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Abstract—Approximate message-passing (AMP) method is a
simple and efficient framework for the linear inverse problems.
In this letter, we propose a faster AMP to solve the L1-Split-
Analysis for the 2D sparsity separation, which is referred to as
MixAMP. We develop the MixAMP based on the factor graphical
modeling and the min-sum message-passing. Then, we examine
MixAMP for two types of the sparsity separation: separation of
the direct-and-group sparsity, and that of the direct-and-finite-
difference sparsity. This case study shows that the MixAMP
method offers computational advantages over the conventional
first-order method, TFOCS.

Index Terms—2D Compressed sensing, Sparse signal separa-
tion, approximate message-passing (AMP), L1-Split-Analysis.

I. INTRODUCTION

The linear inverse problems for estimating an unknown
signal X from linear measurements Y are central in signal
processing techniques. In this letter, we revisit such inverse
problems with three additives:
• X is a two-dimensional (2D) square, whose entries are

with the index pair (i, j) ∈ Λ := {1, ...,
√
N} ×

{1, ...,
√
N} where

√
N ∈ Z+ and N := |Λ|,

• X is a mixture of two signals Xa,Xb having sparse
representation in two separate basis, i.e., X = Xa + Xb.

• Y are Compressed Sensing (CS) measurements such that
Y includes its effective samples with the index pair
(k, l) ∈ Ω ⊆ Λ where M := |Ω|.

From the 2D setup, we generate the linear measurements by

Y = PΩ

{
AXAT

}
∈ R

√
N×
√
N , (1)

where A ∈ R
√
N×
√
N is a measurement matrix; PΩ{·}

is the undersampling operator nulling entries of its matrix
argument not in the set Ω. The measurement model (1) is
motivated by the 2D signal acquisition concept considering
two perpendicular spatial/spectral axes of X where “the left
A” linearly mixes X in vertical axis and “the right AT ” does
in horizontal axis. As practical applications of (1), the 2D
Fourier-transform-based image/video acquisition [8],[15] and
optical image encryption [1] have been considered.
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The measurement model (1) has two advantages in 2D
signal processing. This 2D model spends O(N3/2) complexity
for the measurement generation, which is less than O(N2) by
the 1D equivalent model [2],

vec(Y) = PΩ′ {(A⊗A) vec(X)} ∈ RN×1, (2)

where ⊗ is Kronecker product, vec(·) is the columnwise
vectorizing operator, and Ω′ ⊆ {1, ..., N}. In addition, the 2D
model is storage efficient by saving memory for the Kronecker
product matrix A ⊗A ∈ RN×N which is unavoidable under
the 1D model (2).

Our main task is to simultaneously estimate the two 2D
signals, Xa,Xb, given the knowledge of Y, A, and Ω under
(1). This problem so-called Sparse signal separation, being
related to the Analysis CS whose unknown signal is sparse in
a concatenation of the two basis [3], including applications to
image inpainting and deblurring [5], and super-resolution [6].

When the cardinality of the sets has |Ω| < |Λ| such that the
problems are ill-posed, optimization methods with regulariza-
tion have been mostly considered. A known approach to the
problem is the L1-Split-Analysis [3]-[5]:{

min
Xa,Xb

||TaXa||1 + ||TbXb||1

s.t. Y = PΩ

{
A(Xa + Xb)A

T
}
,

(3)

where the sparsity of Xa,Xb is promoted in terms of analysis
transform operators Ta, Tb. This L1-Split-Analysis is related to
Morphological Component Analysis (MCA) [13],[14] in that
the both analysis approaches decompose X by pursuing sparse
representation of Xa,Xb. However, they are distinct in that
MCA does not include measurement compression such as (1)
but simply goes with Y = Xa + Xb.

Practical solving of (3) has been considered in the works
of [4],[5] via the Templates for First-Order Conic Solvers
(TFOCS) [7] and the Split Bregman iteration [8], respectively.
However, their examples are not in the context of our problem
setup since they do not contain the concept of linear mixing
by setting A = I.

In this letter, we propose an Approximate Message-Passing
(AMP) method for solving the L1-Split-Analysis under the 2D
CS model (1). This is motivated by excellent properties of
AMP [9],[10]: i) asymptotic Lasso performance, ii) efficient
computations, and iii) algorithmic simplicity. We refer to the
proposed method as separation of sparse mixture via approx-
imate message-passing (MixAMP). We claim that MixAMP
is remarkably faster than the conventional first-order method,
TFOCS [7], for the 2D sparse signal separation task.

We believe that another advantage of this MixAMP lies in
its flexibility. The 2D separation problems, regarding various
types of the sparsity, can be solved via the MixAMP once
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Fig. 1. Factor graphical model and message-passing for the L1-Split-Analysis
problem (3).

a proper denoiser is given. In the sequel, we examine the
MixAMP for two cases of the sparsity separation, i) separation
of direct-and-group sparse mixture, and ii) that of direct-and-
finite-difference (FD) sparse mixture, by applying the simple
denoisers introduced in the literature [9],[10]. In each case,
we demonstrate the low-computationality of MixAMP by an
exemplary comparison to the TFOCS method.1

II. AMP METHOD FOR L1-SPLIT-ANALYSIS

The first step of the AMP development is to establish a
message-passing rule based on a factor graphical model of
linear systems. Fig.1 describes a factor graph for our system
(1), deriving the corresponding joint PDF, given by

fXa,Xb,Y(·) ∝ fXa(·; Ta)fXb
(·; Tb)

∏
(k,l)∈Ω

fYkl|Xa,Xb
(·) (4)

where the two priors, fXa
(·; Ta) and fXb

(·; Tb), sparsify the
signals in the domain of Ta and Tb, respectively. From the
joint PDF (4), we form a message-passing rule for solving (3)
in the manner of the min-sum algorithm [11], given by

a) For the signal Xa : ∀(ji, kl) ∈ Λ× Ω

µkl→ji(xa,ji) = min
{xa,xb}
\xa,ji

log fYkl|Xa,Xb
(·) +

∑
j′i′

6=ji

αj′i′→kl(xa,j′i′ )

+
∑
ji∈Λ

βji→kl(xb,ji)

αji→kl(xa,ji) = log fXa (xa; Ta) +
∑

k′l′ 6=kl

µk′l′→ji(xa,ji)

b) For the signal Xb : ∀(ji, kl) ∈ Λ× Ω

νkl→ji(xb,ji) = min
{xa,xb}
\xb,ji

log fYkl|Xa,Xb
(·) +

∑
ji∈Λ

αji→kl(xb,ji)

+
∑

j′i′ 6=ji

βj′i′→kl(xb,j′i′ )

βji→kl(xb,ji) = log fXb
(xb; Tb) +

∑
k′l′ 6=kl

νk′l′→ji(xb,ji),

(5)

1The MATLAB codes for this comparison is available at our website,
https://sites.google.com/site/jwkang10/.

Algorithm 1 MixAMP Method
Require: Measurement matrix A ∈ RN×N , Measurements Y ∈ RN×N ,

Undersampling operator PΩ{·}
Ensure: Recovered signals Xt=t∗

a ,Xt=t∗
b ∈ RN×N

Initialization: Rt=0 = Y, θt=0 = 1
M
‖Y‖2F

Xt=0
a = 0,Xt=0

b = 0

for t = 1 to t∗ do do
Xt

a = ηa(ATRt−1A+Xt−1
a ; θt−1)

Xt
b = ηb(A

TRt−1A+Xt−1
b ; θt−1)

Rt = Y − PΩ{A(Xt
a +Xt

b)A
T }

+Rt−1 N
M

〈
ηa
′(ATRt−1A+Xt−1

a ; θt−1)
〉

+Rt−1 N
M

〈
ηb
′(ATRt−1A+Xt−1

b ; θt−1)
〉

θt = 1
M

∥∥Rt
∥∥2

F
end for

where {x} indicates the set of elements in the vector argument
x. As illustrated in Fig.1, the min-sum rule (5) disjointly
exchanges the messages between onefactor layer and two dif-
ferent variable layers where the factor nodes are effective only
with the index (k, l) ∈ Ω, and the variable nodes correspond
to the index (i, j) ∈ Λ. Then, totally, 4MN messages are
handled per iteration since there are M effective factors, each
of which generates 2N messages, and 2N variables, each of
which produces M messages.

At the fixed-point, the scalar MAP estimate of each signal
is approximated by

x̂a,ji = arg min
xa,ji∈R

αji(xa,ji), x̂b,ji = arg min
xb,ji∈R

βji(xb,ji),

(6)

where the functions αji(xa,ji), βji(xb,ji), which include the
posterior information, are given by

αji(xa,ji) = log fXa
(xa; Ta) +

∑
(k,l)∈Ω

µkl→ji(xa,ji), (7)

βji(xb,ji) = log fXb
(xb; Tb) +

∑
(k,l)∈Ω

νkl→ji(xb,ji). (8)

In the AMP literature [9]-[11], the second term of (7),(8)
are handled as Gaussian exponents. This is based on
the assumption that the factor graph connection, by the
matrix A, is sufficiently dense such that the messages
µkl→ji(xa,ji), νkl→ji(xb,ji) from each factor are Gaussian
distributed by the law of large numbers.

The remaining steps for the AMP development consist of
1) the quadratic approximation step, which approximates

the min-sum equations by quadratic functions, then con-
verting (5) to a parameter-passing rule whose messages
are simple real numbers (instead of functions),

2) the first-order approximation step, which cancels in-
terference caused by the loopy graph connection, and
reduces the number of messages from 4MN to M+2N .

These development steps are conventional for the AMP meth-
ods applied to the other types of linear inverse problems
[9]-[11], which are well formulated in the literature [11].
Therefore, we omit details of such remaining steps in this
letter, immediately providing a final form of MixAMP in
Algorithm 1.



TO APPEAR IN IEEE SIGNAL PROCESSING LETTERS, VOL. 22, ISSUE 11, NOV. 2015 3

One thing noteworthy is that in Algorithm 1 the two
disjoint iterations, described in Fig.1, share the residual term
Rt ∈ RN×N , which significantly reduces the number of the
messages in the iteration. This can be explained using the
two arguments given in [11]: i) The messages, sent by the
(k, l)-th factor, have a residual form through the quadratic
approximation step; for example, the message toward the
variable index (a, ji) is expressed as

ra,kl→ji = ykl − PΩ {
∑

j′i′ 6=ji
ai′j′aj′i′xa,j′i′→kl

+
∑

ji∈Λ
aijajixb,ji→kl } . (9)

ii) We can drop the directional dependency upon the destina-
tion index (a, ji) in (9) by decomposing the residual message
ra,kl→ji into a form of “pure residual + directional correction”
under the large limit M,N →∞, i.e.,

ra,kl→ji = rkl + δra,kl→ji

= ykl − PΩ{
∑

ji∈Λ
aijaji(xa,ji→kl + xb,ji→kl)}︸ ︷︷ ︸

=rkl

+ aijajixa,ji︸ ︷︷ ︸
=δra,kl→ji

, (10)

where the correction term δra,kl→ji has the order of
O(N−1/2). The above two arguments equivalently hold for
the factor messages toward the index (b, ji). Therefore, the
pure residual rtkl ∈ Rt is independent of the index of the
destination variable, enabling the residual sharing in the two
disjoint iteration.

The MixAMP incorporates two distinct denoisers, denoted
by ηa(·), ηb(·), according to sparsity types in the mixture
Xa+Xb. These denoisers undertake the sub-optimization tasks
given in (6), generating the MAP estimate Xt

a,X
t
b at every it-

eration. Hence, choice of the sparsifying priors, fXa
(·), fXb

(·),
determines functional form of the denoisers; for some choices,
we may need to utilize external numerical solvers for the
denoiser implementation due to analytical difficulties of the
prior exponent e.g., non-scalability and non-smoothness. This
denoising concept of MixAMP is analogous to the shrinkage in
the context of iterative shrinkage-thresholding (IST). However,
they are different in that the MixAMP denoisers shrink Xt

a,X
t
b

in the domain of Ta and Tb respectively, whereas the shrinkage
operator of IST takes soft-thresholding in the standard domain.

III. CASE STUDIES FOR 2D SPARSITY SEPARATION

This section provides an exemplary comparison of the
MixAMP and the TFOCS [7] methods for two different cases
of the sparsity separation. In each case, we first introduce de-
noisers applied to the MixAMP method, and then we provide
the separation example. We inform that the TFOCS method
is not directly applicable to the 2D model (1), which should
be accompanied by the vectorization of (2). This comparison
is based on the standard Gaussian matrix A whose entries
are i.i.d. drawn from N (0, 1

M ), and MATLAB 2014a with a
2.67-GHz Intel Quad Core i5 was used to generate the results.
In addition, we stop the MixAMP and TFOCS iteration when

tol :=

√
||Xt−1

a −Xt
a||2F +||Xt−1

b −Xt
b||

2
F√

||Xt
a||2F +||Xt

b||
2
F

≤ 5× 10−4 is met.

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

TFOCS Separation of Xb

Sparse Mixture Xa+Xb

MixAMP Separation of Xb

MixAMP Separation of Xa TFOCS Separation of Xa 

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

70% Sampling for Y
5% sparsity of Xa

MixAMP

TFOCS

Solver
Type

PSNR 
of Xb
<dB>

Runtime
<sec>

45 10tol  

74.20

26.83 2.02

26.69

Fig. 2. An exemplary comparison of MixAMP and TFOCS in the direct-and-
group sparsity separation where we reconstruct a 128× 128 QRcode image
Xb by removing shot noise Xa (5% sparsity) given the measurements Y with
70% sampling (M/N = 0.7). Here, we set ε = 10−10, λ1 = 0.5, λ2 = 1.2
for the TFOCS method (13).

A. Separation of Direct and Group Sparsity

We consider separation of a 2D direct-and-group sparse
mixture. For the direct sparsity denoiser, we apply the soft-
thresholding which has been the most widely used because of
its simplicity [9]. Let Xa ∈ R

√
N×
√
N have the direct sparsity.

Then, we can estimate Xa,ji ∈ R via a scalable denoiser
ηa(·) : R→ R, given by

x̂a,ji = ηa(x; θ) := arg min
Xa,ji

|Xa,ji|+
λ

2
(Xa,ji − x)2

= sgn(x) max{|x| − θ, 0}. (11)

In (11), the input x ∈ R is a Gaussian variable corresponding
to the second term of the posterior function (7). This Gaussian-
ity let the denoiser to solve a penalized least squares problem,
which is common in the AMP denoisers. In addition, it is well
known that the soft-thresholding is based on the Laplace prior;
therefore, we have log fXa

(xa) = ||Xa||1 in (7).
We adopt the block soft-thresholding for the group spar-

sity pursuit [10]. Let Xb ∈ R
√
N×
√
N have the group
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sparsity. Then, the block soft-thresholding denoiser, ηb(·) :

R
√
B×
√
B → R

√
B×
√
B , is given by

x̂b,B = ηb(xB ; θ) := arg min
Xb,B

||Xb,B ||F +
λ

2
||Xb,B − xB ||2F

= xB ·max{1− θ||xB ||−1
F , 0} (12)

where the input xB ∈ R
√
B×
√
B is a block matrix such that the

signal Xb is partitioned into N/B square blocks with the size
B. Specifically, this block denoiser makes its block argument
xB to a zero matrix if ||xB ||F ≤ θ, otherwise diminishing
it by the quantity θ to the origin. In addition, this block
thresholding is related to a block Gaussian prior; hence, we
have log fXb

(xb) =
∑

All blocks ||Xb,B ||F from (8).
Fig.2 displays a separation example by MixAMP and

TFOCS, where we reconstruct a 128 × 128 QRcode image
Xb by removing shot noise Xa given the measurements Y
with 70% sampling (M/N = 0.7). The QR code refers to the
group sparsity part of the mixture image, while the shot noise
models the direct sparsity part. In the TFOCS method, we
recast (3) to Combining-L1-and-Group minimization, solving

min λ1||Xa||1 + λ2

∑
All blocks

||Xb,B ||F

s.t. ||Y − PΩ{A(Xa + Xb)A
T }||F ≤ ε

(13)

where ε, λ1, λ2 ≥ 0 are calibration scalars. The result of Fig.2
reports that MixAMP is much faster than TFOCS in CPU
runtime while providing comparable reconstruction quality in
PSNR.

B. Separation of Direct and Finite-Difference Sparsity

We present another case by introducing finite-difference
(FD) sparsity, then addressing a separation problem with a
direct-and-FD sparse mixture. For the FD sparsity pursuit,
we apply the total variation (TV) denoiser [10] which has
been investigated by the numerous literature (see for example
[12]). The TV denoiser is neither scalable nor block-separable
because the FD sparsity cannot be defined by a single scalar
of the signal, but depending upon all the adjacent of the scalar.
Let Xb ∈ R

√
N×
√
N have the FD sparsity. Then, we consider

the TV denoiser, ηb(·) : R
√
N×
√
N → R

√
N×
√
N , which solves

x̂b = ηb(x;λ) := arg min
Xb

||Xb||TV +
λ

2
||Xb − x||2F . (14)

It is recognizable from (8) that the TV norm ||Xb||TV is the
exponent of the sparsifying prior such that log fXb

(xb) =
||Xb||TV. For the implementation of (14), external numerical
solvers have been mostly considered since the TV norm is
analytically non-scalable and non-smooth [10].

In Fig.3, we simultaneously estimate a shot noise Xa (10%
sparsity) and a 128 × 128 Cameraman image Xb from the
2D measurements Y with 50% sampling (M/N = 0.5). In
this example, we postulate that the Cameraman image has
the FD sparsity and the shot noise is directly sparse. For
the MixAMP separation, we apply the soft-thresholding (11)
for Xa, implementing the anisotropic TV denoising (14) for
Xb using the 2D-Bregman iteration (Section 4 of [8]). In

50% Sampling for Y
10% sparsity of Xa

MixAMP

TFOCS

Solver
Type

PSNR 
of Xb
<dB>

Runtime
<sec>

45 10tol  
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23.16 59.74

23.68
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Fig. 3. An exemplary comparison of MixAMP and TFOCS in the direct-
and-FD sparsity separation where we simultaneously estimate a shot noise
Xa (10% sparsity) and a 128 × 128 Cameraman image Xb from the 2D
measurements Y with 50% sampling (M/N = 0.5). Here, we set ε =
10−10, λ1 = 2.0, λ2 = 1.4 for the TFOCS method (15).

the TFOCS method, we recast (3) to Combining-L1-and-TV
minimization, solving

min λ1||Xa||1 + λ2||Xb||TV

s.t. ||Y − PΩ{A(Xa + Xb)A
T }||F ≤ ε.

(15)

Likewise to the example in Section III-A, the result of Fig.3
validates the computational advantages of MixAMP where
MixAMP is approximately 2 time faster than TFOCS for
the same task. The scale difference of the runtime gap from
the result of Section III-A is coming from the fact that the
Bregman-TV denoiser (14) requires more computations than
the block soft-thresholding (12) does.

These two comparison results support our claim that Mix-
AMP outperforms the TFOCS method in computational effi-
ciency under the 2D sparse signal separation task.

IV. CONCLUSIONS

In this letter, we have discussed the MixAMP method for
the ill-posed L1-Split-Analysis, applying the 2D sparse signal
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separation problem. We first have developed the MixAMP
method based on the factor graphical model of the 2D CS
measurement model (1). Then, we have provided two cases of
the study for the sparsity separation, validating the computa-
tional advantages of MixAMP through exemplary comparisons
to the conventional first-order method, TFOCS [7]. Therefore,
we claim that MixAMP is a very good alternative of the
TFOCS method for solving the L1-Split-Analysis in the 2D
sparse separation problem.

SUPPLEMENTARY MATERIAL

A. 2D Compressed Sensing Model (1): A Practical Viewpoint

In this letter, we consider “the compressed sensing (CS)
technique” with the model (1). The model (1) requires two-
steps for the CS measurement generation of Y as shown in
Fig.4: 1) linear mixing in two perpendicular axes by AXAT

and 2) undersampling by PΩ{·}. One can argue that this two-
steps generation makes us to lose an advantage of CS which
generates Y in the first place. Nevertheless, we state that this
two-step generation is useful because of two practical reasons:

1) For fast measurement generation with unitary matrices
A: The model (1) can provide an accelerated gen-
eration of Y when the matrix A is some unitary
types. For instance, this acceleration utilizes Fast Co-
sine Transform (FCT) when A is the DCT matrix,
and Fast Fourier Transform when A is the Fourier
matrix. Here, we consider the DCT case as an example.
Let ADCT ∈ R

√
N×
√
N denote the DCT matrix and

AsubDCT ∈ R
√
M×
√
M is a sub-DCT matrix whose rows

are randomly sampled from ADCT. The conventional CS
generation, expressed as

Y = AsubDCT XAT
subDCT ∈ R

√
M×
√
M , (16)

spends O(NM
1
2 ) computations due to the matrix multi-

plications. Compared to (16), the FCT-based generation
with the model (1), i.e.,

Y = PΩ{ADCT XAT
DCT},

= PΩ{FCT2D[X]} ∈ R
√
N×
√
N , (17)

is computationally efficient with O(N logN
1
2 ); there-

fore, its efficiency gets remarkable as the system size N
increases. In addition, it is obvious that the FCT method
is not applicable with the sub-DCT matrix AsubDCT.

2) Use of a random decimation operator instead of PΩ{·}:
In practice, the random undersampling operator PΩ{·}
can be simply replaced by a random decimation operator.
Then, the samples of Y can be stored to a memory
with the size M by holding the knowledge of the set
Ω. In this case, however, we need an inverse operator
of the decimation operator to calculate ATRA for the
MixAMP method.

B. Hardship of Sparse Separation Problem

The sparsity separation, handled in this letter, is basically
harder problem than the conventional single sparsity recovery.

This is because the sparsity separation includes not only
the reconstruction of the mixture signal X from the CS
measurements Y, but also the separation of the two sparsity,
Xa and Xb, from the mixture X. We can look at this hardship
of the sparsity separation by simple manipulation from (1):

Y = PΩ

{
[A|A]

[
Xa

Xb

]
AT

}
, (18)

From (18), we can reasonably conjecture that the reconstruc-
tion of the concatenated signal [Xa|Xb]

T from Y requires
larger M than the single sparsity recovery does. In addition,
while revising this letter, we became aware of a theoretical
work of Studer et al. [16] which supports our conjecture by
providing a coherence-based sufficient condition for recovery
guarantees of Xa and Xb.

Naturally, the reconstruction quality of the sparse separation
gets better as the sampling rate M/N increases. In Fig.5,
we provide an extended result of the Xb reconstruction in
the directed-and-FD sparsity separation (Section III-B) for a
variety of M/N . From the figure, we see that the both methods
improve their reconstruction quality given a higher M/N .
This result also shows that although the TFOCS method has
a small lead in the reconstruction quality as M/N becomes
higher, the MixAMP method is still remarkably advantageous
in computational cost.
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Fig. 4. An example of 2D CS measurement generation in the model (1), where we consider the DCT matrix A and the 128× 128 Cameraman image as
the 2D target signal X. First, the signal X is linearly mixed in two perpendicular axes by the DCT matrix A, generating AXAT. Second, the measurement
Y is produced by applying the undersampling operator PΩ{·} to AXAT.

M/N=0.7 M/N=0.8 M/N=0.5 M/N=0.6 

MixAMP 

TFOCS 

PSNR 23.16 dB    23.35 dB  24.50 dB 24.74 dB 

PSNR 23.68 dB    25.42 dB  26.13 dB 26.54 dB 

Runtime 59.74 sec   51.56 sec 59.28 sec  65.47 sec 

Runtime 122.50 sec   163.57 sec 160.29 sec  169.51 sec 

Fig. 5. Extended numerical result of the directed-and-FD sparsity separation in Section III-B: In this figure, we only plot reconstruction of the 128× 128
Cameraman image Xb for a variety of the sampling rate M/N . The others for the experimental setup remains the same as Section III-B. For the TFOCS
method (15), we use empirically-tuned parameter set (λ1, λ2, ε).
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