρ2 ≤ 1− λ(2− λ)
(2 + λ2m(m− 1)) ‖B†‖22

. (9)

Finally, notice that m(m − 1) ≤ m2 holds for any natural number m, which concludes the

proof.

Remark 1: Notice that in the proof of Theorem 1, (7) is the main approximation step , and

a better approximation here will lead to an improvement of the bound.

The following corollary characterizes the convergence of the KA under λ = 1, which will be

used in the subsequent section to enable comparison to the results given in [16], [17]. We omit

the proof since it is a direct implication of Theorem 1.

Corollary 1: For the KA with λ = 1 in (2), if m ≥ n ≥ 2, we have that

ρ2 ≤ 1− 1

2m2‖B†‖22
. (10)

Next, we will derive an improvement over the bound (4), enabled by partitioning the matrix

A into non-overlapping sub-matrices. Let q = dm
n
e+1, where dxe denotes the smallest number

which is greater or equal to x. Define the following sets as Ti = {(i − 1)n + 1, · · · , in}, for

i = 1, · · · , q − 1 and Tq = {(q − 1)n + 1, · · · ,m}. Further, for i = 1, · · · , q, define Bi as the

sub-matrix of B with the rows indexed by the set Ti, and Ni =
∏

j∈Ti(I− λPj).

Corollary 2: Based on the previous definitions, and further assume that all the sub-matrices

Bi for for i = 1, · · · , q are of rank n, then we have that

ρ2 ≤ ρ2 ,
q∏
i=1

(
1− λ(2− λ)

(2 + λ2n(n− 1)) ‖B†i‖22

)
(11)

August 30, 2018 DRAFT



6

Proof: Notice that since

Mm = NqNq−1 · · ·N2N1,

we have that

ρ2 = ‖Mm‖22 ≤
q∏
i=1

‖Ni‖22. (12)

For each Ni, the spectral norm can be bounded analogously to what was done in Theorem 1,

resulting in

‖Ni‖22 ≤ 1− λ(2− λ)
(2 + λ2n(n− 1)) ‖B†i‖22

.

Finally, inserting this inequality into (12) concludes the proof.

III. DISCUSSION AND NUMERICAL ILLUSTRATION

In Section III-A and III-B we compare our new bound with the bounds provided by the Meany

inequality [16], [17] and the RKA, respectively. In Section III-B we also provide a numerical

illustration. Section III-C is devoted to a comparison with the bound provided in [18], and finally

Section III-D compares with the result given by [20].

A. Comparison with the bound given by Meany inequality

In the following, we assume that m = n and λ = 1. Denote the singular values of B as

σ1 ≥ σ2 · · · ≥ σn, then the bound in [16], [17] given by the Meany inequality can be written

as ρ2 ≤ 1−∏n
i=1 σ

2
i , and the bound given in (10) can be written as ρ2 ≤ 1− σ2

n

2n2 . This implies

that when

σ2
n

2n2
≥

n∏
i=1

σ2
i i.e.

n−1∏
i=1

σ2
i ≤

1

2n2
, (13)

holds, the bound in (10) is tighter. In the following lemma, we derive a sufficient condition,

under which the inequality (13) holds.

Lemma 1: If σ2
n−1 ≤ (n−2)n−2

2nn holds, the inequality in (13) is satisfied.

Proof: Notice that
n−1∏
i=1

σ2
i =

(
n−2∏
i=1

σ2
i

)
σ2
n−1 ≤

(∑n−2
i=1 σ

2
i

n− 2

)n−2

σ2
n−1

≤
(

n

n− 2

)n−2
σ2
n−1. (14)
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The inequality (14) holds since
n−2∑
i=1

σ2
i ≤

n∑
i=1

σ2
i = ‖B‖2F = n.

Hence, if (
n

n− 2

)n−2
σ2
n−1 ≤

1

2n2

holds, or equivalently if

σ2
n−1 ≤

(n− 2)n−2

2nn

holds, then (13) holds, which concludes the proof.

Remark 2: Notice that the right hand side of the inequality in Lemma 1 is in the order of 1
n2

for large n. Another difference is that the bound provided by Theorem 1 depends explicitly on

the size of matrix, while the bound provided by the Meany inequality does not.

B. Comparison with the bound given by the RKA

Let us now compare our new results to the results available for the RKA. Note that in this

case, we set λ = 1. If {θjm}∞j=0 denotes the sequence generated by the RKA, then it holds

that [4]

E‖θjm‖2 ≤
(
1− 1

‖A‖2F‖A†‖22

)jm
‖θ0‖2, (15)

for j ≥ 1, where E denotes the expectation operator with respect to the random operations up

to index jm.

To compare (15) and (10), we make the assumption that A is a matrix with each row

normalized, i.e. A = B, for simplicity. It follows that ‖B‖2F = m ≤ m2, and

1− 1

2m2‖B†‖22
≥ 1− 1

‖B‖2F‖B†‖22
. (16)

Furthermore, since ‖B‖2F‖B†‖22 ≥ 1, we have that

1− 1

‖B‖2F‖B†‖22
≥
(
1− 1

‖B‖2F‖B†‖22

)m
, (17)

and combining (16) and (17), results in

1− 1

2m2‖B†‖22
≥
(
1− 1

‖B‖2F‖B†‖22

)m
.
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The above inequality implies that the bound given by (10) is more conservative than the one

given by the RKA.

Next, a numerical illustration is implemented to compare the bounds given by (10), (11) and

(15). The setup is as follows. Let m = 30 and n = 3, generate A = randn(30, 3) and normalize

each row to obtain B, generate x = randn(3, 1) and compute y = Bx. In the implementation

of the RKA, we run 1 000 realizations with the same initial value x0 to obtain an average

performance result, which is reported in Fig. 1.

From the left panel in Fig. 1, we can see that the bound (15) for characterizing the convergence

of the RKA is closer to the real performance of the RKA, while the bounds given by (10) and

(11) for bounding the convergence of the KA are further away from the real performance of the

KA.

The right panel in Fig. 1 shows a zoomed illustration of the bound given by (10) and (11).

We can observe that the bound given by (11) improves upon (10), which is enabled by the

partitioning of the rows of the matrix.
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Fig. 1. In the left panel, the curves with tags ’KA’ and ’RKA’ illustrate the real performance of the KA and the RKA. The

curves with tags ’KABD1’, ’KABD2’ and ’RKABD’ illustrate the bounds given by (10), (11) and (15), respectively. In the right

panel, a zoomed illustration for the curves ’KABD1’ and ’KABD2’ in the left panel is given.
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C. Comparison with the bound given in [18]

To compare the result given in [18], we assume that A = B, and that they are square and

invertible matrices. Under these assumptions, the involved quantity µ in Corollary 4.2 of [18] can

be approximated by 1√
m‖B†‖2 given the results in Theorem 2.2 of [18]. Hence, the convergence

rate of the KA given by Theorem 3.1 in [18] can be written as

ρ2 ≤ 1− λ(2− λ)
m [1 + (m− 1)λ2] ‖B†‖22

, (18)

where λ ∈ (0, 2). The result of the current work reads as

ρ2 ≤ 1− λ(2− λ)
(2 + λ2m2)‖B†‖22

, (19)

where λ ∈ (0, 2). A closer look at the two bounds (18) and (19) reveals the following:

1) The optimal choice for the right hand side (RHS) of (18) is λ =
√
4m−3−1
2(m−1) , resulting in

ρ2 ≤ 1− 2
m(
√
4m−3+1)‖B†‖22

. When m is large, ρ2 decreases with the speed 1
m1.5‖B†‖22

.

2) When λ =
√
2
m

(a suboptimal choice for simplicity), (19) gives that ρ2 ≤ 1 −
√
2(2−

√
2

m
)

4m‖B†‖22
.

When m is large, ρ2 decreases in the speed of 1
m‖B†‖22

, faster than the one in [18]. A

comparison of both bounds when the optimal λ are chosen is given in Fig. (2).

3) When λ is chosen to be 1, both bounds decrease in the order of m−2.

D. Comparison with the bound given in [20]

We will once again assume that each row of A is normalized, i.e. B = A. In [20] the authors

makes use of a subspace correction method in studying the convergence speed of the KA. They

show that (see eq. (31) in [20]), when the best relaxation parameter λ is chosen, ρ2 can be

bounded from above according to

ρ2 ≤ 1− 1

blog2(2m)c‖B‖22‖B†‖22
. (20)

As we discussed in the previous section, when a near-optimal λ (i.e. λ is chosen as
√
2
m

) is used,

the upper bound implied by our analysis gives that

ρ2 ≤ 1−
√
2(2−

√
2
m
)

4m‖B†‖22
. (21)

By assumption we have ‖B‖2F = m, which implies that

‖B‖22 = ‖BTB‖2 ≥
tr(BTB)

n
=
‖B‖2F
n

=
m

n
. (22)
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Fig. 2. The bounds (18) and (19) (using the optimal parameters) are plotted for the given ‖B†‖2 = 0.5 and m ranging

from 10 to 1 000. The result shows that the bound proposed in this work is always lower than the one given in [18] under the

experimental settings.

Hence, the bound obtained by [20] will decrease with a speed of 1
m log2(m)‖B†‖22

as m increases,

while the present work gives the decreasing speed of 1
m‖B†‖22

.

IV. SUMMARY

By studying the stability property of a time-varying dynamical system that is related to the

KA we have been able to establish some new results concerning the convergence speed of the

algorithm. The new results are also compared to several related, previously available results.

Let us end the discussion by noting that the following two ideas can possibly lead to further

improvements of the results. One potential idea is trying to improve the inequality in (7), since

this part introduces much of the approximations in establishing the main result of the note;

another idea is to try to find an optimal partitioning of the rows of the matrix A, such that the

right hand side of (11) is minimized.
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