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How Many Beamforming Vectors Generate the

Same Beampattern?
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Abstract

In this letter, we address the fundamental question of how many beamforming vectors exist which

generate the same beampattern? The question is relevant to many fields such as, for example, array

processing, radar, wireless communications, data compression, dimensionality reduction, and biomedical

engineering. The desired property of having the same beampattern for different columns of a beamspace

transformation matrix (beamforming vectors) often plays akey importance in practical applications. The

result is that at most2M−1− 1 beamforming vectors with the same beampattern can be generated from

any given beamforming vector. HereM is the dimension of the beamforming vector. At the constructive

side, the answer to this question allows for computationally efficient techniques for the beamspace

transformation design. Indeed, one can start with a single beamforming vector, which gives a desired

beampattern, and generate a number of other beamforming vectors, which give absolutely the same

beampattern, in a computationally efficient way. We call theinitial beamforming vector as the mother

beamforming vector. One possible procedure for generatingall possible new beamforming vectors with

the same beampattern from the mother beamforming vector is proposed. The application of the proposed

analysis to the transmit beamspace design in multiple-input multiple-output radar is also given.

Index Terms

Array processing, beamforming, beampattern design, dimensionality reduction, multiple-input multiple-

output (MIMO) radar.
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I. INTRODUCTION

Beamspace transformation [1], [2] and beamforming [3] techniques are the key approaches,

among others, in array signal processing [4]-[6], radar [7], multiple-input multiple-output (MIMO)

radar [8]-[21], wireless communications [22]-[24], data compression and dimensionality reduc-

tion [25]-[27], biomedical engineering [28], etc.

In the traditional applications in array processing and dimensionality reduction, it is often

desirable to reduce the high dimensional space into a lower one by means of the beamspace

transformations. In more recent applications to MIMO radar, it has been required not only

to design a lower dimensional transmit beamspace but also totransmit a number of orthogonal

waveforms from a larger number of transmit antenna elementswhile achieving transmit coherent

processing gain. While designing such a transmit beamspace, certain properties have to be

satisfied such as a uniform power distribution for differenttransmit waveforms in the desired

sector where the targets are likely to be located [19]. The latter enables, for example, to enforce

at the transmitter the very useful rotational invariance property [29], [30] which can significantly

simplify and improve, for example, the direction-of-arrival (DOA) estimation techniques used at

the receive antenna array.

From a practical point of view, generating a transmit beamspace that satisfies a number of

properties is very desirable. Thus, it is of interest to lookfor simple design techniques allowing to

start with a single beamforming vector, which we call the mother beamforming vector by analogy

with mother wavelet [31] in wavelet analysis, and generate anumber of other beamforming

vectors that all have the same beampattern as the mother beamforming vector. Beamforming

vectors that possibly satisfy some additional practicallyimportant properties can then be selected

from a set of so generated beamforming vectors. In wavelets,self-similarity is an important

property where basis functions are all obtained from a single prototype mother wavelet using

scaling and translation. It is interesting that a similar property exists also in the beamspace design

problem. To the best of the authors knowledge, this propertyhas not been known or exploited

before.

The contributions of this letter are as following.

• We first address the fundamental question of how many beamforming vectors which generate

the same beampattern as the mother beamforming vector exist.

March 2, 2018 DRAFT



3

• At the constructive side, we develop a computationally efficient technique for generating

all such beamforming vectors.

• The application of the proposed analysis to the transmit beamspace design in MIMO radar

is also given.

The rest of the letter is organized as follows. The main results on the number of beamforming

vectors, which have the same beampattern as the mother beamforming vector, and on the

procedure of constructing such beamforming vectors are given in Section II. Section III is devoted

to the application of the proposed analysis to the transmit beamspace design in MIMO radar,

which aims at demonstrating the practical usefulness of theresults obtained in Section II. The

letter is completed with conclusion.

II. M AIN RESULTS

Let us consider a uniform linear array (ULA) withM antenna elements. The steering vector

of the array towards directionθ is denoted asa(θ). The transmit array beampattern can be

expressed as

p(θ) = ‖wH
d(θ)‖2 (1)

wherew is a beamforming vector,d(θ) = a
∗(θ), and ‖ · ‖ and (·)∗ stand for the Euclidian

norm of a vector and conjugation, respectively. Let the beampattern corresponding to a given

beamforming vectorw, referred to as the mother beamforming vector, satisfies certain shape

design requirements, but it does not satisfy other practically important requirements. Such a

requirement is, for example, a uniform power distribution across the antenna elements. The

question then arises about existence of other distinct beamforming vectors which generate the

same exact beampattern as the mother beamforming vectorw and which in addition satisfy

other possible design requirements. The following theoremstates the total number of distinct

beamforming vectors with the same exact beampattern as the mother beamforming vectorw.

Theorem 1 : For an arbitrary transmit beamforming vectorw that corresponds to a ULA of

sizeM , there are at most2M−1 − 1 other different beamforming vectors which have the same

exact beampattern asw. A constructive solution for obtaining all possible beamforming vectors

is given in the proof.
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Proof : Let w andv be two beamforming vectors with the exact same transmit beampattern.

The latter implies that

w
H
D(θ)w = v

H
D(θ)v, ∀θ ∈ [−π/2, π/2] (2)

where the matrixD(θ) is defined asD(θ) , d(θ)dH(θ). It can be easily verified that the matrix

D(θ) has Toeplitz structure.

In the rest of this proof, we will refer to the descending diagonals of a matrix from left to right

as the first, second, and up to(2M +1)th off-diagonal, respectively. For the notation simplicity,

let us define the following vector

z(θ),

(

ej2π(M−1)d sin(θ), · · · , ej2π(2)d sin(θ), ej2πd sin(θ), 1, e−j2πd sin(θ), · · · , e−j2πd(M−1) sin(θ)

)T

(3)

whoseith element is equal toith off-diagonal elements ofD(θ). Moreover, we will express the

Toeplitz matrixD(θ) with the diagonal and off-diagonal elements defined inz(θ) asT(z(θ))

whereT(·) is an operator which generates a Toeplitz matrix.

Since equation (2) holds valid in all directions, the following set of equations can be resulted

by fixing θ to an arbitrary set of angles dented asθk, k = 1, · · · , 2M + 1

w
H
D(θk)w = v

H
D(θk)v, k = 1, · · · , 2M + 1. (4)

By linearly combining the set of equations in (4) using an arbitrary set of coefficients denoted

as ck, k = 1, · · · , 2M + 1, the following equality can be concluded

w
H

( 2M+1∑

k=1

ckD(θk)

)

w = v
H

( 2M+1∑

k=1

ckD(θk)

)

v (5)

In what follows, we will show that by the proper selection of the coefficientsck and angles

θk, it is possible to make all the off-diagonal and diagonal elements of the new Toeplitz matrix
∑2M+1

k=1 ckD(θk) equal to zero except for a desired one.

First, note that the new Toeplitz matrix
∑2M+1

k=1 ckD(θk) can be expressed asT(
∑2M+1

k=1 ckz(θk)).

Based on the latter observation, we conclude that all the off-diagonal elements of the matrix
∑2M+1

k=1 ckD(θk) are equal to zero except forjth off-diagonal element if and only if all the

elements of the vector
∑2M+1

k=1 ckz(θk) are equal to zero except for thejth one. Therefore, let

us consider the following set of linear equations
[

z(θ1) z(θ2) · · · z(θ2M+1)

]

c = ej . (6)
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wherec , [c1, · · · , c2M+1] and ej is the unit vector whosejth element is equal to one. Since

the newly defined matrixZ , [z(θ1) z(θ2) · · · z(θ2M+1)] has the Vandermonde structure, it is

invertible under the condition that the anglesθk, k = 1, · · · , 2M + 1 are chosen to be distinct.

In what follows, it is assumed that

θk = (k − 1)
π

2M + 1
, k = 1, · · · , 2M + 1 (7)

and, thus,Z is invertible. Therefore, by selecting the coefficient vector c in (6) asc = Z
−1
ej , j =

1, · · · , 2M + 1, the vector
∑K

k=1 ckz(θk) can be set equal toej . It implies that in terms of

the aforementioned selection of the coefficient vectorc and anglesθk, k = 1, · · · , 2M + 1,

it is possible to make all the off-diagonal and diagonal elements of the new Toeplitz matrix
∑K

k=1 ckD(θk) equal to zero except for thejth one. Using (5) and selectingc = Z
−1
ej , j =

1, · · · , 2M + 1, it can be resulted that
∑2M+1

k=1 ckD(θk) = T(ej) which, in turn, implies that

w
H
T(ej)w = v

H
T(ej)v, j = 1, · · · , 2M + 1. (8)

The set of equations in (8) can equivalently be expressed as follows

|w1|
2 + |w2|

2 + · · ·+ |wM |2 = |v1|
2 + |v2|

2 + · · ·+ |vM |2 (9)

w1w
∗

2 + w2w
∗

3 + · · ·+ wM−1w
∗

M = v1v
∗

2 + v2v
∗

3 + · · ·+ vM−1v
∗

M (10)

w1w
∗

3 + w2w
∗

4 + · · ·+ wM−2w
∗

M = v1v
∗

3 + v2v
∗

4 + · · ·+ vM−2v
∗

M (11)

...
...

...

w1w
∗

M−1 + w2w
∗

M = v1v
∗

M−1 + v2v
∗

M (12)

w1w
∗

M = v1v
∗

M . (13)

Since any arbitrary Toeplitz matrix can be constructed by linearly combining the matrices

T(ej), j = 1, · · · , 2M + 1, equivalently, it can be concluded that by linearly combining the

equations (9)–(13), the equation (2) can be resulted. Thus,the beamforming vectorsw andv

have the same transmit beampattern if and only if the equations (9)–(13) are satisfied.

For a mother beamforming vectorw, we can construct the set of all possible beamforming

vectors that have the same beampattern asw through solving the equations (9)–(13). For this
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goal, let us define the following two functions of a single variable x

f(x),

First Multiplicative Term
︷ ︸︸ ︷

(w1 + w2x+ w3x
2 + · · ·+ wMxM−1)

Second Multiplicative Term
︷ ︸︸ ︷

(w∗

1 + w∗

2x
−1 + w∗

3x
−2 + · · ·+ w∗

Mx−M+1) (14)

g(x),(v1 + v2x+ v3x
2 + · · ·+ vMxM−1)(v∗1 + v∗2x

−1 + v∗3x
−2 + · · ·+ v∗Mx−M+1). (15)

By expanding the multiplicative terms in the definitions off(x) andg(x), it can be verified

that the equations (9)–(13) hold true if and only iff(x) is equal tog(x). Let x0 be a non-zero

root of the first multiplicative term in the definition off(x), i.e., w1 + w2x + w3x
2 + · · · +

wMxM−1. Then it is simple to verify that1/x∗

o is also a root of the second multiplicative term

w∗

1 +w∗

2x
−1 +w∗

3x
−2 + · · ·+w∗

Mx−M+1 of f(x). One implication of this observation is that the

inverse conjugate of every root off(x) is also a root off(x) and, therefore, the roots off(x)

can be denoted asxi and1/x∗

i , i = 1, · · · ,M − 1 andf(x) can be decomposed as

f(x)=|wM |2
(

w1

wM

+
w2

wM

x+
w3

wM

x2 + · · ·+ xM−1

)(
w∗

1

w∗

M

+
w∗

2

w∗

M

x−1 +
w∗

3

w∗

M

+ · · ·+ x−M+1

)

=|wM |2
M−1∏

i=1

(x− xi)×

M−1∏

i=1

(x−1 − x∗

i ). (16)

Furthermore, it is easy to verify that the product(x−xi)(x
−1−x∗

i ) can be equivalently expressed

as

(x− xi)(x
−1 − x∗

i ) = |xi|
2

(

x−
1

x∗

i

)(

x−1 −
1

xi

)

. (17)

Note that the product terms
∏M−1

i=1 (x− ai) and
∏M−1

i=1 (x−1 − a∗i ) that appear in (16) preserve

the structure of the first and second multiplicative terms inthe definition off(x) ( see (14))

for any arbitraryai, i = 1, · · · ,M − 1. Based on these observations,f(x) can be decomposed

as the multiplication of two terms in the form ofv1 + v2x + v3x
2 + · · · + vMxM−1 and v∗1 +

v∗2x
−1 + v∗3x

−2 + · · · + v∗Mx−M+1 in 2M−1 different ways depending on whetherxi (or 1/x∗

i ,)

i = 1, · · · ,M − 1 is the root of the first polynomial. The corresponding coefficients of the first

multiplicative term in each decomposition correspond to a new beamforming vector dented as

v which has the same exact beampattern asw. This completes the proof. �

III. A PPLICATION TO TRANSMIT BEAMSPACE DESIGN IN MIMO RADAR

Consider a MIMO radar with transmit ULA ofM = 10 antennas spaced half a wavelength

apart. The total transmit power is normalized toPt = M . Two mother transmit beamforming
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Fig. 1. Transmit beampattern using spheroidal sequences and convex optimization based designs.

weight vectors are designed to focus the transmit energy within the sectorΘ = [−10◦, 10◦].

The first mother beamforming weight vector is designed usingspheroidal sequences [2], [19].

Specifically, it is computed aswSPH =
√

Pt/2(u1 +u2), whereu1 andu2 are the two principle

eigenvectors of the matrixA =
∫

Θ
a(θ)aH(θ)dθ. The second mother beamforming weight vector

is designed using convex optimization to control the sidelobe levels. In particular, it is obtained

by solving the following convex optimization problem [19]

min
w

max
i

‖wH
a(θi)− e−jφi‖, θi ∈ Θ, i = 1, . . . , I (18)

subject to ‖wH
a(θk)‖ ≤ δ, θk ∈ Θ̄, k = 1, . . . , K (19)

whereΘ̄ combines a continuum of all out-of-sector directions, i.e., directions lying outside the

sector-of-interestΘ; φi, i = 1, . . . , I is the desired transmit phase profile of user choice; and

δ > 0 is the parameter of the user choice that characterizes the worst acceptable level of transmit

power radiation in the out-of-sector region̄Θ. The phaseφi = 2π sin(θi) and the parameter

δ = 0.1 are chosen, i.e, the sidelobe levels are kept below20 log δ = −20 dB. The mother

beamforming weight vector obtained by solving the problem (18)–(19) is referred to hereafter

aswCVX. The transmit beampatterns associated with mother beamforming weight vectorswSPH

andwCVX are shown as the dotted and solid curves in Fig. 1, respectively.
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Fig. 2. Transmit power distribution across the transmit array elements for spheroidal sequences based transmit beamforming

design.

The mother weight vectorwSPH is used to generate a population of2M−1 = 512 weight

vectors (includingwSPH) of dimensionM × 1. To implement a MIMO radar system with four

orthogonal transmit waveforms, the four beamforming weight vectors among the population that

achieve the best transmit power distribution across the transmit array elements are chosen. The

mother weight vectorwSPH and the four chosen weight vectors denoted asw
(j)
SPH, j = 1, . . . , 4

are given in Table 1. Since the sectorΘ is symmetric around 0, the mother beamforming vectors

are real-valied. The four chosen vectors are scaled such that
∑

j ‖w
(j)
SPH‖

2 = Pt.

It is worth noting that each of the four chosen vectors has thesame beampattern as the mother

beamforming vector except for the magnitude scaling factorof 1/4. Note that the beampattern

magnitude in the mainlobe as well as in the sidelobe regions is scaled by the same scaling factor,

i.e., the relative attenuation of the sidelobes with respect to the mainlobe remains unchanged.

The transmit power distribution across the transmit array elements for the mother transmit

beamforming weight vector operated in the SIMO radar mode and the four chosen weight vectors

operated in the MIMO radar mode are shown in Fig. 2. It can be seen from the figure that the

March 2, 2018 DRAFT
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Table 1: Spheroidal sequences based mother transmit beamforming vector and a subset of four

vectors chosen from the2M−1 population.

wSPH w
(1)
SPH w

(2)
SPH w

(3)
SPH w

(4)
SPH

0.5178 0.2589 0.2740 - 0.0000i 0.6061 - 0.0000i 0.6414

0.3408 0.1704 0.1980 + 0.0255i 0.6490 - 0.0563i 0.7281

0.0472 0.0236 0.0251 + 0.0475i 0.6791 - 0.1247i 0.7415

-0.3263 -0.1632 -0.2122 + 0.0311i 0.6797 - 0.1491i 0.6770

-0.7253 -0.3627 -0.4458 - 0.0317i 0.6098 - 0.1087i 0.5437

-1.0873 -0.5437 -0.6098 - 0.1087i 0.4458 - 0.0317i 0.3627

-1.3540 -0.6770 -0.6797 - 0.1491i 0.2122 + 0.0311i 0.1632

-1.4830 -0.7415 -0.6791 - 0.1247i -0.0251 + 0.0475i -0.0236

-1.4562 -0.7281 -0.6490 - 0.0563i -0.1980 + 0.0255i -0.1704

-1.2828 -0.6414 -0.6061 - 0.0000i -0.2740 + 0.0000i -0.2589

mother beamforming weight vector has very poor transmit power distribution. For example,

the power radiated by the third transmit array element is over 25 dB less than the average

transmit power per transmit array element. On the other hand, the four chosen beamforming

vectors exhibit transmit power distribution that is almostuniform, which is desirable in practice.

Similarly, the mother weight vectorwCVX is used to generate a population of2M−1 = 512

beamforming vectors (includingwCVX) which have the exact same beampattern. The four beam-

forming weight vectors among the population that achieve the best transmit power distribution

across the transmit array elements are chosen. The mother weight vectorwSPH and the four

chosen weight vectors denoted asw
(j)
CVX, j = 1, . . . , 4 are given in Table 2. The transmit power

distributions across the transmit array elements for the mother weight vector and the four chosen

weight vectors are shown in Fig. 3. It can be seen from the figure that the four chosen vectors

yield much better transmit power distribution as compared to the mother weight vector.
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Fig. 3. Transmit power distribution across the transmit array elements for convex optimization based transmit beamforming

design.

Table 2: Convex optimization based mother transmit beamforming vector and a subset of four

vectors chosen from the2M−1 population.

wCVX w
(1)
CVX w

(2)
CVX w

(3)
CVX w

(4)
CVX

-0.1702 0.0011 0.0005 0.5412 0.2438

0.8093 -0.0661 -0.0303 0.7829 0.0930

1.4003 0.2481 0.1432 0.9311 -0.1178

1.8485 0.6505 0.1931 0.7435 -0.6407

1.6711 0.8511 0.0333 0.3386 -0.8910

0.9506 0.8910 -0.3386 -0.0333 -0.8511

0.1437 0.6407 -0.7435 -0.1931 -0.6505

-0.3186 0.1178 -0.9311 -0.1432 -0.2481

-0.3459 -0.0930 -0.7829 0.0303 0.0661

0.0063 -0.2438 -0.5412 -0.0005 -0.0011
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IV. CONCLUSION

The important question regarding the existence of other beamforming vectors whose transmit

beampatterns are the exact same as the transmit beampatternof a given beamforming vector

has been addressed. It has been proven that at most2M−1 − 1 other beamforming vectors with

the same beampattern can be generated from any given beamforming vector. The method for

constructing the set of all possible beamforming vectors from a given mother beamforming

vector has been also developed. Moreover, it has been shown how this result can be utilized in

the actively developing field of transmit beamspace design for MIMO radar systems, where it is

desirable to have different transmit waveforms to be radiated with the same transmit beampattern.
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