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Robust Sparse Blind Source Separation
Cécile Chenot, Jérôme Bobin and Jéremy Rapin

Abstract—Blind Source Separation is a widely used technique
to analyze multichannel data. In many real-world applications, its
results can be significantly hampered by the presence of unknown
outliers. In this paper, a novel algorithm coined rGMCA (robust
Generalized Morphological Component Analysis) is introduced
to retrieve sparse sources in the presence of outliers. It explicitly
estimates the sources, the mixing matrix, and the outliers. It
also takes advantage of the estimation of the outliers to further
implement a weighting scheme, which provides a highly robust
separation procedure. Numerical experiments demonstrate the
efficiency of rGMCA to estimate the mixing matrix in comparison
with standard BSS techniques.

Index Terms—Blind source separation, sparse representations,
sparsity, robust recovery, outliers.

I. INTRODUCTION

THE advances in multichannel technologies are exploited
in various fields such as astrophysics [1] or hyperspectral

remote-sensing [2]. This has generated a considerable interest
for methods able to extract the relevant information from these
specific data. Blind Source Separation (BSS) is one of them.
In this context, the m noisy observations {Xi}i=1..m are
assumed to be the linear mixture of n ≤ m sources {Sj}j=1..n
with t > m samples. The presence of instrumental noise and
model imperfections is usually admitted and represented by
a Gaussian noise N. The BSS techniques aim to estimate A
and S from X. This problem is well-known to be ill-posed
as the number of solutions is infinite. This requires imposing
further prior information to recover the original sources such
as the statistical independence of the sources (ICA methods
[3] and references therein) or the sparsity of S [4]–[6].

Most of the techniques in BSS are highly sensitive to the
presence of spurious outliers while these ones are frequent in
real-world data [7]. Indeed in many applications, the data are
additionally corrupted by a few, and therefore sparse, large
errors that cannot be modeled by standard additive Gaussian
noise: this includes stripping noise [8], impulsive noise [9],
glitches [10] to name only a few. In the next, we will consider
that the observations can be expressed as:

X = AS + O + N,

where X ∈ Rm×t stands for the observations, A ∈ Rm×n

the mixing matrix, S ∈ Rn×t the sources, O ∈ Rm×t the
outliers, and N ∈ Rm×n the Gaussian noise.

To be best of our knowledge, only few blind source
separation methods have been proposed for coping with
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outliers. So far, the state-of-the-art techniques can be divided
into three groups. The first approach consists in replacing the
data fidelity term in the standard methods by some divergence
that provides more robustness to the presence of outliers,
without estimating them explicitly [11], [12]. In particular,
the use of the β-divergence, which is a generalization of
the Kullback-Leibler divergence, has received a growing
attention. In [13], a general BSS method using statistical
independence and minimizing the β-divergence has been
proposed. The numerical experiments in [13] show that
by finding an appropriate value of β, the estimation of A
becomes quite robust to the outliers. However, the selection
of β is a challenging task in practice and this method only
estimates the mixing matrix: the sources and the outliers
remain unmixed.
The second scheme proceeds in a two-steps strategy that
consists in: i) pre-processing the data to discard the outliers,
and ii) performing source separation on the pre-processed
estimate of the data AS. Several outlier removal methods
that exploit the low-rank property (m � n) of AS have
been recently proposed, especially in hyperspectral imaging
[14], [15]. Indeed, it has been shown that it is possible to
separate AS and O with a high accuracy if AS has low-rank
and if the outliers are sparsely distributed and additionally
assumed to be in general position (they do not cluster in
specific directions) [16, PCP]. However, these assumptions are
generally not met in practice, in particular when the number
of observations is close to the number of sources. The major
drawback of this approach is that an inaccurate estimation
of the mixture AS will very likely hamper the separation
process. Moreover, the parameters of these methods need to
be tuned to return a sufficiently accurate estimation of AS
prior to performing the separation.
Last, the third strategy consists in estimating jointly the
sources, the mixing matrix and the outliers [17], [18].
This leads to a flexible framework in which the priors on
the components can be individually taken into account.
In [17] for example, the authors use the β-divergence for
the data fidelity term X − AS − O, the `2,1 norm for O,
which corrupts entirely some columns of X, to enforce
its sparsity and the positivity prior for A and S. This
third category has only been developed in the scope of
NMF, where further enforcing the positivity of A and S
is known to greatly enhance the separation process. Since
non-negativity is not always a valid assumption in physical
applications (e.g. astrophysics [1]), neither the mixing matrix
nor the sources will be assumed to be non-negative in the next.

Contribution: a novel robust algorithm for sparse BSS is
proposed. To the best of our knowledge, no method using
sparsity for tackling BSS problems in the presence of outliers
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has been studied so far. Building upon the sparse BSS algo-
rithm GMCA, our algorithm coined rGMCA (robust GMCA)
estimates jointly A, S and O based on the sparsity of the out-
liers and the sources. Besides, and apart from presuming that
the outliers are sparse and in general position, the algorithm
makes no assumption about the sparsity pattern of the outliers.
This makes the proposed algorithm very general and suitable
for various scenarios.
The paper is organized as follows: Section II presents the
basics of GMCA, Section III introduces rGMCA, and last,
numerical experiments are performed to compare rGMCA with
standard BSS methods in Section IV.

II. SPARSE BSS

The sparsity prior has been shown to be an effective
separation criterion for BSS [4], [5]. Essentially, it assumes
that the sources are sparse, which means that they can be
described by few coefficients in a given dictionary Φ. In the
present paper, we will assume that the sources are sparse in the
sample domain: Φ = I. The morphological diversity property
(MDP - see [5]) further assumes that the sparse sources do
not share their largest entries. This allows to differentiate the
sources from their most significant entries in Φ. The algorithm
GMCA [5] takes advantage of the MDP to seek the sources S
and the mixing matrix A from the observations X = AS+N
by solving:

argmin
Ã,S̃

1

2

∥∥∥X− ÃS̃
∥∥∥2
2

+

n∑
j=1

λj

∥∥∥S̃j∥∥∥
p
,

where the quadratic term is the data fidelity term, which is
well suited to deal with Gaussian noise, and the p-norm with
p ≤ 1 enforces the sparsity of the recovered S. In practice, we
customarily choose the convex `1 norm. Whereas the above
problem is not convex, it can be tackled efficiently with Block
Coordinate Relaxation (BCR [19]) and alternative projected
least squares as follows:
• Update of Ã for fixed S̃:

Ã = argmin
Ã

1

2

∥∥∥X− ÃS̃
∥∥∥2
2
,

obtained with Ã = XS̃†, where the symbol .† denotes
the Moore-Penrose pseudo inverse.

• Update of S̃ for fixed Ã:

argmin
S̃

1

2

∥∥∥X− ÃS̃
∥∥∥2
2

+

n∑
j=1

λj

∥∥∥S̃j∥∥∥
1
,

approximated with the soft-thresholding S̃ = Sλ
(
Ã†X

)
,

where
[
Sλ
(
Ã†X

)]
i,j
=sign(Ã†X)i,j�max(0,|(Ã†X)i,j |−λi),

where the operator � stands for the entrywise Hadamard
product.

In practice, the estimation of the mixing matrix is enhanced
by using a decreasing threshold strategy. By starting with a
large value of λ, we only select the largest entries of the
sources. These large coefficients are weakly influenced by
the Gaussian noise and above all, are very likely to belong

to only one source (MDP): they are the most discriminant
samples for the source separation. The sources are then refined
by decreasing the value of λ towards 3σ, where σ denotes
the standard deviation of N. This final threshold ensures
with a high probability that no Gaussian noise contaminates
the sources. The noise standard deviation can be estimated
using robust empirical estimators such as the median absolute
deviation (MAD). Besides, it has been emphasized that the
decreasing threshold strategy can prevent GMCA to be trapped
into local minima [5].

III. ROBUST GMCA

The rationale of the proposed separation procedure relies on
the difference of structure between the outliers and the term
AS. Indeed, the outliers are assumed to be in general position
while the source contribution AS tends to naturally cluster
along the directions described by the columns of the mixing
matrix A. Following [20], minimizing the `1 norm of the
sources tends to favor solutions Ã so that the corresponding
S̃ are clustered along such axes. This motivates the use of
sparsity to provide an efficient separation scheme. In the
following, we therefore introduce a new sparsity-enforcing
BSS method based on the GMCA framework.

A. A naive extension

A straightforward strategy to account for the presence of
outliers in the framework of GMCA is done by including an
extra sparse term O enforcing the sparsity of the outliers. This
approach, which we coin Naive robust GMCA (NrGMCA),
can be formulated as:

argmin
Õ,Ã,S̃

1

2

∥∥∥X− ÃS̃− Õ
∥∥∥2
2

+

n∑
j=1

λj

∥∥∥S̃j∥∥∥
1

+ α
∥∥∥Õ∥∥∥

1
,

where the first term is the data-fitting term, well suited to
deal with the Gaussian noise N, and the two others terms
enforce the sparsity of the sources and the outliers.
However, this first naive approach cannot handle large outliers,
especially if O have several active entries per row or column.
Indeed, in cases where the outliers are the dominant contribu-
tion to the data, the MDP does not obviously hold since the
largest entries of the data are related to the outliers and not to
individual sources. The outliers are then likely to be estimated
as sources, misleading the estimation of A.

B. The rGMCA algorithm

In the presence of large outliers, as the MDP does not
hold, discriminating between the O and AS becomes more
challenging and requires at least improving the robustness of
the estimation of the mixing matrix against the influence of
the outliers. For this purpose, we propose to extend NrGMCA
building upon the AMCA algorithm [21].

In a different context, the AMCA algorithm extends the
GMCA in the special case of sparse and partially correlated
sources, where the MDP does not hold either [21]. In brief,
this method relies on an iterative weighting scheme that
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penalizes non-discriminant entries of the sources. Inspired by
this approach, we propose to implement a similar weighting
scheme to penalize samples that are likely to be contaminated
with large outliers. In the spirit of AMCA, the influence of
the corrupted samples are weakened by using the following
weighting scheme in the mixing matrix update stage:

argmin
Õ,Ã,S̃

1

2

∥∥∥(X− ÃS̃− Õ)W
∥∥∥2
2

+

n∑
j=1

λj

∥∥∥S̃j∥∥∥
1

+ α
∥∥∥Õ∥∥∥

1
,

where W is the penalizing diagonal matrix of size t× t. The
role of the weighting procedure is to penalize the samples
of the sources that are likely to be corrupted with outliers.
It is therefore natural to define the weights W based on
the current estimate of the outlier matrix Õ. In the spirit of
[21], an efficient weighting procedure consists in defining the
weights based on the sparsity level of the columns of the
outlier matrix as follows: Wi,i = 1

ε+‖Õi‖
1

, where ε stands

for
median|S(i,i)|>0|S(i,i)|

10 . Subsequently, the penalization of a
given data sample will increase with the amplitude of the
outliers as well as the number of outliers per data sample.
Following the structure of the GMCA algorithm, this problem
is solved by using BCR and alternative projected least squares.
The structure of the algorithm is presented in Algorithm 1.
Instead of estimating the variables one by one, we found
that applying GMCA to the current estimate of X − Õ and
then to estimate the outliers from X− ÃS̃ provides the most
effective estimation procedure. Indeed, jointly re-estimating
Ã and S̃ from a new estimate of the outlier-cleaned data is
more likely to limit the impact of remaining outliers on the
source estimation.

C. Choice of parameters and initialization

The large outliers are the most damaging as they can
severely mislead the estimation of Ã if they are not esti-
mated as outliers from the start. That is why, the algorithms
NrGMCA and rGMCA start by estimating the largest values
of X as outliers. On the other hand, the orientation of the
mixing matrix Ã, which is initialized as a random matrix
whose columns are normalized and entries are Gaussian, is
deduced from the remaining large outliers cleaned data X−Õ:
our first estimation of Õ should not be too conservative
to keep the clustering aspect of X − Õ. For this purpose,
we propose to estimate Õ with a soft-thresholding at the
value α̃0 = median|X|>3σ|X|. Then, similarly to GMCA,
the sources are estimated as being the largest components in
Ã†(X− Õ), determining the corresponding λ̃0. Furthermore,
this initial value λ̃0 is fixed at the beginning of the algorithm.
By keeping a large value of λ̃0, we minimize the risk to
propagate the errors since only few coefficients from the last
estimate of S̃ are kept.
Then the decreasing threshold strategy used for λ in GMCA
is similarly kept. Likewise, the parameter α is also decreasing
towards 3σ to refine Õ without incorporating too many terms
of AS or Gaussian noise.

Algorithm 1: rGMCA

Initialize Õ0, S̃0, Ã0, W̃0, α̃0, and λ̃0.
while k < K do

while j < J do

S̃k,j = Sλ̃j

((
Ãk,j−1

)†
(X− Õk−1)

)
Ãk,j = (X− Õk−1)W̃k(S̃k,jW̃k)†

Decrease λ̃j

end while
Õk = Sα̃k

(
X− Ãk,J−1S̃k,J−1

)
Update W̃k

Decrease α̃k

end while
return ÕK−1, S̃K−1,J−1, ÃK−1,J−1.

IV. NUMERICAL EXPERIMENTS

In this section, we compare the performances of rGMCA
with standard BSS methods: GMCA [5], PCP+GMCA (the
outliers are first estimated with PCP and then discarded from
X [16]) , the minimization of the β-divergence with statistical
independence prior (implementation from [22]) and NrGMCA.
The values of the free parameters for PCP (λ in [16]) and the
β-divergence minimization algorithm (β) are tuned to return
the best results based on several trials.
The minimization of the β-divergence only returns an estimate
for A, and thus we propose to compare the methods by using

a criterion depending only on A [5]: ∆A =
‖Ã†A−I‖

1

n2 . The
median of ∆A obtained from 80 Monte-Carlo simulations and
the percentage of these 80 simulations with an error smaller
than 5×10−3 (normalized to represent a probability of success)
are represented in the following figures. The probability of
success is an interesting indicator of the robustness of the
algorithms, showing whether they reliably perform well.
Last, the outliers are composed of both broadly distributed
errors and entirely corrupted columns (anomalies appearing at
a same position in each observation) with random amplitudes,
in order to cover a large variety of noise patterns.

Influence of the amplitude of the outliers

We create m = 16 measures of n = 8 sources with
t = 1024 samples to which a Gaussian noise is added.
These sources are drawn from a Bernoulli-Gaussian law with
parameter of activation 0.05 and are scaled so that the largest
entry is equal to 100. The entries of A are drawn from a
centered normal law, and each column of A is then normal-
ized. The positions of the outliers are such that: 160 are drawn
uniformly at random and 10 columns are entirely corrupted.
Their amplitudes are Gaussian with standard deviation chosen
according to the axis of fig.1.

One can notice than the weighting procedure clearly en-
hances the estimation of A: rGMCA outperforms NrGMCA,
especially when the outliers are large fig.1. Contrary to the
others methods, the combination PCP+GMCA and rGMCA
are almost not influenced by the amplitudes of the outliers
and are very likely to return good estimates of A fig.2.
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Figure 1. ∆A versus the amplitudes of the outliers.

Figure 2. Probability of success versus the amplitude of the outliers.

Influence of the number of outliers

The components A, S and N are similar to the ones
presented in the previous subsection. The percentage of grossly
corrupted entries is fixed according to the axis of fig.3. Half
of the outliers are drawn uniformly at random and the others
correspond to the entirely corrupted columns. Their amplitudes
are Gaussian with a standard deviation of 100.

Figure 3. ∆A versus the percentage of data corrupted by outliers.

Figure 4. Probability of success versus the percentage of data corrupted by
outliers.

All the methods are equivalent for ∆A without outliers.
The estimations of A obtained with PCP+GMCA, GMCA,
NrGMCA and the β-divergence are hampered quite quickly
by the percentage of corruption of the data fig.3. On the other
side, rGMCA is robust while the percentage of corruption is
moderated fig.4 .

NMR spectrum identification and influence of the number of
observations

In this subsection, we evaluate the algorithms in the field of
the biomedical engineering with simulated data. We propose
to separate the different Nuclear Magnetic Resonance spectra
of a simulated mixture which can represent the data provided
in NMR spectroscopy. By performing BSS on the mixture of

spectra, we should be able to identify the different molecules
of the mixture [23].
The estimated NMR spectrum of the menthone, the folic
acid, the ascorbic acid and the myo-inositol from SDBS 1 are
convolved with a Laplacian kernel of 2-samples width at half
maximum (implementation from pyGMCA 2). The number of
observations is set according to fig.5 . The Gaussian noise
N is drawn from a Gaussian law with a standard deviation
of 0.1. The outliers are drawn from a Gaussian law with
standard deviation 103, so that 20 columns and 1% of the
entries, broadly distributed, are corrupted.

Figure 5. ∆A versus the number of observations.

Despite the effectiveness of rGMCA and PCP+GMCA if
m� n fig.5, none of these algorithms are able to handle the
outliers if m = n. The algorithm rGMCA is the only one that
provides a correct estimate of A for m ≥ 5 by means of the
weighting scheme. However, rGMCA cannot clearly separate
the original outliers from the estimated sources, fig.6.

Figure 6. Estimates of the menthone’s NMR spectrum with rGMCA (top of
the images) and PCP+GMCA (bottom of the images), with m = 6. On the
left: estimated spectrum in red and reference in blue-dashed lines - zoomed
in on the support of the reference. On the right: magnitude of the difference
between the estimate and the reference.

V. CONCLUSION

We introduce a novel method to separate sparse sources in
the presence of outliers. The proposed method relies on the
joint sparsity-based separation of the outliers and the sources.
This strategy allows us to implement a weighting scheme that
penalizes corrupted data samples, which is shown to highly
limit the impact of the outliers on the estimated sources.
Numerical experiments demonstrate the good and consistent
performances of our algorithm to robustly estimate the mixing
matrix. Future work will focus on generalizing the proposed
approach to enforce sparsity in a transformed domain.

1http://sdbs.db.aist.go.jp
2http://www.cosmostat.org/software/gmcalab/
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