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Robust Inference for State-Space Models
with Skewed Measurement Noise

Henri Nurminen, Tohid Ardeshiri, Robert Piché, Member, IEEE, and Fredrik Gustafsson, Fellow, IEEE

Abstract—Filtering and smoothing algorithms for linear
discrete-time state-space models with skewed and heavy-tailed
measurement noise are presented. The algorithms use a varia-
tional Bayes approximation of the posterior distribution of mod-
els that have normal prior and skew-t-distributed measurement
noise. The proposed filter and smoother are compared with
conventional low-complexity alternatives in a simulated pseu-
dorange positioning scenario. In the simulations the proposed
methods achieve better accuracy than the alternative methods,
the computational complexity of the filter being roughly 5 to 10
times that of the Kalman filter.

Index Terms—skew t, skewness, t-distribution, robust filtering,
Kalman filter, RTS smoother, variational Bayes

I. INTRODUCTION

The Kalman filter (KF) [1] is the linear minimum mean-
square-error filter for linear state-space models, but it is
optimal within the set of all filters only when the noise
processes are normally distributed [2]. However, the normal
distribution has small tail probabilities, and real-world data
typically contain large errors (“outliers”) more often than the
normal distribution predicts [3]. Therefore, the KF is prone to
large estimation errors when outliers occur. Hence, there is a
need for filtering and smoothing algorithms that mitigate the
outlier measurements’ influence.

Many applications involve noise processes that have both
heavy-tailed (high-kurtosis) and asymmetric (skewed) distri-
butions. In radio signal based distance estimation [4], [5], for
example, non-line-of-sight causes large positive errors [6], [7].
Fig. 1 shows the error histogram of a time-of-flight based ultra-
wideband distance measurement experiment1 and maximum
likelihood fits of some probability distribution families. By
the Bayesian information criterion (BIC) [8], the skewed
distributions skew t [9, Ch. 4.3] and two-component Gaussian
mixture (GM2) model the data better than the symmetric
Student’s t [10, Ch. 28] and normal. Other applications for
asymmetric distributions have emerged in biostatistics [11],
psychiatry [12], environmetrics [13], and economics [14].

Despite these applications, a computationally efficient es-
timation algorithm for time-series data with heavy-tailed and
asymmetric noise has been missing. Robust algorithms that
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Figure 1. Skewed distributions fit better than symmetric distributions to the
time-of-flight measurement errors. BIC values for 2905 data points are 9600
for skew t, 10500 for Student’s t, 17200 for normal, and 10000 for GM2.

model the heavy-tailed noise with a t-distribution are proposed
in [15]–[17], but these do not use the skewness information.
A GM2 can model skewness, but the number of mixture
components in the posterior increases exponentially with the
number of measurements. Furthermore, the GM2 has heavy
tails only within a limited range near the component locations,
and it has five parameters, while four suffices for modeling
location, spread, skewness and kurtosis. Particle filters (PF)
[18] can cope with a wide range of models including skewed
noise processes, but their computational complexity increases
rapidly as the state dimension increases.

This letter proposes approximations to the Bayesian filter
and smoother that retain the computational efficiency of the
KF while introducing more modeling flexibility for skewed
and heavy-tailed measurement noise. The measurement noise
is modelled by the skew t-distribution, and the proposed
algorithms use a variational Bayes (VB) approximation of the
posterior. The proposed filter and smoother are evaluated by
numerical pseudorange positioning simulations, where they
are compared with the state-of-the-art computationally light
algorithms and a PF. To our knowledge, the only earlier work
applying VB approximations to the skew t-distribution is that
of Wand et al. [19]. However, Wand et al. do not consider
state-space models and time-series estimation.

II. SKEW t-DISTRIBUTION

Skewed extensions of the well-known unimodal symmetric
distributions have been studied since the introduction of the
skew normal distribution by Azzalini in [20]. The univariate
skew t-distribution is parametrized by its location parameter
µ ∈ R, spread parameter σ > 0, shape parameter δ ∈ R
and degrees of freedom ν > 0, and has a probability density
function (PDF) of the form

ST(z;µ, σ2, δ, ν) = 2 t(z;µ, δ2 + σ2, ν) T(z̃; 0, 1, ν + 1),
(1)

where

t(z;µ, σ2, ν) =
Γ
(
ν+1

2

)
σ
√
νπΓ

(
ν
2

) (1 +
(z − µ)2

νσ2

)− ν+1
2

(2)
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Figure 2. The PDF ST(z; 0, 1, δ, 4) for different shape parameter values δ.

is the PDF of Student’s t-distribution, Γ(·) is the gamma func-

tion, and z̃ = (z−µ)δ
σ

(
ν+1

ν(δ2+σ2)+(z−µ)2

) 1
2

. Also, T(·; 0, 1, ν)

denotes the cumulative distribution function (CDF) of Stu-
dent’s t-distribution with degrees of freedom ν. The PDF
ST(z; 0, 1, δ, 4) is plotted for six different values of shape
parameter δ in Fig. 2. The skew t-distribution approaches
normal distribution when ν → ∞ and δ → 0. Expressions
for the first two moments of the univariate skew t-distribution
with the parametrisation (1) can be found in [21].

Following the introduction of the multivariate skew normal
distribution in [22], multivariate skew t-distributions have been
proposed in [23]–[25]. In these versions, the PDF of the
skew t-distribution involves only the univariate CDF of t-
distribution, while the definition of skew t-distribution given in
[26]–[28] involves the multivariate CDF, but a single kurtosis
factor. In this letter the measurement noise distribution is a
product of independent univariate skew t-distributions. This
less general model is justified in applications where one-
dimensional data from different sensors can be assumed to
be statistically independent.

III. PROBLEM FORMULATION

Consider the linear state-space model with skew-t-
distributed measurement noise

xk+1 = Axk + wk, wk
iid∼ N (wk; 0, Q), (3a)

yk = Cxk + ek, [ek]i
iid∼ ST([ek]i; 0, Rii,∆ii, νi) (3b)

where N (·;µ,Σ) denotes a (multivariate) normal PDF with
mean µ and covariance Σ; A ∈ Rnx×nx is the state transition
matrix; xk ∈ Rnx indexed by 1 ≤ k ≤ K is the state to be
estimated with prior distribution

p(x1) = N (x1;x1|0, P1|0); (4)

where the subscript “a|b” is read “at time a using measure-
ments up to time b”; yk ∈ Rny also indexed by 1 ≤ k ≤ K
are the measurements and the elements of yk are conditionally
independently skew-t-distributed; R ∈ Rny×ny is a diagonal
matrix whose diagonal elements Rii are the squares of the
spread parameters of (3b); ∆ ∈ Rny×ny is a diagonal matrix
whose diagonal elements ∆ii are the shape parameters of (3b);
ν ∈ Rny is a vector whose elements νi are the degrees of
freedom of (3b); C ∈ Rny×nx is the measurement matrix;
{wk ∈ Rnx |1 ≤ k ≤ K} and {ek ∈ Rny |1 ≤ k ≤ K} are
mutually independent noise sequences; and the operator [·]ij
gives the (i, j) entry of its argument.

The aim of this letter is to derive a Bayesian filter and
a Bayesian smoother using the VB method that computes
an approximation of the filtering distribution p(xk|y1:k) and
smoothing distribution p(xk|y1:K).

IV. VARIATIONAL SOLUTION

The likelihood function implied from (3b) has the hierar-
chical representation [27]

yk|xk, uk,Λk ∼ N (Cxk + ∆uk,Λ
−1
k R), (5a)

uk|Λk ∼ N+(0,Λ−1
k ), (5b)

[Λk]ii ∼ G
(νi

2
,
νi
2

)
. (5c)

Λk is a diagonal matrix with independent random diagonal
elements [Λk]ii, and N+(µ,Σ) denotes the (multivariate)
truncated normal distribution with closed positive orthant as
support, location parameter µ, and squared-scale matrix Σ.
Furthermore, G(α, β) denotes the gamma distribution with
shape parameter α and rate parameter β.

Using Bayes’ theorem, the likelihood (5) and the prior (4),
the joint smoothing posterior PDF can be written as

p(x1:K , u1:K ,Λ1:K |y1:K) ∝ p(x1)

K−1∏
l=1

p(xl+1|xl)

×
K∏
k=1

p(yk|xk, uk,Λk)p(uk|Λk)p(Λk) (6)

=N (x1;x1|0, P1|0)

K−1∏
l=1

N (xl+1;Axl, Q)

×
K∏
k=1

N (yk;Cxk + ∆uk,Λ
−1
k R)N+(uk; 0,Λ−1

k )

×
K∏
k=1

ny∏
i=1

G
(

[Λk]ii;
νi
2
,
νi
2

)
. (7)

This posterior is not analytically tractable. We seek an approx-
imation in the form

p(x1:K ,u1:K ,Λ1:K |y1:K) ≈ qx(x1:K)qu(u1:K)qΛ(Λ1:K).
(8)

In the VB approach, the Kullback-Leibler divergence
(KLD) [29] of the true posterior from the factorized approxi-
mation is minimized;

q̂x, q̂u, q̂Λ = argmin
qx,qu,qΛ

DKL(qx(x1:K)qu(u1:K)qΛ(Λ1:K)||p(x1:K , u1:K ,Λ1:K |y1:K))

where DKL(q(·)||p(·)) ,
∫
q(x) log q(x)

p(x) dx is the KLD. The
analytical solutions for q̂x, q̂u and q̂Λ can be obtained by cyclic
iteration of

log qx(x1:K)← E
quqΛ

[log p(y1:K , x1:K , u1:K ,Λ1:K)] + cx (9a)

log qu(u1:K)← E
qxqΛ

[log p(y1:K , x1:K , u1:K ,Λ1:K)] + cu (9b)

log qΛ(Λ1:K)← E
qxqu

[log p(y1:K , x1:K , u1:K ,Λ1:K)] + cΛ (9c)

where the expected values on the right hand sides of (9) are
taken with respect to the current qx, qu and qΛ [30, Chapter
10] [31], [32]. Also, cx, cu and cΛ are constants with respect
to the variables xk, uk and Λk, respectively. This recursion
is convergent to a local optimum [30, Chapter 10]. When
the iterations converge, approximate densities qu and qΛ are
integrated out from the right hand side of (8) by simply
discarding them. Then, the approximate marginal smoothing
density qx(xk) is obtained, and it turns out to be a normal
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Table I
SMOOTHING FOR SKEW-t MEASUREMENT NOISE

1: Inputs: A, C, Q, R, ∆, ν, x1|0, P1|0 and y1:K
initialization

2: Λk ← Iny for k = 1 · · ·K
3: uk ← 0 for k = 1 · · ·K
4: repeat

update qx(x1:K) given qu(u1:K) and qΛ(Λ1:K)
5: for k = 1 to K do
6: Kx ← Pk|k−1C

T(CPk|k−1C
T + Λk

−1
R)−1

7: xk|k ← xk|k−1 +Kx(yk − Cxk|k−1 −∆uk)
8: Pk|k ← (I −KxC)Pk|k−1

predict qx(xk+1)
9: xk+1|k ← Axk|k

10: Pk+1|k ← APk|kA
T +Q

11: end for
12: for k = K-1 down to 1 do
13: Gk ← Pk|kA

TP−1
k+1|k

14: xk|K ← xk|k +Gk(xk+1|K −Axk|k)

15: Pk|K ← Pk|k +Gk(Pk+1|K − Pk+1|k)GT
k

16: end for
update qu(u1:K) and qΛ(Λ1:K) given qx(x1:K)

17: for k = 1 to K do
update qu(uk) = N+(uk;uk|K , Uk|K)

18: ũk = yk − Cxk|K
19: Ku ← ∆(∆2 +R)−1

20: uk|K ← Kuũk

21: Uk|K ← (I −Ku∆)Λk
−1

22: uk ← EN+(uk|K ,Uk|K)[uk] . see [34] for the formula
23: for i = 1 to ny do
24: Υii ← EN+(uk|K ,Uk|K)[[uk]2i ] . see [34] for the formula
25: end for

update qΛ(Λk) =
∏ny
i=1 G

(
[Λk]ii;

νi
2

+ 1,
νi+[Ψk]ii

2

)
26: Ψk ← R−1(ũkũ

T
k + CPk|KC

T) + (∆R−1∆ + I)Υ

−R−1∆ukũ
T
k −∆R−1ũkuk

T

27: [Λk]ii ← νi+2
νi+[Ψk]ii

28: end for
29: until converged
30: Outputs: xk|K and Pk|K for k = 1 · · ·K

distribution qx(xk) = N (xk;xk|K , Pk|K) where the parame-
ters xk|K and Pk|K are the output of the smoothing algorithm
given in Table I. The filtering algorithm and the parameters
of the filtering posterior qx(xk) = N (xk;xk|k, Pk|k) can be
found in Table II. The derivations for the expectations given
in (9) are relegated to [33] because of space constraints.

V. SIMULATIONS

Numerical simulations are carried out to evaluate the
performance of the proposed algorithms Skew-t variational
Bayes filter (STVBF) and Skew-t variational Bayes smoother
(STVBS). The compared filters are t variational Bayes filter
(TVBF) [16], the bootstrap Particle filter (PF), the Kalman fil-
ter (KF), and the KF with measurement validation gating (KF-
G) [35, Ch. 5.7.2] that discards the individual measurement
components whose normalized squared innovation is larger
than the χ2

1-distribution’s 99 % quantile. The smoothers are
t variational Bayes smoother (TVBS) [16], and Rauch-Tung-
Striebel smoother with gating (RTSS-G) [36]. KF and RTSS
use the true mean and covariance of the measurement noise
distribution, and the TVBF and TVBS use the true mean and
(ν − 2)/ν times the true covariance as the shape matrix. The
computations are done using MATLAB.

A. One-dimensional positioning
The simulation consists of 1000 100-step random-walks of

model (3) with parameters A = 1, Q = 1, C = 13×1, R =

Table II
FILTERING FOR SKEW-t MEASUREMENT NOISE

1: Inputs: A, C, Q, R, ∆, ν, x1|0, P1|0 and y1:K
2: for k = 1 to K do

initialization
3: Λk ← Iny
4: uk ← 0
5: repeat

update qx(xk) = N (xk;xk|k, Pk|k) given qu(uk) and qΛ(Λk)

6: Kx ← Pk|k−1C
T(CPk|k−1C

T + Λk
−1
R)−1

7: xk|k ← xk|k−1 +Kx(yk − Cxk|k−1 −∆uk)
8: Pk|k ← (I −KxC)Pk|k−1

update qu(uk) = N+(uk;uk|k, Uk|k) given qx(xk) and qΛ(Λk)
9: Ku ← ∆(∆2 +R)−1

10: ũk = yk − Cxk|k
11: uk|k ← Kuũk

12: Uk|k ← (I −Ku∆)Λk
−1

13: uk ← EN+(uk|k,Uk|k)[uk] . see [34] for the formula
14: for i = 1 to ny do
15: Υii ← EN+(uk|k,Uk|k)[[uk]2i ] . see [34] for the formula
16: end for

update qΛ(Λk) =
∏ny
i=1 G

(
[Λk]ii;

νi
2

+ 1,
νi+[Ψk]ii

2

)
given qu(uk) and qx(xk)

17: Ψk ← R−1(ũkũ
T
k + CPk|kC

T) + (∆R−1∆ + I)Υ

−R−1∆ukũ
T
k −∆R−1ũkuk

T

18: [Λk]ii ← νi+2
νi+[Ψk]ii

19: until converged
predict qx(xk+1)

20: xk+1|k ← Axk|k
21: Pk+1|k ← APk|kA

T +Q
22: end for
23: Outputs: xk|k and Pk|k for k = 1 · · ·K

I3×3, ν = 4 · 13×1, and ∆ = 5 · I3×3, where 1 is a vector of
ones. The VB iterations of STVBF and TVBF are terminated
when the change in the estimate is less than 0.01.

Some statistics of the estimation error are in Table III,
and Fig. 3 shows an example of the error processes. Table
III shows that the STVBF has the lowest root-mean-square
error (RMSE), the TVBF and KF-G have negative bias, and
the KF’s error process has the highest standard deviation and
positive skew. As illustrated by Fig. 3, the TVBF and KF-G
react relatively slowly to positive errors, interpreting them as
outliers to be discounted. The KF error’s skewness is caused by
excessive sensitivity to the large positive measurement errors.

time

0 10 20 30 40 50 60 70

e
rr

o
r

-5

0

5

10

15

20

25

STVBF

TVBF

KF-G

KF

meas.

Figure 3. One-dimensional positioning example illustrates TVBF estimate’s
negative bias and KF’s sensitivity to outliers. Measurement error of 300 at
time instant 49 is not shown.

Table III
ERROR STATISTICS IN ONE-DIMENSIONAL POSITIONING

Filter RMSE Mean Standard deviation Skewness
STVBF 1.2 0.1 1.2 0.0
TVBF 1.5 -0.8 1.3 0.2
KF-G 1.5 -0.5 1.4 0.1

KF 1.6 0.0 1.6 0.5
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Figure 4. Convergence of the STVBF with q = 10. Ten STVBF iterations
is enough to outperform TVBF. One additional VB iteration gives the same
accuracy gain as 100 additional PF particles.

B. Pseudorange positioning
GNSS-type (global navigation satellite system) pseudorange

measurements are simulated from the model

[yk]i = ‖si − [xk]1:3‖+ [xk]4 + [ek]i, [ek]i
iid∼ ST(0, 1, δ, 4)

(10)
where si is the ith satellite’s position, [xk]4 is bias, ek is noise,
and δ is varied. The model is linearized, and the linearization
error is negligible because the satellites are far from the
receiver. The state model is a three-dimensional random walk
with process noise covariance matrix Q = diag(q2, q2, 0.52),
where q is a parameter. The constant bias [xk]4 has prior
N (0, 0.752). Satellite constellations of Global Positioning
System provided by the International GNSS service [37] are
used, and on average 7.6 satellites are measured. The results
are based on 1000 Monte Carlo replications of a 100-step
trajectory. The RMSE is computed for the components [xk]1:3.

1) Evaluation of the filter: Fig. 4 studies the convergence
of the STVBF’s VB iteration with q = 10. The speed of
convergence depends on the parameters of the model; the
larger δ, the slower convergence, and large q and a high
number of sensors can also increase the required number
of iterations. The RMSE reduction is fastest for the first
iterations, 10 iterations is enough to outperform TVBF, and
after 30 iterations the RMSE reduction is negligible. Thus,
the STVBF is slower than the TVBF that requires 5 iterations.
In this example, one additional VB iteration gives the same
accuracy gain as 100 additional PF particles. In the remaining
numerical examples, STVBF’s VB iteration is terminated after
30 iterations, and TVBF’s after 10 iterations.

Fig. 5 shows the distributions of the RMSE differences of
the comparison methods from the STVBF’s RMSE as percent-
ages of the STVBF’s RMSE. The levels of the boxes are 5 %,
25 %, 50 %, 75 %, and 95 % quantiles. With q ≥ 1, the STVBF
outperforms the comparison methods in significant majority of
the replications. The problems with q = 0.1 are explained by
the model structure: only sums of xk and uk are measured, so
xk and uk are correlated a posteriori, which makes the VB
approximation underestimate the posterior variance [30, Ch.
10.1.2]. The STVBF works well only when the process noise
has enough dispersion to dominate in the prior’s variance, i.e.
when the signal-to-noise ratio (SNR) is not very low.

2) Real-world noise: The robustness of the STVBF is eval-
uated by generating the noise in Eq. (10) from the histogram
distribution of the time-of-flight data set of Fig. 1 and using
q = 10. The histogram of the RMSE differences of TVBF
from the RMSE of STVBF is in Fig. 6. The proposed method
has lower RMSE than the TVBF in 61 % of the 1000 Monte
Carlo replications. This indicates that the proposed filter is
robust to small deviations from the model that appear in real
data.
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Figure 5. RMSE differences per cent of the STVBF’s RMSE. The proposed
STVBF outperforms the comparison methods with skewed measurements
when the signal-to-noise ratio is high enough.
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Figure 6. RMSE difference of TVBF per cent of the STVBF’s RMSE
with noise generated from real time-of-flight measurements’ error histogram.
STVBF has lower RMSE than the TVBF in 61 % of the 1000 replications.

3) Evaluation of the smoother: The smoother versions of
the compared algorithms are evaluated in the same simulation
of Eq. (10) with skew-t noise. The STVBS uses 30 and the
TVBS 10 VB iterations, which were observed to provide
convergence. Fig. 7 shows that the STVBS outperforms the
TVBS also at low SNR, but the percentile differences at high
SNR are smaller than those of the corresponding filters.
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Figure 7. Smoothers’ RMSE differences per cent of the STVBS’s RMSE.
STVBS performs well also at low SNR, but difference to TVBS is smaller
than the difference between the corresponding filters.

VI. CONCLUSIONS

A filter and a smoother that take into account the skewness
and heavy-tailedness of the measurement noise are proposed.
The algorithms use the variational Bayes approximation. In
the presented computer simulations the proposed methods out-
perform the conventional symmetric Kalman-type algorithms
when skewness is present. The computational burden depends
on the measurement dimension and model parameters. In the
presented simulations the proposed filter has roughly 5 to 10
times the Kalman filter’s computational cost.
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[11] S. Frühwirth-Schnatter and S. Pyne, “Bayesian inference for finite
mixtures of univariate and multivariate skew-normal and skew-t dis-
tributions,” Biostatistics, vol. 11, no. 2, pp. 317–336, 2010.

[12] M. Eling, “Fitting insurance claims to skewed distributions: Are the
skew-normal and skew-student good models?” Insurance: Mathematics
and Economics, vol. 51, no. 2, pp. 239–248, 2012.

[13] N. Counsell, M. Cortina-Borja, A. Lehtonen, and A. Stein, “Modelling
psychiatric measures using skew-normal distributions,” European Psy-
chiatry, vol. 26, no. 2, pp. 112–114, 2010.

[14] Y. V. Marchenko, “Multivariate skew-t distributions in econometrics and
environmetrics,” Ph.D. dissertation, Texas A&M University, December
2010.

[15] G. Agamennoni, J. Nieto, and E. Nebot, “Approximate inference in state-
space models with heavy-tailed noise,” IEEE Transactions on Signal
Processing, vol. 60, no. 10, pp. 5024–5037, October 2012.
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