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The NLMS algorithm with time-variant optimum
stepsize derived from a Bayesian network perspective
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Abstract—In this article, we derive a new stepsize adaptation cancellation (AEC) scenario shown in Hig. 1. The acoustth pa
for the normalized least mean square algorithm (NLMS) by petween loudspeaker and microphone at titie modeled by
descnplng the task of Ilnear acoustic echo cancellation ém a the linear finite impulse response (FIR) filter
Bayesian network perspective. Similar to the well-known Kéman
filter equations, we model the acoustic wave propagation fim by, = [ho,n, hiny ooy Bar— 10" 1)
the loudspeaker to the microphone by a latent state vector
and define a linear observation equation (to model the relatn ~ With time-variant coefficients: ,, wherex =0,..., M — 1.
between the state vector and the observation) as well as aéar The observation equation models the microphone sample
process equation (to model the temporal progress of the st T
vector). Based on additional assumptions on the statisticef dp = x, hy + vy, 2
the random variables in observation and process equation, & . . . .
apply the expectation-maximization (EM) algorithm to derive W'th the additive variable v, m_odelmg . near-end
an NLMS-like filter adaptation. By exploiting the conditional interferences and the observed input signal vector
independence rules for Bayesian networks, we reveal that ¢ X, = [Ty, Zn_1, ..., Tn_a+1]7 capturing the time-domain

resulting EM-NLMS algorithm has a stepsize update equivalet  samplest,,. The iterative estimation of the RIR vector by the

to the optimal-stepsize calculation proposed by Yamamoto rad ; o ;
Kitayama in 1982, which has been adopted in many textbooks. #\ adaptive FIR filterh,, is realized by the update rule

main difference, the instantaneous stepsize value is estited in h, = h,o1 + AnXnen, 3)
the M step of the EM algorithm (instead of being approximated ] ] ]

by artificially extending the acoustic echo path). The EM-NIMS ~ Wwith the stepsize\,, and the error signal

algorithm is experimentally verified for synthesized scendos T

with both, white noise and male speech as input signal. en = dn =Xy (4)

Index Terms—Adaptive stepsize, NLMS, Bayesian network, relating the observatiod,, and its estimatel, = x2h,, ;.

machine learning, EM algorithm In [10Q], the optimal choice of,, has been approximated as:
1 &{||h, —hy,4[3}
A R — , 5
|. INTRODUCTION i FEY (5)

M ACHINE learning techniques have been widely ap- here || - ||» denotes the Euclidean norm arg-} the

2l Foflelign;[oIeSI?j?rzlctzijociiSIhr:gar ?ﬁgzeznfeerr:ggages s[i Xpectation operator. As the true echo gathis unobservable,
: P'e, grap ' @Bl that the numerator inJ(5) cannot be computag, is

networks, have shown fo provide a powerful framework f Urther approximated by introducing a dela 19§ coefficients
modeling causal probabilistic relationships between oamd pp y 9 Y

variables[[3]-{[7]. In previous work, the update equatiohthe to the echo p_atfhn. _MoreO\_/er, a recursive approxmatu_)n
. . the denominator in[{5) is applied using the forgetting

Kalman filter and the normalized least mean square (NLM ctorn [22], [Z3]. The resulting stepsize approximation

algorithm have already been derived from a Bayesian networ K ' ' g step PP

perspective based on a linear relation between the latent ro Ni_l 72

impulse response (RIR) vector and the observation [8], [9]. N~ 1 o enl 6

The NLMS algorithm is one of the most-widely used adap- "7 Np (1 —n)e2 + néf{e |} 6)

tive algorithms in speech signal processing and a variety @

. . . Bds to oscillations which have to be addressed by limiting
stepsize adaptation schemes has been proposed to IMBOVR L absolute value of [24]. In this article, we derive the
system identification performance [10]-[21]. In this ddijc " ’

. o : EM-NLMS algorithm which applies the filter update 6f (3) us-
we derive a novel NLMS-like filter adaptation (termed EMTng the stepsize i {5), whete, is estimated in the M Step of

NLMS algorithm) by applying the expectation—maximizatioqh EM algorithm instead of bei imated b 6
(EM) algorithm to a probabilistic model for linear system € algorithm instead of being approximated by usidg (6).

identification. Based on the conditional independencesride

Bayesian networks, it is shown that the normalized stepsize Xy, ‘[(]‘
of the EM-NLMS algorithm is equivalent to the one proposed * “W
in [10], which is now commonly accepted as optimum NLMS
stepsize rule, see e.d. [22]. As the main difference ralativ
to [10] , the normalized stepsize is here estimated as part of - <
the EM algorithm instead of being approximated by artifigial P d, O <--v,
extending the acoustic echo path. For a valid comparison,

we review the algorithm of [10] for the linear acoustic echéig. 1. System model for linear AEC with RIR vecthr,
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TABLE | Wi W2 Wpn—1 Wy,
RELATION BETWEEN THENLMS ALGORITHM FOLLOWING [[10] AND THE (P ? (P %}
PROPOSECEM-NLMS ALGORITHM
h1 h2 hn—l hn -
— ces
NLMS algorithm [10] EM-NLMS algorithm
dl d2 dn—l an
Norm. stepsize\, i) E(’gg'c‘/t?éfg]] t)O E step
U1 V2 Un—1 Un
Estimation of)\,, ©) (gi‘i)lggc?%) M step

Fig. 2. Bayesian network for linear AEC with latent stateteed,,

This article is structured as follows: In Sectioh Il, we posp

a probabilistic model for the linear AEC scenario of Hig. 1 « The posterior distributiorp (h,,|d;.,) is defined with
and derive the EM-NLMS algorithm, which is revealed in Sec- mean vectomy, ,,, varianceCy, , anddy., = di, ..., dp!
tion[[[Mito be similar to the NLMS algorithm proposed in[10]. _ B

As main difference (cf. TablE 1), the stepsize is estimated i P (Bnldin) = N{bn |ty , Con}s Cn = Ch’”(ll'l)

the M Step of the EM algorithm instead of being approximat . I

by artificially extending the acoustic echo path. In Seciigh el:glase.(:hon this .ptr_Obab]'c“f“C AECtZ _”}Odfhl’ vae Sa}[pplyﬂt]heflllitM
the EM-NLMS algorithm is experimentally verified for syn-a go”t m ccc;ns_|s g‘gbo (‘;VO parts. In the ep, the fiter
thesized scenarios with both, white noise and male speecha& ate Is derived based on minimum mean square error

input signal. Finally, conclusions are drawn in Secfidn V. _SE) estimation (Subsectiol TiB). In the M St.ep’ we
predict the model parametets, ;.1 andCy, 41 t0 estimate

Il. THE EM-NLMS ALGORITHM FOR LINEAR AEC the adaptive stepsize value,,, (Subsection II-C).

Throughout this article, the Gaussian probability densitg E step: Inference of the state vector

function (PDF) of a real-valued lengthf vectorz,, with mean o . .
vector e, ,, and covariance matric,,, is denoted as The MMSE estimation of the state vector identifies the mean

vector of the posterior distribution as estimaig:
ZnNN Zp znaCz.n »~ . ~
1{ ’ 2> Can o b, = argmin &{|[R, — B3} = E{Bldin} = g, (12)
— |Cz,n|_ / ex _ (Zn - H’z,n) Cz,n(zn - H’z,n) (7) h,
(27)M/2 2 ’ Due to the linear relations between the variablegin (2) @d (

wherel-| represents the determinant of a matrix Furthermorand under the restrictions to a linear estimatorkgf and
|| rep ) ormally distributed random variables, the MMSE estimatio

Sf: :tocgglrrg\lljvtlltjgl:Sesrlg?strizgflgxif]) d:argglrlfjse;?znﬂeg]]e:(;i i? analytically tractable [9] . Exploiting the product raléor

e fhear Gaussian models and conditional independence of the
varianceCs, . Bayesian network in Fifl2, the filter update can be derived as
a special case of the Kalman filter equatidns [9, p. 639]:

A. Probabilistic AEC model

To describe the linear AEC scenario of Fig. 1 from a h, =hy—1 + Anxnen, (13)
Bayesian network perspective, we model the acoustic echfth the stepsize matrix

path as a latent state vecthy, identically defined as in{1) Cun1+Cuwn

and capture uncertainties (e.g. due to the limitation to a Ap = = (14)
linear system with a finite set of coefficients) by the additiv X (Gt + n)x _+C_’ ’
uncertaintyw,,. Consequently, the linear process equation a@d the update of the covariance matrix given as
the linear observation equation, Chn = (I-A;x,X2) (Chne1 + Cw,n). (15)

h, =h,_1+w, and d,=xhy,+v,, (8) By inserting [9) and[{A1), we can rewrite the filter update
can be jointly represented by the graphical model shown & (23 to the filter update defined inl(3) with the scalar sizps
Fig. [2. The directed links express statistical dependsncie Chn—1+ Cwn (16)

between the nodes and random variables, such,asare - X% (Chyn—1 + Cwon) + Con

marked as circles. We make the following assumptions on thga|ly, the update ot ,, is approximated following{d1) as
PDFs of the random variables in F[g. 2:

H T
« The uncertaintyw,, is normally distributed with mean ¢y, ,, D M 5 (1 — /\nm) (Chn-1+Cw.n)s

vector0 (of zero-valued entries) and varian€g, ,,: M M (17)

wy, ~ N{w,|0,Cw.n}, Cwn=CwnIl. (9) where diag-} adds up the diagonal elements of a matrix.
Before showing the equality of the stepsize updates in
(I8) and [[b) in Sectiom Il, we propose a new alternative
to estimate),, in (I8) by deriving the updates of the model
vy, ~ N{0,,]0,Cy 1} (10) parameters’, ,, andC, , in the following section.

« The microphone signal uncertainty, is assumed to be
normally distributed with varianc€’, ,, and zero mean:
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C. M step: Online learning of the model parameters I1l. COMPARISON BETWEEN THEEM-NLMS ALGORITHM

In the M step, we predict the model parameters for the fol-  AND THE NLMS ALGORITHM PROPOSED IN[10]
lowing time instant. Although the maximum likelihood estim  In this part, we compare the proposed EM-NLMS algorithm
tion is analytically tractable, we apply the EM algorithmd®- to the NLMS algorithm reviewed in Sectidd | and show
rive an online estimator: In order to upd#@te= {C, ,,Cw.n} the equality between the adaptive stepsizedn (5) Bnd (16).
to the new paramete®™ = {C75), C3°n }, the lower bound We reformulate the stepsize update [in](16) by applying the
Enpr 0 10 (P(d1ons Dy |01:0))} < I p(dien|1n),  (18) conditional independence rules for Bayesian netwofks [9]:

. o ) First, we exploit the equalities
is maximized, wheré);.,, = {Cy 1.n, Cw,1:n}. FOr this, the

PDF p(dy.n, h1.,|01.,) is determined by applying the decom- Chon @ Chnl @ E{(h, — ﬁn)(hn —h,)T},

position rules for Bayesian networks [9]: @ (29)
Cwn = Cwpl= E{ang},
p(d1:n7h1:n|91:n) :p(hn|hnflaCw,nI)p(dn|hnvcu,n) . . .
n_1 which lead to the following relations:
L oo, CoinDp (o, Co). - (L o)~ b)) E{IBn — Bul3)
m=1 h,n = )
’ M
Next, we take the natural logarithm(i of p(dy.,,, h1.,]01.n), E{wlw,} 5{||Wn|| }
replaced,, by 07" and maximize the right-hand side 6f118) Cw.n = ——7 i (30)
with respect to9nev: . .
Second, it can be seen in Fig. 2 that the state vdgtor and
O = argnemwax Enynjon {0 (p(hnhy 1, O T)) } the uncertaintyw,, are statistically independent as they share a
o head-to-head relationship with respect to the latent vdcio
+ argmax Enronlon {0 (p(dn |y, CYS) 1, (20) As a consequence, the numerator[inl (16) can be rewritten as
where we apply two separate maximizations starting with thech 1+ Cly, (@1) Efllhn 1 — n71||§} + E{llwall3}
estimation ofC1®" by inserting M , M
(Bb g{th — hn71||2}
In(27wCye —xTh,,)? = ) 31
in(p(d b, 7o) & T (e il g 3 ey
. . ) oon Finally, we consider the mean of the squared error signal
into (20). This leads to the instantaneous estimate:
O = &, 10w {(dn — xTh,,)%) (22) efez} B eI (m, — o) 4002 (32)
=d, +x (Ch, JI+h, hT)xn — 2x h, (23) which is not conditioned on the microphone sigmgl. By
— (dy — xT hn) + X%, Chn (24) applying the conditional independence rules to the Bapesia

_ _ _ _ network in Fig.[2, the head-to-head relationship with respe
The variance (of the microphone signal uncertain®y)%' to 4, implies v, to be statistically independent froim,, _;

in (24) consists of two components, which can be mterpretgﬂdwn, respectively. Consequently, we can rewritel (32) as:
as follows [25]: The first term in(24) is given as the squared dl_Qb

error signal after filter adaptation and is influenced by revat  £{c2} xP&{(h, —h,_1)(h, —h, )T }x, + Cyn
interferences like background noise. The second terri_ih (24 ®), (@b .
depends on the signal energy x,, and the variance&’y, ,, X, X1 (Chn—1 + Cw,n) + Con. (33)
which implies that it considers uncertainties in the lineaho 1o insertion of [[(31) and[(33) into the stepsize defined
path model. Similar to the derivation far;SY, we insert in (I6) yields the identical expression for, as in [5). The
n(p(h,|h,—1, Cw.nI)) main difference of the proposed EM-NLMS algorithm is that
the model parameterSy,,, and Cy, ,, (and consequently the
B MWErCEL) (b, —hy1)" (hy —hyy) (25) normalized stepsiza,,) are estimated in the M step of the
2 2008 EM algorithm instead of being approximated usihg (6).

into (20), to derive the instantaneous estimate’gf}::

IV. EXPERIMENTAL RESULTS

Com = 77 Sl { (B —hn—l)T(hn —h, 1)} (26)  This section focuses on the experimental verification of
fint} e - the EM-NLMS algorithm (“EM-NLMS”) in comparison to
= Chn—Chno1+ 7 (h h, —h 1hn—1) » (27)  the adaptive stepsize-NLMS algorithm described in Sedflion
where we employed the statlst|cal independence between (‘Adapt. NLMS”) and the conventional NLMS algorithm
and h,_;. Equation [(27) implies the estimation ¢ as (‘“Conv. NLMS”) with a fixed stepsize. An overview of the
difference of the filter tap autocorrelations between' theeti @lgorithms including the individually tuned model paraerst
instantsn andn — 1. Finally, the updated values " are is shown in Table[]l. Note the regularization of all three
used as initialization for the following time step, so that ~ Steépsize updates by the additive constant 0.01 to avoid
new new a division by zero. For the evaluation, we synthesize the
Ont1:= 00" = Cwny1:=CFy, Conir = CP5) . (28) microphone signal by convolution of the loudspeaker signal
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with an RIR vector measured in a room wiifgp = 100 ms V. CONCLUSION

(filter length M = 512 at a sampling rate ofi6 kHz). | this article, we derive the EM-NLMS algorithm from
This is realized for both white noise and a male speeghpayesian network perspective and show the equality with
signal as loudspeaker signals. Furthermore, backgrouise NGespect to the NLMS algorithm initially proposed [n [10]. As
is simulated by adding Gaussian white noise at a globghin difference, the stepsize is estimated in the M Stepef th
signal-to-noise rat|(_3 020 dB. The comparison is realized ingp algorithm instead of being approximated by artificially
terms of the stepsize,, a_md th_e system distanckh,, as a extending the acoustic echo path. For the derivation of the
measure for the system identification performance: EM-NLMS algorithm, which is experimentally shown to be
||f1n —h,|)? T promising for the task of linear AEC, we define a probabiisti
Ahy = 101ogyg g dB, an = An(x,%n). (34) model for linear system identification and exploit the pradu
e and conditional independence rules of Bayesian networks. A
The results for white noise as input signal are illustrated together this article exemplifies the benefit of applying ma-

Fig [3. Note that in Fig[13a) the EM-NLMS shows the besghine learning techniques to classical signal processiskst
system identification compared to the Adapt. NLMS and the

Conv. NLMS. As depicted in Fid.]3b), the stepsizg of the
EM-NLMS and the Adapt. NLMS decreases from a value of
0.5 with the stepsize of the EM-NLMS decaying more slowly.
For male speech as input signal, we improve the convergence
of the Conv. NLMS by setting a fixed threshold to stop
adaptation ¢, = 0) in speech pauses. Furthermore, the
absolute value of\,, for the Adapt. NLMS is limited to 0.5

(for a heuristic justification see [24]). As illustrated iigH4a),

the EM-NLMS shows again the best system identification?) 0.6
compared to the Adapt. NLMS and the Conv. NLMS. By T+ 04l
focusing on a small time frame, we can see in Eig. 4b) that

a)

0 ’— EM-NLMS - - Adapt. NLMS Conv. NLMS
T T

Ah,/dB —

the stepsizey,, of the EM-NLMS algorithm is not restricted & 0.2 |
to the values of) and0.5 (as Conv. NLMS) and not affected 0 Lo vt T :

by oscillations (as Adapt. NLMS). 0 1 2 3 4 5
Note that the only relevant increase in computational cemypl time/s —

ity of the EM-NLMS relative to the Conv. NLMS is causedrig. 3. Comparison of the EM-NLMS algorithm (“EM-NLMS”), ¢nNLMS

by the scalar produdﬁfﬁn for the calculation ofC,, ,, (cf. algorithm due to[10] (“Adapt. NLMS*) and the conventional MS algorithm
. . 1 "Conv. NLMS") in terms of the system distana&h,, and the stepsize,,

Tablg []]), which seems relatl\(ely sma!l compared to othécgr white Gaussian noise as input signal.

sophisticated stepsize adaptation algorithms.

a)
TABLE Il ]— EM-NLMS - - Adapt. NLMS Conv. NLMS
REALIZATIONS OF THE EM-NLMS ALGORITHM (“EM-NLMS"), T < T T T T
THE NLMS ALGORITHM DUE TO [10] (“ADAPT. NLMS*) AND
THE CONVENTIONALNLMS ALGORITHM ("CONV. NLMS*) % -10
— < —20
h, =h,_1 + Anxnen 5
7300
— ch,71—1+cw,71
EM-NLMS D £ (e v e b) 0.6
T
Chn = (1 - n x”};”) (Chyn—1+ Cw,n) T 04
s 0.2
i )2 T
C’U,n+1 = (dn — X, hn) + XanCh,n 0
hlh,-hY_ h,_ c
Cwont1 = Chyp — Ciypq + 0 n=1in=t ) 1 T T T T
T
Ch,0 = Cw,0=Cyo0=0.1, ¢=0.01 e
=
NTZjl 02 -1 i i i i
k,n—1
Adapt. NLMS A e L 3 3.2 3.4 3.6 3.8 4
N (1-m)e2 +nE{e _ }+e time/s —
Nr =5, 1=09, €2 =0.1, ¢=001 Fig. 4. Comparison of the EM-NLMS algorithm (“EM-NLMS”), aNLMS
algorithm due to/[10] (“Adapt. NLMS*) and the conventional MS algorithm
("Conv. NLMS") in terms of the system distanc&h,, and the stepsize,,
Conv. NLMS Ap = xT?c-5+ , €=0.01 (short time frame for visualization purposes) for male speas input signal
nXnTe (see the microphone signdl, in Fig. 4c)).
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