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Robust Design of Transmit Waveform and Receive
Filter For Colocated MIMO Radar

Wei Zhu and Jun Tang

Abstract—We consider the problem of angle-robust joint trans-
mit waveform and receive filter design for colocated Multiple-
Input Multiple-Output (MIMO) radar, in the presence of sign al-
dependent interferences. The design problem is cast as a max-
min optimization problem to maximize the worst-case output
signal-to-interference-plus-noise-ratio (SINR) with respect to the
unknown angle of the target of interest. Based on rank-one
relaxation and semi-definite programming (SDP) representation
of a nonnegative trigonometric polynomial, a cyclic optimization
algorithm is proposed to tackle this problem. The effectiveness
of the proposed method is illustrated via numerical examples.

Index Terms—MIMO radar, optimization, receive filter, robust
design, waveform design.

I. I NTRODUCTION

Due to many advantages over conventional phased-array
radar [1]–[4], multiple-input-multiple-output (MIMO) radar
has been widely studied over the last decade. For both colo-
cated [2] and distributed MIMO radar [5], one of the most
crucial problems is how to design probing signals properly.
Existing design approaches can mainly be classified into five
categories according to the criteria adopted: 1) optimizing
the radar ambiguity function [6], [7]; 2) matching a desired
beam-pattern [8]–[11]; 3) optimizing the detection or estima-
tion performance based on information theory [12]–[15]; 4)
optimizing an estimation-oriented lower bound (e.g., Cramér-
Rao bound [16] and Reuven-Messer bound [17]) and 5) joint
transmit waveform and receive filter design to maximize the
signal-to-interference-plus-noise-ratio (SINR) [18]–[21].

This letter focuses on the last design approach for colocated
MIMO radar. In this design framework, joint transmit and
receive beamforming is investigated in [19] for an active array
in the presence of signal-dependent interference. A sequential
optimization algorithm is proposed to maximize the output
SINR. In [20], joint transmit waveform and receive filter
design is considered under the constant modulus and similarity
constraint. Both works rely on exact knowledge of target
and interferences. Indeed, the angle and INR of interferences
can be obtained from knowledge-aided methods or estimated
through previous scans of the space in high INR cases [22],
[23]. The known target angle assumption can be applied to
the confirmation of an initial detection at some angle bin [24].
However, there are other situations where the target angle is
unknown (e.g., weak target embedded in strong interferences),
and the SINR should be averagely optimized over the uncertain
area to avoid beampattern loss [4]. Hence, angular-robust
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design must be considered and the robust design can also
be used as an initial step for cognitive detection. In previous
works [24], [25], robust waveform design has been studied for
interpulse (or intrapulse) coding in radar by considering the
unknown Doppler shift of target. Motivated by these works,
we consider the problem of angular-robust design for colocated
MIMO radar in the presence of signal-dependent interferences,
which are induced by the interaction of transmit waveform
with unwanted scatters. Based on the SINR criterion, transmit
waveform and receive filter are jointly optimized to maximize
the worst-case output SINR. Since the resulting problem is
non-convex, cyclic optimization [26] and semi-definite relax-
ation (SDR) [27] are used to solve it. Although the cyclic
optimization converges to a locally optimal solution, it still
can yield a good enough solution with higher worst-case SINR
than the non-robust design, as illustrated in section IV. This
is fundamentally different from the optimization problem in
parameter estimation, in which the local convergence may
significantly deteriorate the accuracy of estimation. SDR is a
powerful approximation technique to solve a host of difficult
non-convex problems with rank constraints. It is commonly
used in radar signal processing problems, e.g., [22]–[25].

Notations: Matrices are denoted by bold capital letters, and
vectors by bold lowercase letters.(·)T , (·)c and (·)H denote
the transpose, conjugate and conjugate transpose, respectively.
‖ · ‖ denotes Euclidean norm.⊗ denotes Kronecker product.
IL meansL×L identity matrix.R andC denotes the sets of
all real numbers and complex numbers, respectively.δ(·) rep-
resents Kronecker delta function.vec (·) denotes vectorization
operator.Re {·} denotes the real part of the argument.

II. PROBLEM FORMULATION

Consider a colocated MIMO radar system equipped with
NT transmitters andNR receivers. Both the transmit and re-
ceive arrays are assumed to be uniform linear arrays with half-
a-wavelength element-separation. LetS ∈ CNT×N denote
the transmitted waveform matrix, whereN is the number of
samples in the duration of the transmitted waveform. For a
particular range cell of interest, the received waveform matrix
Y ∈ CNR×N from NR receivers is corrupted byK signal-
dependent interferences (e.g., other targets in a multi-target
scenario [23]) from adjacent range cells with the additional
noise, and is modeled as

Y = α0ar (θ0)at (θ0)
T
S+

K∑

k=1

αkar (θk)at (θk)
T
SJrk +N

where
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• α0 andαk are the complex amplitudes of the target and
the k-th interference source, respectively.

• θ0 andθk are the direction of arrivals (DOA) of the target
and thek-th interference source, respectively.

• ar (θ) ∈ CNR×1 is the receive steering vector defined by
ar (θ) ,

[
1, ejπ sin(θ), · · · , ejπ(NR−1) sin(θ)

]T
.

• at (θ) ∈ CNT×1 is the transmit steering vector defined
by at (θ) ,

[
1, ejπ sin(θ), · · · , ejπ(NT−1) sin(θ)

]T
.

• Jrk , rk ∈ {−N + 1, · · · ,−1, 0, 1, · · · , N − 1} is anN -
by-N shift matrix with (l1, l2)-th elementJr(l1, l2) ,

δ(l1 − l2 − r). rk is the range cell index of thek-th
interference source relative to the range cell of interest.

• N is spatially and temporally white circularly symmetric
complex Gaussian noise with mean zero and varianceσ2.

Let y = vec (Y ), s = vec (S) and n = vec (N). The
vectorization form of the measurement model is given by

y = α0A(θ0)s+
K∑

k=1

αkB(θk)s+ n (1)

whereA(θ0) = IN ⊗
[
ar (θ0)at (θ0)

T ] andB(θk) = JT
rk ⊗[

ar (θk)at (θk)
T ]. The SINR at the output of the receive filter

w ∈ CNRN×1 is given by

X (s,w, θ0) =
SNR

∣∣wHA(θ0)s
∣∣2

wHΣI(s)w +wHw
(2)

where ΣI(s) =
∑K

k=1 INRkB(θk)ss
HB(θk)

H with the
signal-to-noise-ratio (SNR) of target and the interference-to-
noise-ratio (INR) of k-th interference defined asSNR ,

E
{
|α0|2

}
/σ2 and INRk , E

{
|αk|2

}
/σ2, respectively.

We assume that the angle and the INR of the interferences
are all known or previously estimated, as with prior works
[19], [20], [23]. We assume that the angle of target under test
is known to lie in an angular sectorΩ = [θC −∆θ, θC +∆θ]
centred aroundθC , where∆θ indicates the level of angular
uncertainty. The goal is to maximize the worst-case SINR
to improve the worst-case detection performance, under the
waveform energy constraint‖s‖2 = E. Therefore, the robust
design of transmit waveform and receive filter can be formu-
lated as the following max-min problem:

max
s,w

min
θ0∈Ω

X (s,w, θ0) subject to ‖s‖2 = E (3)

Note that for the case of known target angle, (3) reduces to
the optimization problem in [19].

III. M AX -M IN ROBUST DESIGN ALGORITHM

In this section, we shall present our algorithm to solve
the problem (3). To begin with, we make some mathematical
transformations to the objective function of the optimization
problem. DefineW ∈ CNR×N such thatw = vec (W ).
Let p(ν) = [1, ejν , · · · , ejν(L−1)]T with L = NR + NT − 1

and ν = π sin(θ0). Let H = [H̃T
1 , H̃

T
2 , · · · , H̃T

NR
]T where

H ∈ RNRNT×L, H̃k ∈ RNT×L, k = 1, · · · , NR, and the
(m,n)-th element ofH̃k is defined byH̃k(m,n) , δ(n −
m−k+1). Then, one can easily show thatar (θ0)⊗at (θ0) =

Hp(ν). According to the property of Kronecker products that
vec (CXD) = (DT ⊗C)vec (X), we can show that

wHA(θ0)s =
(
A(θ0)

Tvec (W ∗)
)T

s (4)

= vec
(
at (θ0)ar (θ0)

T
W ∗)T s (5)

=
(
(WH ⊗ INT

)vec
(
at (θ0)ar (θ0)

T ))T
s (6)

= sT (WH ⊗ INT
)
(
ar (θ0)⊗ at (θ0)

)
(7)

= vec
(
SWH

)T
Hp(ν) (8)

Then, it follows that|wHA(θ0)s|2 = p(ν)HGp(ν) where

G , HHvec
(
SWH

)∗
vec

(
SWH

)T
H (9)

Let S =
[
s1, s2, · · · , sN

]
and W =

[
w1,w2, · · · ,wN

]
.

UsingSWH =
∑N

n=1 snw
H
n , we can write

vec
(
SWH

)
=

N∑

n=1

vec
(
snw

H
n

)
=

N∑

n=1

w∗
n ⊗ sn (10)

DefineX = ssH andV = wwH with X ∈ CNTN×NTN and
V ∈ CNRN×NRN . PartitionX andV into a N -by-N block
matrix with (n1, n2)-th block denoted byX[n1,n2] ∈ CNT×NT

andV[n1,n2] ∈ CNR×NR , then it follows that

G(X,V ) = HH

( ∑

1≤n1,n2≤N

V[n1,n2] ⊗X∗
[n1,n2]

)
H (11)

where we use the notationG(X,V ) to emphasizeG
as a function ofX and V . Moreover, usingwHw =
tr (V ) tr (X) /E and wH

ΣI(s)w = tr (ΣI(V )X) with
ΣI(V ) =

∑K
k=1 INRkB(θk)

HV B(θk), it is easy to find
that the denominator of (2) can be re-written as tr

((
ΣI(V )+

tr(V )
E INTN

)
X

)
. Consequently, problem (3) can be recast as






max
X,V

min
ν∈I

p(ν)HG(X,V )p(ν)

tr
((

ΣI(V ) + tr(V )
E INTN

)
X

)

subject to tr (X) = E, X � 0, V � 0

rank (X) = 1, rank (V ) = 1

(12)

whereI = [νC−∆ν, νC+∆ν] is the corresponding uncertain
range ofν after parameter transformation.

A. Optimization with respect to X and V

Since the rank constraint in (12) is non-convex, we adopt
the commonly-used SDR technique [27] to obtain a relaxed
problem by dropping the rank-one constraint in (12):






max
X,V

min
ν∈I

p(ν)HG(X,V )p(ν)

tr
((

ΣI(V ) + tr(V )
E INTN

)
X

)

subject to tr (X) = E, X � 0, V � 0

(13)

or equivalently,




max
U ,V ,t,γ

t

subject to p(ν)HG(U ,V )p(ν) ≥ t, for ∀ν ∈ I
tr
((

ΣI(V ) + tr(V )
E INTN

)
U
)
= 1

tr (U) = Eγ, γ ≥ 0

U � 0 V � 0

(14)



3

whereU = γX. Let g =
[
g0, g1, · · · , gL−1

]T
with gl =∑N−l

k=1 G(U ,V )l+k,k, l = 0, 1, · · · , L−1. One can also show
that the constraintp(ν)HGp(ν) ≥ t in (14) is equivalent to

f(ν) = g0 − t+ 2Re

{ L−1∑

l=1

gle
−jlν

}
≥ 0 (15)

The optimization problem (14) is still non-convex and it
includes infinitely many quadratic constraints asν ∈ I. To
deal with this problem, we resort to an equivalent semi-definite
programming (SDP) representation for the nonnegativity con-
straint of the trigonometric polynomial in (15) based on [28,
Theorem 3.4], which is quoted below as a lemma.

Lemma 1: The trigonometric polynomialf̃(ω) = h0 +
2Re

{∑L−1
l=1 hle

−jωl
}

is non-negative over[α−β, α+β] (with
0 < β < π) iff there exists anL×L Hermitian matrixZ1 � 0
and an(L− 1)× (L− 1) Hermitian matrixZ2 � 0 such that

h = FH
1

(
diag

(
F1Z1F

H
1

)
+ d⊙ diag

(
F2Z2F

H
2

))
(16)

whereh =
[
h0, h1, · · · , hL−1

]T
, d =

[
d0, d1, · · · , dQ−1

]T

with dq = cos(2πq/Q − α) − cos(β), F1 =[
f0,f1, · · · ,fL−1

]
and F2 =

[
f0,f1, · · · ,fL−2

]
where

fl =
[
1, e−j2πl/Q, · · · , e−j2πl(Q−1)/Q

]T
with Q ≥ 2L− 1.

Based on Lemma 1, cyclic optimization [26] can then be
performed to tackle problem (14) iteratively. To be specific, we
perform the optimization with respect toU for some fixedV ,
and then conduct it with respect toV for fixedU , repeatedly.
To this end, letα = νC , β = ∆ν andh = g− te1 in Lemma
1, wheree1 is anL× 1 vector with the first component being
one and the others zero. For fixedV , the optimization with
respect toU for (14) can be represented by the following SDP:





max
U ,Z1,Z2,t

t

subject to g − te1 = FH
1

(
diag

(
F1Z1F

H
1

)

+ d⊙ diag
(
F2Z2F

H
2

))

tr
((

ΣI(V ) + tr(V )
E INTN

)
U
)
= 1

U � 0, Z1 � 0, Z2 � 0

(17)

Let U⋆ denote the optimal solution ofU to (17). Then, the
optimal solution ofX is equal toEU⋆/tr (U⋆). The SDP
problem can be solved efficiently using the interior point
methods in polynomial time [29]. In the simulations, we use
the MATLAB toolbox CVX [30] to solve problem (17).

Since the denominator of the objective function in (13) can
also be expressed astr ((ΣI(X) + INRN )V ) with ΣI(X) =∑K

k=1 INRkB(θk)XB(θk)
H , the optimization with respect

to V for fixed X can be cast as a similar SDP as below.



max
V ,Z1,Z2,t

t

subject to g − te1 = FH
1

(
diag

(
F1Z1F

H
1

)

+ d⊙ diag
(
F2Z2F

H
2

))

tr ((ΣI(X) + INRN )V ) = 1

V � 0, Z1 � 0, Z2 � 0

(18)

By starting from a random initial point and cyclically
solving (17) and (18) until the SINR improvement is negli-
gible, the objective function value is non-decreasing and the

convergence of the algorithm can be guaranteed [25]. The
cyclic optimization converges to a point which is not only
the local optimum, but also the global optimum along theX

dimension and theV dimension separately [18]. To obtain
a more accurate result, one can perform this procedure with
a large number of random initializations and then select the
best(X,V ). In section IV, numerical examples show that the
proposed algorithm is insensitive to initial values.

B. Synthesis of s and w from X and V

Let (X⋆,V ⋆) denote the solution of (13) using the cyclic
optimization. If bothX⋆ andV ⋆ are rank-one, the transmit
waveform s⋆ and receive filterw⋆ can be obtained by the
eigen-decomposition ofX⋆ = s⋆(s⋆)H andV ⋆ = w⋆(w⋆)H .
In this case, the rank-one relaxation in (14) is tight and the
solution is optimal. Otherwise, a suboptimal procedure canbe
adopted following a recently proposed algorithm in [25]. The
basic idea of the algorithm is based on the fact thatX (s,w)
is a scaled version of the numeratorp(ν)HG(X,V )p(ν), or
tr
(
XA(θ0)

HV A(θ0)
)

equivalently. Thens⋆ andw⋆ should
be designed to let|(w⋆)HA(θ0)s

⋆|2 well approximate the
shape oftr

(
X⋆A(θ0)

HV ⋆A(θ0)
)
, while imposing constraint

on the denominator. Interested readers can refer to [25] for
detailed motivation. To make the letter self-contained, weshall
present the synthesis algorithm for our problem in the sequel.

Consider the value oftr
(
X⋆A(θ0)

HV ⋆A(θ0)
)

evaluated
on DOAs{ϑ1, ϑ2, · · · , ϑM} “uniformly distributed” onΩ:

cm = tr
(
X⋆A(ϑm)HV ⋆A(ϑm)

)
, m = 1, 2, · · · ,M (19)

Let Tm = A(ϑm)HV ⋆A(ϑm), QmQH
m = Tm and define

M auxiliary unit-norm vectorsq1, q2, · · · , qM . Then, the
synthesis ofs can be formulated as





min
s̄, q1,··· ,qM

∑M
m=1 ‖Qms̄−√

cmqm‖2

subject to s̄H
(
ΣI(V

⋆) + tr(V ⋆)
E INTN

)
s̄ ≤ ζ⋆

‖qm‖ = 1, 1 ≤ m ≤ M

(20)

whereζ⋆ , tr
((
ΣI(V

⋆) + tr(V ⋆)
E INTN

)
X⋆

)
. This problem

can be solved using cyclic minimization. For a fixeds̄, the
solution to (20) is given byqm = Qms̄

‖Qms̄‖ ,m = 1, · · · ,M .
For fixed qm,m = 1, · · · ,M , problem (20) reduces to a
quadratically constrained quadratic program (QCQP) that can
be solved by the CVX package [30]. The initial value of
s̄ can be chosen as the eigenvector ofX⋆ corresponding
to the largest eigenvalue. Let̄s⋆ denote the optimal solu-
tion to (20), the optimal transmit waveforms⋆ is given by
s⋆ =

√
Es̄⋆/‖s̄⋆‖, considering the energy constraint ons.

Analogously, letT̃m = A(ϑm)X⋆A(ϑm)H , Q̃mQ̃H
m =

T̃m, and η⋆ , tr ((ΣI(X
⋆) + INRN )V ⋆), the synthesis of

w is similar to problem (20):




min
w, q̃1,··· ,q̃M

∑M
m=1 ‖Q̃mw −√

cmq̃m‖2

subject to wH (ΣI(X
⋆) + INRN )w ≤ η⋆

‖q̃m‖ = 1, 1 ≤ m ≤ M

(21)

which can also be solved using the cyclic minimization.
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We also note that the randomized method [27] can also be
used to obtain an approximates⋆ andw⋆ in the non-rank-one
case. Similar applications can be found in [20], [31], [32].The
synthesis algorithm based on the randomized method for our
problem is shown in Algorithm 1.

Algorithm 1 Synthesis algorithm based on randomized
method
Input: X⋆ andV ⋆

Output: A randomized approximate solutions⋆ andw⋆

1: if rank(V ⋆) = 1 then
2: find w⋆ via eigen-decompositionV ⋆ = w⋆(w⋆)H

3: else
4: drawR random vectorswj from the complex Gaussian

distributionCN (0,V ⋆), j = 1, 2, · · · , R
5: calculate

ξj = min
θ0∈Ω

wH
j A(θ0)X

⋆A(θ0)
Hwj

wH
j ΣI(X⋆)wj +wH

j wj
, j = 1, · · · , R

whereΣI(X
⋆) =

∑K
k=1 INRkB(θk)X

⋆B(θk)
H .

6: let w⋆ = wjmax
where

jmax = arg max
1≤j≤R

ξj .

7: end if
8: if rank(X⋆) = 1 then
9: find s⋆ via eigen-decompositionX⋆ = s⋆(s⋆)H

10: else
11: drawR random vectorssi from the complex Gaussian

distributionCN (0,X⋆), i = 1, 2, · · · , R
12: calculates̄i =

√
Esi

‖si‖ and

ζi = min
θ0∈Ω

|(w⋆)HA(θ0)s̄i|2
(w⋆)HΣI(s̄i)w⋆ + (w⋆)Hw⋆

, i = 1, · · · , R

whereΣI(s̄i) =
∑K

k=1 INRkB(θk)s̄is̄
H
i B(θk)

H .
13: let s⋆ = s̄imax

where

imax = arg max
1≤i≤R

ζi.

14: end if

Prior results on the tightness of SDR [27], [33] show that for
a separable SDP [27, eq. (28)] withP semi-definite variables
and J constraints, there exists a rank-one optimal solution
if J ≤ P + 2. But this can not guarantee the existence of
rank-one solution for our problem, sinceP = 3 and J =
2L − 1 for problem (17) and (18) in the form of [27, eq.
(28)]. Nevertheless, we emphasize that as with in [25], one
can empirically observe that bothX⋆ andV ⋆ are rank-one
for most of the random initializations as along asΩ∩Ωc = ∅,
whereΩc denotes the set of all interferences angles.

IV. N UMERICAL EXAMPLES

In this section, numerical examples are conducted to exam-
ine the performance of the proposed method. In all examples,
we assume that30 interferences are present with the range and
angle pair(rk, θk) generated from all possible combinations

of {−2,−1, 0, 1, 2}×{−60◦,−50◦,−40◦, 40◦, 60◦, 70◦}. The
INR of all interferences is30 dB.

In Fig. 1, the output SINR as a function ofθ0 for the non-
robust design and the proposed robust design are compared
under four different parameters. For the non-robust design,
the assumed a-prior target angle is set to beθC and the
optimization algorithm is based on the method presented in
[19]. It is shown that the robust design improves the worst-
case SINR performance significantly at the cost of peak-SINR
degradation. For fixed∆θ and N , the superiority of robust
design increases with the number of transmitters or receivers.
In Fig. 2, we depict the beampatternP (θ) = ‖wHA(θ)s‖2

NRNT ‖w‖2‖s‖2

for parameter settings in Fig. 1(c) and Fig. 1(d) as an example.
One can observe that both robust and non-robust design can
produce nulls near the DOAs of interferences. From Fig. 1 and
Fig. 2, we see that when∆θ is large enough relative to the
beamwidth, the robust design can form a wide and flat beam
over the uncertain space area to bring robustness. BothX⋆

andV ⋆ are rank-one in this example.
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Fig. 1. Comparisons of the output SINR.∆θ = 10◦. E = N = 20.
SNR = −15dB. (a) NR = NT = 4, θC = 0◦; (b) NR = 4, NT = 8,
θC = 0◦; (c) NR = NT = 8, θC = 0◦; (d) NR = 8, NT = 16, θC = 20◦.
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Fig. 2. Comparisons of the beampatternP (θ). (left) NR = NT = 8,
θC = 0◦; (right) NR = 8, NT = 16, θC = 20◦.

In Fig. 3, we plot the worst-case SINR versus the target
angle uncertainty∆θ. As expected, a wider range of target
angle uncertainty leads to a worse SINR. The impact of∆θ on
the worst-case SINR performance of non-robust design is more
prominent, which suffers a sharp decline as∆θ increases. This
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is due to the effect of the first null near the main lobe. In this
example, bothX⋆ andV ⋆ are rank-one.
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Fig. 3. The worst-case output SINR versus the angle uncertainty. θC = 0◦.
E = N = 20. SNR = −15dB. (left) NR = 4, NT = 8; (right) NR =
NT = 8.

In Fig. 4, we investigate the effect of initial values on the
cyclic optimization ofX andV . We plot the worst-case SINR
for the relaxed problem (14) underΓ = 50 different random
initializations. Four different parameter settings are consid-
ered. The cyclic optimization is stopped if either the increment
of the worst-case SINR between two iterations is less than
5× 10−3 or the maximum number of iterations reaches. The
maximum number of iterations of the cyclic optimization is set
to 150. We can see that the worst-case SINRs under different
initializations are very close. LetT = {t(1), t(2), · · · , t(Γ)}
denote the worst-case SINRs fromΓ random initializations.
We define the following metric

L ,
max(T )−min(T )

mean(T )
(22)

to evaluate the variation ofT , wheremax(T ), min(T ) and
mean(T ) denote the maximum, minimum and mean value of
T , respectively. The values ofL for the four cases are equal
to 0.016, 0.0177, 0.0263 and0.016, respectively. One can see
that in our problem, the cyclic optimization is quite insensitive
to the initialization.

In Fig. 5, we illustrate the performance of the synthesis
algorithm in the non-rank-one case, which seldom happens in
our experiments. In this example, the parameter settings are
the same as in Fig. 4(c). Under a certain random initialization,
the cyclic optimization provides a solution with rank(X⋆) = 2
and rank(V ⋆) = 1. The receive filterw⋆ is obtained based
on eigen-decomposition, and the transmit waveforms⋆ is
obtained via the synthesis algorithm. The performance of
synthesis algorithm based on solving problem (20) (denoted
Method 1) and the algorithm based on randomized method
(denoted Method 2) are compared. We plot their corresponding
SINRs as a function ofθ0 according to (2). For the Method
1, the number of DOA samplesM is set to 41 and the
number of iterations to solve (20) is50. For the Method 2, the
number of random samples is set to be1000. We also plot the

SINRrelax(θ0) ,
SNR tr(X⋆A(θ0)

HV ⋆A(θ0))
tr((ΣI(X⋆)+INRN)V ⋆)

as a benchmark

for comparison. We can observe that their SINR performance
are very close, and both synthesis algorithms yield a good
solution in the non-rank-one case. We can also see that the
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Fig. 4. The effect of initial values on cyclic optimization.E = NTN ,
SNR = 1/L, θC = 0◦ and∆θ = 10◦. (a) NR = NT = 4, N = 10; (b)
NR = NT = 4, N = 20; (c) NR = 4, NT = 8, N = 10. (d) NR = 4,
NT = 8, N = 20.

SINR curve of Method 1 matches well with SINRrelax(θ0). The
worst-case SINRs for Method 1, Method 2 and SINRrelax(θ0)
are18.478 dB, 18.394 dB 18.526 dB, respectively.
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Fig. 5. The SINR performance of the synthesis algorithm.

V. CONCLUSIONS

A method for angular-robust joint design of transmit wave-
form and receive filter is proposed to maximize the worst-
case SINR performance. The proposed method exhibits a con-
siderable performance increment over the non-robust design
via numerical examples. Future work will concentrate on the
robust design with respect to the interferences uncertainty.
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