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Abstract—This paper maximizes the achievable throughput
of a relay-assisted wirelessly powered communications system,
where an energy constrained source, helped by an energy
constrained relay and both powered by a dedicated power beacon
(PB), communicates with a destination. Considering the time
splitting approach, the source and relay first harvest energy
from the PB, which is equipped with multiple antennas, and
then transmits information to the destination. Simple closed-form
expressions are derived for the optimal PB energy beamforming
vector and time split for energy harvesting and information
transmission. Numerical results and simulations demonstrate the
superior performance compared with some intuitive benchmark
beamforming scheme. Also, it is found that placing the relayat
the middle of the source-destination path is no longer optimal.

I. I NTRODUCTION

Gigabit wireless access will be a reality in fifth generation
(5G) wireless systems, with a series of breakthroughs, such
as massive multiple-input and multiple-output (MIMO), full-
duplex communication and small cell architectures, which
in turn, has fueled a number of emerging wireless services
such as mobile gaming, mobile TV and mobile Internet.
With the proliferation of smartphones and tablets, one of
the most critical issues affecting the user experience is the
limited operation lifetime of mobile devices due to finite
battery capacity. Motivated by this, radio-frequency (RF)based
energy harvesting technique has received substantial research
interests in recent years [1], [2]. Empowered with the RF
energy harvesting capability, it is possible to virtually provide
perpetual energy supply to mobile devices, eliminating the
need to plug into the power grid for battery recharging.

RF energy harvesting, combined with information transfer,
has resulted in a new emerging topic, namely, simultaneous
wireless information and power transfer (SWIPT), which has
attracted significant attention from academia and recently
from industry. Thus far, various aspects of SWIPT systems
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have been investigated, including information theoretical limits
[3], [4], practical architectures [5]–[7], effect of imperfect
channel state information [8], OFDM-based SWIPT systems
[9], [10] and relay-assisted SWIPT systems [11]–[17]. It is
worth pointing out here that all these prior works assume
that the mobile devices harvest energy from ambient RF
signals. However, even if this may be viable for low power
devices such as sensors, it is in general infeasible to power
larger devices such as smartphones, tablets and laptops [18].
Responding to this key limitation, the authors in [19] proposed
a novel network architecture, where cellular base stationsare
underlaid by dedicated power beacons (PB), which can be
used to supply energy to mobile devices through microwave
power transfer. Since the PBs do not require any backhaul link,
the associated cost of PB deployment is much lower, hence,
dense deployment of PBs to ensure network coverage for a
wide range of mobile devices is feasible.

In this paper, we consider a dual-hop decode-and-forward
(DF) relaying system, where both the source and relay are
powered by the dedicated PB. To improve the energy transfer
efficiency, the multiple antenna enabled PB performs energy
beamforming. It is assumed that wireless power transfer is
performed over the same frequency as information transfer,
and the time-switching protocol [5] is adopted. As such,
the single antenna at the source and relay switches between
two hardware chains, one for energy harvesting and one
for information transmission/reception. Therefore, the entire
communication block consists of two different phases, i.e.,
energy harvesting phase, where the source and relay harvest
the energy from the PB, and information transfer phase, where
the relay assists the information transmission between the
source and destination.

The main contribution of this paper is the derivation of
simple closed-form expressions for the optimal time split
between the energy harvesting and information transfer phase,
as well as the optimal energy beamforming vectors at the
PB, which maximize the system’s throughput. Simulation
results demonstrate that the optimal solution substantially
outperforms the intuitive benchmark beamformer. In addition,
it is revealed that placing the relay in the middle of the
source and destination path is no longer optimal, instead, the
distances to the PB should also be taken into consideration
when optimizing the relay position.

Notations: (·)∗ denotes the complex conjugate,(·)T de-
notes the matrix transpose, and(·)† denotes the Hermitian
transpose.I is the identity matrix of appropriate size.ΠX =
X(X†

X)−1
X

† is the orthogonal projection onto the column
space ofX, andΠ⊥

X
= I − ΠX is the orthogonal projection

onto the orthogonal complement of the column space ofX.
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II. SYSTEM MODEL

We consider a communication system where the source S
communicates with destination D with the assistance of the
relay R, as depicted in Fig. 3. We assume that both S and R are
energy constrained, hence rely on the external energy charging
via wireless power transfer from a dedicated PB. All three
communication nodes are equipped with a single antenna,
while the PB is equipped withN antennas. Full channel state
information (CSI) of the PB and source and relay links is
assumed at the PB. In practice, the channel can be estimated by
overhearing the pilot send by the source and relay. In addition,
the channel magnitudes of the two hop information links are
assumed to be known at the PB, which, for instance, could be
obtained through feedback from the relay.

PB

DRS

h1

f1 f2

h2

Fig. 1: System model

The entire communication consists of two different phases,
namely, energy harvesting and information transmission
phase. Assuming a block time ofT , during the first phase
of durationτT , where0 < τ < 1, S and R harvest energy
from the PB. The remaining time of duration(1 − τ)T is
equally partitioned into two parts, during the first half period,
S transmits information to R and during the second half, R
forwards the information to D.

During the energy harvesting phase, the received signal at
S and R can be expressed, respectively, as

yes =

√

Pd−α
1 h

T
1 xe + ns andyer =

√

Pd−α
2 h

T
2 xe + nr,

whereP is the transmit power at the PB,d1 andd2 denote
the distances between PB and S, PB and R, respectively.
Furthermore,α is the path loss exponent,h1 andh2 are the
channel vectors of sizeN×1, xe is anN×1 vector satisfying
E

{

x
†
exe

}

= 1, andns andnr are the zero-mean additive white
Gaussian noise (AWGN) samples with varianceN0.

Since the PB is equipped with multiple antennas, energy
beamforming could be applied to improve the efficiency of
energy transfer, i.e.,xe = wse, wherew is the beamforming
vector with ‖w‖2 = 1, while se is the energy symbol with
unit power. As such, the total received energy at the S and R
at the end of the first phase can be expressed as

Es = η|wT
h1|2PτTd−α

1 , (1)

and
Er = η|wT

h2|2PτTd−α
2 , (2)

respectively, where0 < η < 1 is the energy conversion
efficiency.

In the first half of the second phase, S transmits information
to R using the energy harvested in the first phase. Hence, the
received signalyr at R is given by

yr =

√

2Es

(1− τ)Tdα3
f1s0 + nr, (3)

where d3 denotes the distance between S and R,f1 is the
channel coefficient,s0 is the information symbol with unit
energy.

Upon receiving the source signal, the relay first decodes the
source symbol and then forwards it to the destination using
the energy harvested during the first phase,1 as such the signal
at D can be expressed as

yd =

√

2Er

(1− τ)Tdα4
f2sr + nd, (4)

whered4 denotes the distance between R and D,f2 is the
channel coefficient,sr is the relay signal with unit energy,
andnd is a sample of the AWGN with varianceN0.

Therefore, the effective end-to-end SNR at the destination
can be written as

γ =
2τηP

(1 − τ)N0
min

{ |wT
h1|2|f1|2
dα1 d

α
3

,
|wT

h2|2|f2|2
dα2 d

α
4

}

. (5)

III. T HROUGHPUTOPTIMIZATION

The achievable system’s throughput,R, can be expressed
as

R =
(1− τ)

2
× (6)

log2

(

1 +
2τηP

(1− τ)N0
min

{ |wT
h1|2|f1|2
dα1 d

α
3

,
|wT

h2|2|f2|2
dα2 d

α
4

})

.

Hence, the following optimization problem is created:

P1 : max
τ,w

R (7)

s.t. 0 < τ < 1 (8)

‖w‖2 = 1. (9)

At the first glance, the above problem requires the joint
optimization ofτ andw, which is in general difficult. Never-
theless, a close observation reveals that the special structure of
P1 allows for a separate optimization ofτ andw. Specifically,
we present the following key result.

Proposition 1: The original optimization problem,P1, is
equivalent to the following:

P2 : max
τ

(1− τ)

2
log2

(

1 +
2τηP

(1 − τ)N0
zm

)

(10)

s.t. 0 < τ < 1, (11)

wherezm is defined as

zm = min

{ |ŵT
h1|2|f1|2
dα1 d

α
3

,
|ŵT

h2|2|f2|2
dα2 d

α
4

}

, (12)

1Please note, we have ignored the processing power required by the
transmit/receive circuitry at the relay as in [7], [11], [20]. This assumption
is justifiable since the transmission energy is the dominantsource of energy
consumption.



3

with ŵ being the solution of the following optimization
problem:

P3 : max
w

min

{ |wT
h1|2|f1|2
dα1 d

α
3

,
|wT

h2|2|f2|2
dα2 d

α
4

}

(13)

s.t. ‖w‖2 = 1. (14)

Proof: Define functiong(τ, z) as

g(τ, z) =
(1− τ)

2
log2

(

1 +
2τηP

(1− τ)N0
z

)

, (15)

where0 < τ < 1 and z is a positive real number. It is easy
to prove that functiong(τ, z) is an increasing function with
respect toz. Now consider two positive real numbersz1 and
z2 such thatz2 > z1, and letτi being the value ofτ which
maximizesg(τ, zi), i.e.,g(τi, zi) ≥ g(τ, zi) for all τ , i = 1, 2.
Then, it holds that

g(τ2, z2) ≥ g(τ1, z2) ≥ g(τ1, z1), (16)

which indicates that the maximum ofg(τ, z) is achieved at
the point whenz attains its maximum. Therefore, a sequential
optimization of problemsP3 and P2 yields the optimal
solution for the original problemP1.

In the following, we investigate the optimal solutions for
the problemsP2 andP3.

Proposition 2: The optimalτ for the optimization problem
P2 is given by

τ̂ =
eW(β−1

e )+1 − 1

β + eW(β−1

e )+1 − 1
, (17)

whereW (x) is the Lambert W function [21], andβ = 2ηPzm
N0

.
Proof: The proof follows from the results presented in

[15, Appendix A].
We now turn to problemsP3, and we have the following

key result:
Theorem 1: The optimal beamforming vector̂w for the

optimization problemP3 can be expressed as

ŵ = x̄
Π

ĥ∗
2

ĥ
∗
1

‖Π
ĥ2
ĥ1‖

+
√

1− x̄2
Π⊥

ĥ∗
2

ĥ
∗
1

‖Π⊥
ĥ2

ĥ1‖
, (18)

whereĥ1 = |f1|√
dα
1
dα
3

h1, ĥ2 = |f2|√
dα
2
dα
4

h2, a = ‖Π
ĥ2
ĥ1‖, b =

‖Π⊥
ĥ2

ĥ1‖, andc =
|ĥ†

1
Π

ĥ2
ĥ2|

‖Π
ĥ2

ĥ1‖
, and x̄ being

x̄ =











a√
a2+b2

, c ≥ a2+b2

a
,

b√
(a−c)2+b2

, a ≤ c < a2+b2

a
,

1, c < a.

(19)

Proof: According to [22, Corollary 1], the optimal beam-
forming vectorŵ can be expressed as

ŵ = x
Π

ĥ∗
2

ĥ
∗
1

‖Π
ĥ2
ĥ1‖

+
√

1− x2
Π⊥

ĥ∗
2

ĥ
∗
1

‖Π⊥
ĥ2

ĥ1‖
, (20)

where x ∈ [0, 1]. Now let us defineg1(x) , |ŵT
ĥ1| =

ax + b
√
1− x2, and g2(x) , |ŵT

ĥ2| = cx. Then, the
original optimization problemP1 is equivalent to maximize

the functiong(x), i.e.,

max
x

g(x), s.t. 0 ≤ x ≤ 1, (21)

whereg(x) is defined as

g(x) , min (g1(x), g2(x)) = min
(

ax+ b
√

1− x2, cx
)

.

It is easy to show thatg1(x) is a concave function with respect
to x, hence, its maximum can be attained by solvingg′1(x̂) =
0, which givesx̂ = a√

a2+b2
, andg1(x̂) =

√
a2 + b2.
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Fig. 2: Three different cases for the maximization ofg(x).

Now, as shown in Fig. 2, we have three different scenarios:

• In Case 1, we observe is that the x-label of the cross
point of g1(x) and g2(x), i.e., xc, can be characterized
by g1(xc) = g2(xc), which givesxc = b√

b2+(c−a)2
. If

the slope ofg2(x) is sufficiently large, such that the cross
point appears beforeg1(x) attains its maximum. i.e.,xc ≤
x̂, which givesc ≥ a2+b2

a
, then, the maximum ofg(x) is

achieved at̄x = x̂ = a√
a2+b2

, which is also the maximum
point of g1(x), as shown in Fig. 2(a).

• In Case 2, the cross point appears afterg1(x) attains its
maximum, i.e.,a ≤ c < a2+b2

a
, then, the maximum

of g(x) is achieved at the cross point, i.e.,x̄ = xc =
b√

(a−c)2+b2
, as shown in Fig. 2(b).

• In Case 3, there is no cross point betweeng1(x) and
g2(x), i.e., g1(x) ≥ g2(x) for all x, namely,c < a, then,
the maximum ofg(x) is identical to the maximum of
g2(x) which is achieved at the point̄x = 1, as shown in
Fig. 2(c).

IV. N UMERICAL RESULTS AND DISCUSSION

In this section, numerical and simulations results are pre-
sented to illustrate the impact of key system parameters on
the system’s throughput. Without loss of generality, we setthe
energy conversion efficiencyη = 0.4, and path-loss exponent
α = 3. Please note, the throughput is obtained by averaging
over 103 independent channel realizations.
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To demonstrate the superiority of the proposed optimal
scheme, we compare it with an intuitive benchmark scheme
by looking into the asymptotic large antenna regime, where
the optimal beamforming vector becomes

w̄ =

(

|f2|
√

dα2 d
α
4

h
∗
1

‖h1‖
+

|f1|
√

dα1 d
α
3

h
∗
2

‖h2‖

)/
√

|f2|2
dα2 d

α
4

+
|f1|2
dα1 d

α
3

.

(22)

The rationale behind the choice of̄w is that, the optimal
beamforming vector should be a linear combination ofh

∗
1

and h
∗
2, hence, the key is to design the optimal weights.

Capitalizing on the asymptotical orthogonality ofh∗
1 andh

∗
2

whenN → ∞, the optimal weights can be easily obtained.
Fig. 3 depicts the achievable throughput of the optimal

scheme and the benchmark scheme withd1 = d2 = 3m
and d3 = d4 = 5m. It can be readily observed that the
optimal scheme outperforms the benchmark scheme, and the
performance gap is rather significant for moderate number of
antennasN . On the other hand, whenN is sufficiently large,
i.e., N = 5000, the performance gap narrows substantially.
This is rather expected since the benchmark scheme becomes
asymptotically optimal. We also observe that the throughput
improves whenN increases, which is also intuitive since the
energy transfer efficiency improves with a large size of antenna
array.

0 10 20 30 40 50
0

1

2

3

4

5

6

SNR (dB)

T
hr

ou
gh

pu
t (

bi
ts

/s
/H

z)

 

 
Optimal scheme
Benchmark scheme

N=5000

N=500

N=50

Fig. 3: Throughput comparison between the optimal scheme
and benchmark scheme for differentN .

Fig. 4 examines the impact of node positions on the
throughput performance whenN = 10, d1 + d2 = 20m, and
d3 + d4 = 20m, as a function ofd1 andd3, both vary from
7 to 13. It can be observed that higher throughput is attained
at the pointd1 = 7 andd3 = 13, a scenario where the PB is
close to the source while the relay is close to the destination;
or at the pointd1 = 13 andd3 = 7, a scenario where the PB
is close to the relay while the relay is close to the source. The
above results are somehow intuitive, since the performance
of dual-hop relaying systems is bottlenecked by the weakest
link, hence, an optimized system shall achieve a fine balance
between the two hops.

Another interesting observation from Fig. 4 is that the
symmetric setup, i.e., the pointd1 = d2 = 10 and d3 =
d4 = 10, does not yield the maximum throughput. This is in
sharp contrast to the conventional dual-hop relaying systems
where it is always desirable to put the relay node in the
middle of the source and destination link. The reason is that,
with the introduction of PB, in addition to the distance of

the information transfer links, the throughput performance
also heavily depends on the distance of the energy transfer
links. As a matter of fact, the throughput is determined by
dα1 d

α
3 as shown in the end-to-end SNR expression (5). Since

(7×13)α < (10×10)α, it becomes obvious why the maximum
throughput is achieved at pointd1 = 3 andd3 = 13.
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Fig. 4: Impact of node positions on the system throughput.

Fig. 5 compares the achievable throughput of the dual-
hop relaying system with that of direct transmission system
with optimized time split and beamforming vector. As can
be readily observed, at the SNR levels of practical interest,
i.e., 0 dB < SNR < 50 dB, adopting the relaying structure
improves the system throughput. Moreover, the performance
gap is more substantial with moderate number of antennas,
i.e., N = 10. Only if the transmit SNR is very high, direct
transmission becomes preferred. This is rather intuitive since at
the high SNR regime, the system is degree-of-freedom limited,
as such the half-duplex relay operation becomes the bottle-
neck as manifested through the1/2 factor in the throughput
expression. Since in the wirelessly powered communications
systems, the source is likely to operate in the power-limited
regime, adopting the relaying structure is beneficial in general.
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Fig. 5: Throughput comparison: Relaying v.s. Direct
transmission.

V. CONCLUSION

In this paper, we have optimized the throughput of a relay-
assisted wirelessly powered communication system. Specifi-
cally, we obtained simple closed-form solutions for the PB
energy beamforming vector as well as the optimal time split
for the energy harvesting phase and information transmission
phase. It was shown that the optimal solution yields signif-
icant performance gain compared to the intuitive benchmark
scheme.
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