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A Deterministic Analysis of Decimation for
Sigma-Delta Quantization of Bandlimited
Functions

Ingrid Daubechies and Rayan Saab

Abstract

We study Sigma-DeltaX{A) quantization of oversampled bandlimited functions. Wevpr
that digitally integrating blocks of bits and then down-gdimg, a process known as decimation,
can efficiently encode the associat®d\ bit-stream. It allows a large reduction in the bit-rate
while still permitting good approximation of the underlgitbandlimited function via an appropriate
reconstruction kernel. Specifically, in the case of staftte order A schemes we show that the
reconstruction error decays exponentially in the bit-r&tw example, this result applies to the 1-bit,
greedy, first-ordeE2A scheme.

I. INTRODUCTION

Analog-to-digital (A/D) conversion is the process by whisignals (viewed as vectors) are rep-
resented by bit streams to allow for digital storage, trassion, and processing using modern
computers. Typically, A/D conversion is thought of as bedognposed of sampling and quantization.
Sampling consists of collecting inner products of the sigmi#éh appropriate vectors. Quantization
consists of replacing these inner products with elemeots fa finite set, known as the quantization
alphabet. Often, quantization is followed by some form afaaing or compression, in order to reduce
the size or bit-rate of the digital data. A good A/D schemevadl for accurate reconstruction of the
original object from its quantized (and compressed) sasad#@gma-Delta XA) quantization was
proposed in the 1960'6][1] as a method for digitizing bandéoh functions. In factyA quantization
schemes remain in use today, in large part due to their rmobsstto errors caused by circuit
imperfections, but also due to their ability to trade-offagtizer bit-depth and oversampling (cf.
[2)).

In the context of bandlimited functions, oversampling —gled with an appropriat& A quanti-
zation scheme— enables one to use coarse (even binary)zatam alphabets, such a&:= {+1},
and then to reconstruct the function accurately from thelltast bit-stream. In particular A
schemes have been deviséd [3], [4] whereby the reconsiruetiror, measured in thé> norm,
decays exponentially fast in the oversampling rate. Spadlfi [3] and [4] each devise a family
of sophisticated>A schemes parametrized by an oraderand choose an appropriate scheme (from
this family) by optimizingr as a function of the oversampling rate. Working with the almdt
A = {1}, and denoting the oversampling rate bythe best known reconstruction error guarantees
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(see [[4]) behave lik&—<*, with ¢ ~ 0.1. In this context, since the size of the alphabet is fixed, the
bit-rate resulting fromXA quantization is proportional to the oversampling rate. €&muently, the
reconstruction error of [3] and][4] decays exponentialkt faith the bit-rate, albeit with a sub-optimal
coefficient in the exponeft.

In this note, we prove that using any stabth orderX A schemes, with an arbitrary integer> 0
(including the1st order, greedyyXA scheme defined below) followed by a simple encoding step,
we can always reconstruct a bandlimited function from itsogled bit-stream with a reconstruction
error that decays exponentially fast in the bit-rate. Mesgpwe obtain a near-optimal coefficient in
the exponent.

A. Preliminaries
We define the Fourier transfornf, of f € L?(R) via

o0

£ 1 —iwt
flw) = E_é f(t)e™ ™ dt.

The inverse Fourier transform is then given by

f(t) = J% / f(w)etdo.

In this note we are interested in bandlimited functighs L?(R) with |f(#)| < 1 and with Fourier
transform vanishing outside the intenvatr, 7]. We denote the set of such functions By. The
classical sampling theorem yields a method of reconstrgain arbitraryf € B, perfectly from its
so-called Nyquist rate samplggn),n € Z. In particular,

Zf 5111 t—n)). )

nez m(t —n)
Nevertheless, sampling at this Nyquist rate is rarely dargractice because the reconstruction kernel
w decays too slowly. This implies that if one were to recoredtiwith “noisy” samples
f(n)+e, (instead of withf(n) in (@) large, possibly unbounded, reconstruction errangle result,
even if ¢, were bounded. This makeEl (1) unsuitable for reconstrudiiom quantized samples.
Instead, one may revert twversamplingi.e., collect the sampleg(n/\) for some\ > 1 and then
reconstruct via the formula .

=32 F/ gt =n/N), ©)

nez

whereg is a function withg € C*, §(w) = \/127 for |w| <7 andg(w) = 0 for |w| > Axr. With these

sampling and reconstruction schemes, it can be seen (§ftHa] the reconstruction error induced
by small errors in the sample values is small. In the worsecadgs proportional to the error in the
samples. On the other hand, in the quantization setting asedbntrol over how the samplgén/\)

are replaced by elements frod, so one can do significantly better.

For example, given a bit-rate of bits per Nyquist interval, one can obtain exponential deéoay (with a much better,
essentially optimal (see, e.g.l [3]), coefficient in the @xgnt) by sampling at slightly higher than the Nyquist ratel a
replacing the samples by their binary approximations. hti@aar, theL>° error isO(2~*). On the other hand, this method
is not robust to errors in assigning the bits (Ef. [2]).



B. YA quantization and prior work

One-bit, first order, greedy.A quantization produces bit@(f) e {-1,1} via@ the following
recursion, with initial conditionug, |up| < 1:

gtV = sign(uy—1 + f(n/X))., 3)

Up = Up—1 + f(n/)‘) - QSLA)' (4)
One can see, by induction, thiat,| < 1 for all n. Moreover, using this scheme for quantization and
the functiong in (2) for reconstruction, we have (see [2])

)= > aMglt —n/N)| < Cy/A.

nez

To generalize the abovEA scheme, let- be a positive integer and denote py: R"*! — R the
“quantization rule”. One can then define atlh orderA scheme via the recursion:

a5 = sign(u(f (n/A), w1, tn-2, ... un—r)) ©)

(ATu)y = f(n/X) = a, (6)

where the operation of the difference operatoon a sequenck is defined by(Ah),, := h, —hy,—1;
(@) is equivalent to

=10 = =3 (1) Dy @

7j=1
An important issue in the design and analysis of higher osdeemes is ensuring that the sequence
uy, is uniformly bounded via a proper choice @f Thus, we say that arth order>A scheme is stable
if [ullcc < Csa Wheneverf(n/A)| <1 for some constanf’s;a that may depend on. Daubechies
and DeVore [[2] proposed the first family of stabig\ quantization algorithms and used them to
obtain error bounds of the form

)= aMglt —n/N)| < Cr) /N
nez
By choosing the optimat()\), they also derived the improved estimate
)= aMg(t —n/N)| < Camelosd,
nez
Guntirk [3] proposed a different family afA schemes and used them to obtain the bound
Zq —n/A)| <27
nez
with ¢ & 0.07, again by choosing the orderas a function of\. Deift et al. [4] improved this result

by obtaining the coefficient ~ 0.102 in the exponent.
For the case of constant input to th&A quantization, there has been some work (cf. [5]-[7])

2Here and throughout, we use the superscxipo indicate the oversampling rate at which a discrete semuEnobtained.



seeking upper bounds on the number of possiide bit-sequences of lengtv. For example[[b]
showed that asymptotically, for first-ord&rA schemes, the number of such sequenced(i&?).
These sequences can be represented by binary labels oh lexigte(N)) while still enabling a
reconstruction error of /N. However, no analogous bound is known for bandlimited fiomst

In practice, when working with oversampled A/D conversiébandlimited functions, it is common
to incorporate a so-called decimation step (see, €.¢)., [@))s process reduces the bit-rate by
mapping blocks of quantized samples (obtained at a highsawepling rate) to elements from a
codebook (another finite set). An analysis of such techsiguas given by Candy [8], under the
simplifying (albeit generally false) assumption thaf\ quantization introduces random “noise” that
is uncorrolated with the input. The conclusion [8], bagwd the randomness assumption and
numerical experiments, is that decimation can produce dtiandecreases in the bit-rate without
compromising the quality of approximation. In this note, previde a rigorous mathematical analysis
of decimation, with the same conclusion.

II. MAIN RESULT

We prove that by digitally integrating blocks of bits progdcby one bit,rth order, stablexA
schemes —a process known in the engineering community amaléen [§]— we can reduce the
number of bits per Nyquist interval fromh to approximatelyrlog \. We prove that this still allows
for an approximation error that decays likg\", albeit via a different reconstruction kernglthan
that of [2). In other words, we show exponential decay of thpraximation error as a function of
the bit-rate, with a near-optimal exponent.

To make the discussion more concrete, let us start with sogfiaitibns. For a sequendg and
positive integers:, p > 1, define therth order partial sums

p

1
Th o= T*lh e
1 X
= Sy h)m
where (Soh) := hy,. For a bit- sequencq(” generated from amth order XA quantization of a
bandlimited functlon and for an integer< =1, we are interested in the integrated bit sequence

(S;q(”)n, as well as its decimated (subsampled) version

G )

- )= (Spq >(2p+1)n.

We prove the following theorem.

Theorem 1. Suppose thaf is in B, , p € NN (1,251), and define\’ :=
are true of 1-bit stable-th order XA quantization.

5 +1 Then the following

(i) There exists a functiop such that

5 S5 —n/X) — S <

nez




(i) To encode(jﬁlx), one needs at most log, ((2p +1)" + 1) bits per Nyquist interval where

Nlogy (204 1)" + 1) < XN'log, (2(;) )=:R.
Consequently

D(R) = 205ACT27 R/, (8)

Here C' > 1 is a constant independent af A’ andr. Cxa is a constant that depends on the scheme
(i.e., possibly on).

Remarkl.1 As )\ grows, we may select a progressively largeso that in the limit\" approaches
1. Hence the claim about near-optimality.

Remarkl.2 Examining the proof of the theorem (below), one should be ablextend the proof
without too much difficulty to the case of multi-bit quantiwan. For ease of exposition, we refrain
from doing this in this note.

I1l. PROOF OFTHEOREM[I]

Proof: We will begin by proving (i). Our goal is to bound the error

5 @~ n/x) - 1) ©)

nez

€ =

To that end, let us first define the sequerﬁg”é*))n := f(n/)\). Using the triangle inequality, we
havee < e; + ey Where

1 N . .
€1 = v Z (q,(f‘) - (Spf()\))(2p+1)n)g(t - n/)\’)
neEZ

1
. TN _ (N Lot — !
A’n%(s”(q 1) oy 8= 1/X)

and )
2= |55 20 (S55™) iy 3 — /X = (1)

nez
The remainder of the proof will consist of boundiag and showing that there exists a functign
for which e; = 0. Along the way we will specifyg.

To bounde;, we first define, for an integep, the difference operatora,, and Ap by their
actions (Apx) = Tpyp — Tp—p—1 and (Apx) = Tp — Tni2p+1, FESpectively. One easily checks
that S;A = T{JLAAP and similarIyS;A’“ = (Q;T)TA;, WhereA; = (AP)T. For convenience, we
introduce the notation(gix])n := g(t —n/)\) and observe tha@w)n = (gtw)@pﬂ)n. Using the
YA state equationg]5)](6), and then reindexing we can write

1 1 " , Y
Y <2,0—|—1) Z(Ap“)(2p+1)n(9t ), (10)
nez
1 /NV\" Y
=|v <X> Zun(2p+l)+p(AOg£ })n (11)

nez

1 )\/ T 1\r—1 1
< LAYy 0 e |
= 7 <)\> ()\/) Hg HL1HU||<>0 )\THQ ||L1||uHoo (12)



The last inequality is due to (the proof of) Proposition 311[2]; the notationj(") stands here for
the rth derivative of the functiorg. We shall now turn to controllings, and return to the right hand
side of [12) shortly.

To bounde,, let us first extend the use of our notation for partial sumshat for integers > 1,

(STF)(t) == ﬁ i (S™L1f)(t — m/)\) where(SYf)(t) = f(t). Thus, taking Fourier transforms

m=-=p
o sin(3BHw) e sin(ghw) s
) = <(2,0+ 1)sin(%w)> flw) = (m) f(w). (13)
Let h(w) € O satisfy
17 w=~0
iL(w) = Asin(3e) \w[ <7 (14)

N sin(g7w)’

0, lw| > N7.

Since f is compactly supported, using Fourier series we have

(STf)(w) =D ene™ N g(w). (15)
nez
whereg € O, j(w) = \/%7 for |w| <7, g(w) = 0 for |w| > N'7. Here,
7 1
tn = VamX / (S7 ) (w)e“nN duw = Y(Srf)(n/)\').
—7\
Thus, we deduce that
1 TA ] TA
= — [ fwetdw = — [ (57 (w)h(w) e™td 16
1) = o= [ fedo = —= [ ENwhwr e (16)
—TA -7
1 T
= D (S (/N e N h(w) g w)e ! du (17)
\/ﬂ)\,_l\ nez
1 1 T
— S )\/ . / B ra iw(t—n/)\’)d ] 18
% 2 SN/ J e z (18)

Let h,(t) be the inverse Fourier transform bf(w) and denote byj(t) := (g h,)(t) the convolution
of g andh,. We now have thaf (t) = + >, (S"f)(n/N)g(t—n/N), i.e., thate; = 0. To conclude
the proof of (i), we note thallg™ ||, = 19 * hllz, < 119" ||z, |hr]lz, < C"N" where the last
inequality is a direct consequence of Lemima 2 below and tbietffet |¢(")||,, can be treated as a
constant. Noting thafu||.. < Cxa completes the proof.

To prove (i), note that the sum @p+ 1 elements each taking on valuesf{ift1}, is an odd integer
in [—(2p +1),2p + 1]. There are2p + 2 such integers, so each element of the sequéhige") can
be encoded usinpg,(2p + 2) bits. Similarly, the sum op + 1 odd integers if—(2p+1),2p + 1],
is an odd integer if—(2p + 1)2,(2p + 1)2]. There are(2p + 1)? + 1 such integers. Proceeding in
this fashion, we see that eatj&i\/) can be encoded usirgg, ((2p +1)" + 1) bits. Moreover, note



that due to decimation, for evety original ©A bits of ¢/*) there are\ = 5T +1 elements ofj®"
The rate-distortion relationship then follows by combaif) and (ii). O

APPENDIX
Lemma 2. Let ¢y(w) be in C> and bounded, withb(w) = 1 when|w| < 1 and ¢o(w) = 0 when
w| > ¢ for some fixed: € (1,00). Defined(w) = ¢o(2). Let X' > ¢, let hy(w) = ;ZEEQ)), and
define

2)7

h(w) = ho(w)(w) = ho(w)do(w/). (19)

Then||hlz, = [ |h(t)|dt < CX whereC depends on,. Consequently, for any > 1, denoting
by h,.(t) the inverse Fourier transform df" (w), we havel|h, ||z, < C"\".

Proof: Note that

[e%) 1 [e%) 1 N ~ )
h(t)|dt = (/ h(w)etd (dt

1 00 1 N7 . )
b —(/ 27 (w)e“t d ‘dt. 20
= /_ ][ Pt (20)

We will proceed by bounding each of the summands on the rightitside separately. The first term
is controlled by

w W
[e.e] A

< 1 T
< — N0y dt < ——Cy N,
T V2 ) P+ 1 G = V2 b

whereC,, = sup |¢o(w)| and the first inequality is due to the boufig(w)| < /2 when|w| < \'r.
To control thewsecond term, we observe that

1 * 1 AT 27 iwt
T o ‘ N t“h(w)e dw‘dt
1 > 1 AT B( )( iwt)//d dt
= — - w)(e w
V2 t2 +1 ‘ ‘
< / t — ‘ / h// zwt dw _ h/(w)eiwt i’;\r/ﬂ
< ([ e

Above, the first inequality is due to integration by parts phrticular,

dt

I (w)e™ N T

)dt. (21)

N7 N7
/ h(w)(e™")"dw = h(w) (€)X — / H (w)(e™!) dw
=\ -\
~ . , A ~ .
=0 — h(w)e T+ /)\ B (w) (") dw.



Thus
zwt
\/_/ t+1‘/ dw| dt 22)
_\/_/ 2)\'7TCh//+2CA,)dt
< V2N h,,+CA,), (23)

where the constants satisty;, > |h”(w)| for all w € [-\'7, N7] and C;, > |I'(w)] for all w €

[ N7, N7).
To computeC;,, we observe that the functiol(w) := A SIH(W)C(;SA(,Z*S?;?EISZ)COS(W) achieves
227

its maximum absolute magnitude ¢a\ 7, \'7] at +\'7. Denoting this maximum by’;, we have

COS

Ci = Q;A g =, since)’ > 1. Similarly, one can verify thafa{)’(w) achieves its maximum amplitude
n [—XNm Nrx| at +\'7. A simple evaluation then reveals that the maximum, dentted’,, is
in(TA ) (A2 N2 . . ~

i(%&#. Using thatsin(z) < z, we observe thatC; < x/8. Next, observe thap(w) =

¢o(w/N'm) thus

(AN
= =
S~
E
RS
o
&
~
3
+
=
o

ho(w) 6 (w/m) /7|

IN
|
s
4
| N

whereCy, = sup |¢)(w)|. Similarly,

|2 (@)] = |(ho(w)(w))"|
< |7 (w)do(w/m)| + 120 (w) b
)

(w/m)/7] (24)
+ Vlo(w) 95 (w/m)/ (m)*

A\
s
_|_
|

where Cyy = sup |¢](w)|. Substituting the above bounds off (w)| and |7”(w)| into (23) and
then combining the result with (1) and {20) yields the d=kiresult on||k||,,. The statement on
||h ||z, follows by observing that:, is the convolution ofh with itself » times. Ash is in Ly,
1Bz, < IR, - O
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