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Structural SVM with partial ranking

for activity segmentation and classification
Guopeng Zhang and Massimo Piccardi

Abstract

Structural SVM is an extension of the support vector machine for the joint prediction of structured

labels from multiple measurements. Following a large margin principle, the training of structural SVM

ensures that the ground-truth labeling of each sample receives a score higher than that of any other

labeling. However, no specific score ranking is imposed among the other labelings. In this paper, we

extend the standard constraint set of structural SVM with constraints between “almost-correct” labelings

and less desirable ones to obtain a partial-ranking structural SVM (PR-SSVM) approach. Experimental

results on action segmentation and classification with two challenging datasets (the TUM Kitchen mocap

dataset and the CMU-MMAC video dataset) show that the proposed method achieves better detection

and false alarm rates and higher F1 scores than both the conventional structural SVM and a comparable

unstructured predictor. The proposed method also achieves higher accuracy than the state of the art on

these datasets in excess of 14 and 31 percentage points, respectively.

Index Terms

Structural SVM, Hamming loss, ranking, sequential labeling, hidden Markov model.

I. INTRODUCTION AND RELATED WORK

Structured prediction addresses the joint assignment of a set of class labels from a set of measure-

ments in the presence of dependencies between the labels. This is a frequent situation with examples

ranging from classification of web pages, prediction of protein structure and natural language parsing

to segmentation and classification of human activities [1]–[4]. Compared to the separate assignment of

single labels, the structured approach is expected to prove more accurate by leveraging the relationships

among the labels. The structure is commonly represented in terms of a graphical model, and training and

inference algorithms are employed to provide the parametrization of the model and label prediction.
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Among the possible training approaches, structural SVM was proposed to extend the large-margin

concept of the support vector machine (SVM) to the structured case [5], [6]. It has been applied to a

variety of structured tasks with remarkable experimental accuracy [7]–[11]. Training of structural SVM

is performed by imposing a pre-determined margin between the score granted to the ground-truth labels

and the score granted to any other labeling. Since a predicted labeling may differ from the ground truth

to a different extent (from almost correct to completely incorrect), a graded margin such as the Hamming

distance is often used. However, while the margin constraint guarantees that the ground-truth labeling

receives a higher score than all other labelings, it does not ensure that the other labelings are ranked in

correctness order. This may affect applications such as, for instance, human activity segmentation where

the manual annotation of the start and end of an activity has a significant degree of uncertainty. In this

case, we may wish to ensure that also labelings which are close to the ground truth receive a score

higher than other, less qualified labelings. Therefore, the idea proposed in this paper is to augment the

constrained optimization of structural SVM with an additional set of constraints ensuring proper scoring

of additional, selected labelings. To this aim, we also define a modified Hamming loss to measure the

distance between an arbitrary labeling and a predicted labeling. We refer to the proposed technique as

partial-ranking structural SVM (PR-SSVM) hereafter.

The task tackled in this paper is the joint segmentation and classification of human activities. In formal

terms, we aim to optimally infer a sequence of class labels, y = {y1, . . . , yt, . . . , yT } ∈ Y , from a given

sequence of measurements, x = {x1, . . . , xT }. We perform classification by detection where yt ∈ {0, 1},

yt = 1 means the presence of an assigned action, and yt = 0 its absence. Following a common model,

we assume that the labels are connected in a first-order Markov chain and that each label is connected to

the measurement with the same time index. Optimal inference for this model is efficiently provided by

dynamic programming algorithms while training is performed by the method described in the following

sections. The proposed approach has been tested over two challenging activity sequence datasets: the TUM

Kitchen mocap dataset [12] and the CMU-Multimodal Activity video dataset (CMU-MMAC) [13]. The

experimental results show that the proposed method achieves an accuracy higher than that of conventional

structural SVM and also remarkably higher than previous results.

II. LOSS FUNCTION AND STRUCTURAL SVM

A. Loss function

In structural SVM, the margin imposed between the ground-truth labeling, yg, and a predicted labeling,

y, varies according to a chosen loss function, ∆(yg, y), which quantifies the loss carried by a mispredic-
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tion. The choice of loss function is typically restricted to functions that decompose over the single labels

of a labeling since this facilitates efficient training. The most common choice is the Hamming loss:

∆H(yg, y) =
1

T

T∑
t=1

δ(ygt 6= yt) (1)

where δ(true) = 1, δ(false) = 0 and ygt , yt, t = 1 . . . T , are the individual labels in labelings yg and y,

respectively.

In order to augment structural SVM with an additional set of constraints, a loss function is needed

between a reference labeling other than the ground truth and a prediction. We note such a labeling as

ỹg and the new loss function as ∆′(yg, ỹg, y). A natural way to define it is as difference of losses with

respect to the ground truth:

∆′(yg, ỹg, y) = ∆H(yg, y)−∆H(yg, ỹg)

=
1

T

T∑
t=1

(δ(ygt 6= yt)− δ(ygt 6= ỹgt ))
(2)

In this way, also this loss function remains decomposable over single labels and retains efficient training.

Its minimum is a negative value occurring at ∆′(yg, ỹg, y = yg), that is, when the prediction is equal

to the ground truth. In fact, function ∆′(yg, ỹg, y) as defined in (2) is a hybrid loss/gain function still

rewarding similarity to the ground truth.

B. Training by partial ranking

Given a loss function and a ground-truth labeling, all labelings can be ranked in loss order to form

a totally ordered set. In principle, any scoring classifier could be trained not only to assign the highest

score to the ground truth, but also to score all labelings in loss order. However, in the structured case the

number of distinct labelings is exponential and such an approach would prove infeasible. Therefore, in

this work we propose to impose only a partial order relation amongst the labelings by selecting a sub-set

to be scored in loss order. We refer to this approach as partial ranking for short. While the sub-set

can be chosen in any arbitrary way, we argue that selecting labelings which are small perturbations of

the ground truth may improve the classifier’s accuracy, especially in cases where the ground truth has a

degree of uncertainty. In this work, we deal with sequences of binary labels and choose to add only one

labeling per sample, ỹg, obtained by modifying the ground truth by setting to 1 any 0 labels preceding

and following the ground truth’ 1 labels to account for annotation uncertainty about both the start and

the end of a run of positive samples:
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ỹgt = 1 if ygt = 1 or ygt−1 = 1 or ygt+1 = 1 (3)

For more general cases with multi-valued labels or non-sequential structures, one can build ground-truth

perturbations either randomly or manually. For instance, individual labels could be set to the values that

are semantically most similar to the ground truth (such as “orange” for “red” or “adverb” for “adjective”).

In general, the additional labelings should be of limited loss with respect to the ground truth.

C. Structural SVM

Given a set of N training instances, {xi, yi}, i = 1 . . . N , with yi the ground truth of the i-th instance,

structural SVM finds a vector of parameters, w, by the following constrained minimization:

argmin
w,ξ

‖w‖2 + C

N∑
i=1

ξi s.t.

wTφ(xi, yi)− wTφ(xi, y) ≥ ∆(yi, y)− ξi,

i = 1 . . . N, ∀y ∈ Y

(4)

As in conventional SVM, the objective function aims to limit the error on the training set while at the

same time achieving effective generalization. To this aim, term
∑N

i=1 ξ
i places an upper bound over the

total training error, while term ‖w‖2 regularizes the solution to encourage generalization. Parameter C

is an arbitrary, positive coefficient that balances these two terms. In the constraints, function φ(x, y) is a

feature function that computes structured features from pair {x, y} such that wTφ(x, y) assigns a score

to the pair. The constraint for labeling y = yi guarantees that ξi ≥ 0. Eventually, ∆(yi, y) is the chosen

loss function.

The problem in (4) is a quadratic program with linear inequality constraints for which many solvers

are available [14], [15]. However, in the structural case the size of Y is exponential and satisfying all

the constraints is impossible. For this reason, [6] has proposed a relaxation that can find nearly-correct

solutions using only a polynomial-size working set of constraints. The working set is built by searching

the sample’s most violated constraint at each iteration of the solver:

ξi = max
y

(−wTφ(xi, yi) + wTφ(xi, y) + ∆(yi, y)) (5)

which equates to finding the labeling with the highest sum of score and loss:
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y∗i = argmax
y

(wTφ(xi, y) + ∆(yi, y)) (6)

This problem is commonly referred to as “loss-augmented inference” due to its resemblance with the

common inference. In the case of sequential labels and decomposable losses such as the Hamming loss,

it can be efficiently resolved in O(T ) time by an appropriately weighted Viterbi algorithm.

III. EXTENDED PRIMAL PROBLEM

The extension provided by PR-SSVM to the objective function of Eq. (4) consists of the introduction

of additional constraints ensuring the score ranking of labelings other than the ground truth. The extended

problem is expressed as:

argmin
w,ξ,ξ̃

‖w‖2 + C

N∑
i=1

(ξi + ξ̃i) s.t.

wTφ(xi, yi)− wTφ(xi, y) ≥ ∆(yi, y)− ξi,

wTφ(xi, ỹi)− wTφ(xi, y) ≥ ∆′(yi, ỹi, y)− ξ̃i,

i = 1 . . . N, ∀y ∈ Y

(7)

Adding the new constraints brings their total number to 2N |Y |. However, the working-set approach

still applies and the loss-augmented inference becomes:

ỹ∗i = argmax
y

(wTφ(xi, y) + ∆′(yi, ỹi, y))

= argmax
y

(wTφ(xi, y) + ∆(yi, y)−∆(yi, ỹi))

= argmax
y

(wTφ(xi, y) + ∆(yi, y))

(8)

One can see that Eq. (8) is formally identical to Eq. (6) and returns the same labeling, i.e. ỹ∗i ≡ y∗i.

However, variable ξ̃i is set by the different loss:

ξ̃i = −wTφ(xi, ỹi) + wTφ(xi, y∗i) + ∆′(yi, ỹi, y∗i) (9)

Eventually, the inclusion of both ξ and ξ̃ in the objective adds up the training loss from both sets of

constraints.
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the proposed method on two challenging human activity datasets: the TUM

Kitchen dataset and the CMU Multimodal Activity (CMU-MMAC) dataset [12], [13]. The TUM Kitchen

dataset is a collection of activity sequences recorded in a kitchen equipped with multiple sensors [12]. Four

human subjects were asked to set a table using 9 actions, namely Reaching, Carrying, TakingSomething,

LoweringAnObject, ReleasingGrasp, OpeningADoor, ClosingADoor, OpeningADrawer, ClosingADrawer.

For our experiments, we have used the data from the motion capture sensor for the right and left hands

which encode the relevant 3D joints as a 45-D vector. The total number of sequences is 19, each ranging

in length between 1, 000 and 6, 000 frames. The CMU-MMAC dataset contains activity sequences from

55 subjects preparing food from various recipes [13]. For our experiments, we have selected the 12

subjects preparing brownies from a dry-mix box, with the activities labeled in 14 classes (see Table IV

for the complete list). The videos are from side-view camera 7151062, with a duration ranging between

8, 000 and 20, 000 frames each.

For performance comparison, we have selected the following classifiers: a) as baseline, a standard

support vector machine assigning each frame to an activity (Baseline); b) a structural SVM classifier

using the conventional constraints over the ground-truth labelings (SSVM); c) the proposed technique

with the augmented set of constraints (PR-SSVM). All classifiers were implemented in detector style as

a set of binary classifiers, one per activity class. For evaluation, we have recorded performance in terms

of detection rate (DR), false alarm rate (FAR) and F1 score. While the detection and false alarm rates

describe the trade-off between sensitivity and robustness, the F1 score summarizes the performance in a

single figure. As parameters, we have tested with C = [0.01, 100] in logarithmic steps, ε = 0.01 (default),

and a linear, polynomial and RBF kernels for the baseline. The structural SVM classifiers only supports

a linear kernel. In all experiments, C = 0.1 and the RBF kernel delivered the highest cross-validation

accuracy. The software for PR-SSVM ans SSVM was developed using the SVM struct package and its

MATLAB wrapper [16], [17], while libsvm was used for the baseline [18].

A. Results on the TUM Kitchen dataset

For TUM Kitchen, we have split the data into a training set with 6 sequences (namely, episodes 1-1

to 1-4, 0-2 and 0-12) and a test set with the remaining 13. Tables I and II report the accuracy at frame

level for each class and for the entire test set. These tables show that the tested classifiers achieve very

different trade-offs between detection and false alarm rates:
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• the baseline reports the lowest DR and FAR, implying that most activities will simply go undetected

and that its training is biased by the most frequent class (negative);

• structural SVM has a much higher detection rate than the baseline, yet with a rather high FAR (overall,

18.6% for the right hand and 16.8% for the left);

• the proposed technique, PR-SSVM, achieves the best trade-off as it obtains a higher DR than SSVM

(overall, 48.0% vs. 45.2% for the right hand, and 37.1% vs. 36.3% for the left hand), together with a

lower FAR (12.7% vs. 18.6% for the right hand, and 9.7% vs. 16.8% for the left hand).

Since it is difficult to rank classifiers based on two rates, we use the F1 score for direct comparison.

Tables I and II show that PR-SSVM reports the highest overall F1 score and for 5 classes out of 9

for the right hand, and overall and for 6 classes out of 9 for the left one. The overall improvement

ranges from 11.6 to 19.4 percentage points over SSVM and from 17.7 to 29.2 percentage points over

the baseline. Fig. 1 shows a typical behavior where a) the baseline misses the activity altogether, (b)

SSVM over-segments the activity, while (c) PR-SSVM detects the entire activity as a single segment.

Eventually, Table III compares the frame-level accuracy with previous results: although these results

cannot be compared directly as the training and test sets differ, the proposed technique shows a remarkable

improvement of over 14 percentage points over the closest result.
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Fig. 1. Example of detection (video 21, right hand, action ClosingADoor): a) Baseline; b) Structural SVM (SSVM); c)

Partial-ranking structural SVM (PR-SSVM).
B. Results on the CMU-MMAC dataset

For CMU-MMAC, we have divided the 12 sequences into a training set with the first eight and a

test set with the remaining four. As features, we have extracted a dense set of SIFT features from each

frame and encoded them as a vector of linearly aggregated descriptors (VLAD) using k-means with

32 clusters [20]. Each measurement results in a 4, 096-D vector. Table IV reports the accuracy results,

showing that the relative ranking of the classifiers is unvaried:

• the baseline reports, again, both the lowest DR and FAR, with a DR of only 16.1% overall;

• the proposed technique, PR-SSVM, achieves both a higher overall DR (40.5% vs. 30.0%) and lower

FAR (26.9% vs. 41.2%) than standard structural SVM;
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TABLE I

COMPARISON OF DETECTION RATE, FALSE ALARM RATE AND F1 SCORE ON THE TUM KITCHEN DATASET (RIGHT HAND).

DR (%) FAR (%) F1 score (%)

Activity Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM

Reaching 0 60.9 40.2 0 38.2 24.6 0 23.7 21.9

TakingSomething 13.2 3.8 10.3 0.3 15.9 10.3 22.2 1.5 5.4

LoweringAnObject 0 10.3 27.8 0 14.9 15.1 0 5.3 13.6

ReleasingGrasp 0 16.7 18.0 0 14.4 13.4 0 13.1 17.9

OpeningADoor 33.9 60.0 64.3 0.6 13.7 6.4 47.4 32.7 49.2

ClosingADoor 0 16.7 48.9 0 12.4 5.4 0 8.8 37.2

OpeningADrawer 0 58.9 67.1 0 21.7 13.1 0 19.9 31.3

ClosingADrawer 0 29.4 17.5 0 11.8 8.4 0 11.5 10.1

Carrying 98.0 54.2 57.9 38.7 32.0 24.7 84.2 61.3 64.3

Overall 16.1 45.2 48.0 4.4 18.6 23.7 21.3 27.4 39.0

TABLE II

COMPARISON OF DETECTION RATE, FALSE ALARM RATE AND F1 SCORE ON THE TUM KITCHEN DATASET (LEFT HAND).

DR (%) FAR (%) F1 score (%)

Activity Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM

Reaching 0.2 29.5 28.9 0.0 7.6 5.9 0.4 29.2 33.4

TakingSomething 50.2 81.1 68.7 0.7 29.8 10.7 9.2 28.8 52.8

LoweringAnObject 53.5 67.7 78.0 6.3 17.7 15.9 52.6 38.5 51.3

ReleasingGrasp 0 36.4 22.5 0 11.8 5.2 0 21.4 26.5

OpeningADoor 0 30.3 0 0 32.2 14.1 0 0.2 0

ClosingADoor 0 0 18.5 0 20.2 16.2 0 0 2.4

OpeningADrawer 0 0 7.8 0 12.8 2.1 0 0 6.2

ClosingADrawer 0 12.5 37.3 0 23.5 4.9 0 1.1 17.0

Carrying 90.5 69.5 72.1 26.1 19.1 14.1 85.0 51.6 78.1

Overall 21.8 36.3 37.1 3.7 16.8 9.7 23.7 33.5 52.9

TABLE III

COMPARISON OF FRAME-LEVEL ACCURACY WITH PREVIOUS RESULTS FOR THE TUM KITCHEN DATASET.

Method Average accuracy

CRF [12] 62.8

Switching model [19] 70.1

Proposed method 85.0

• PR-SSVM reports the highest overall F1 score and for 10 classes out of 14, with an overall improvement

of 10.9 points over SSVM and 12.2 points over the baseline.

Again, Table V compares the frame-level accuracy with existing results, showing a remarkable im-

provement of 31 percentage points over the closest value.
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TABLE IV

COMPARISON OF DETECTION RATE, FALSE ALARM RATE AND F1 SCORE ON THE CMU-MMAC DATASET (“BROWNIES”).

DR (%) FAR (%) F1 score (%)

Activity Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM Baseline SSVM PR-SSVM

Closing 0 45.5 54.5 12.5 44.2 40.0 0 0.6 1.0

Cracking 32.5 26.6 73.4 18.2 30.5 31.2 6.5 3.5 5.3

None 5.8 16.8 28.4 10.3 16.7 29.4 7.5 19.5 25.1

Opening 16.9 43.1 45.1 13.3 30.0 33.7 9.8 12.4 15.2

Pouring 18.8 75.4 70.2 25.0 70.2 59.6 14.0 26.6 27.6

Putting 25.4 47.6 52.4 19.2 54.7 33.2 8.7 7.9 12.1

Reading 0 19.4 15.6 8.0 62.5 53.1 0 0.8 3.7

Spraying 7.8 3.5 14.9 24.1 10.2 22.0 1.6 1.3 1.6

Stirring 71.5 10.1 29.8 70.2 10.2 29.1 35.2 14.8 29.4

Switching on 15.6 24.1 44.6 25.8 33.1 23.6 3.8 4.3 4.2

Taking 21.6 39.0 15.3 28.7 35.1 14.1 7.5 19.5 13.9

Twisting off 0 77.5 65.9 19.5 47.6 40.0 0 2.4 3.6

Twisting on 0 46.4 49.8 17.3 29.3 20.2 0 2.0 2.5

Walking 8.8 0 19.5 18.4 9.6 21.0 0.5 0 8.3

Overall 16.1 30.0 40.5 22.2 41.2 26.9 7.4 8.7 19.6

TABLE V

COMPARISON OF FRAME-LEVEL ACCURACY WITH PREVIOUS RESULTS FOR THE CMU-MMAC DATASET.

Method Average accuracy

HMM-MIO [21] 38.4

CRF [22] 38.8

Proposed method 69.8

V. CONCLUSION

In this letter, we have proposed a novel technique for structured prediction enforcing a partial ranking

among predicted labelings. This technique is an extension of the versatile structural SVM which joins

maximum-margin training with the ability to predict co-dependent labels. The proposed technique, named

partial ranking structural SVM (PR-SSVM), imposes a score margin between additional labelings than the

ground truth. In particular, in this paper we have enforced a margin between “almost-correct” labelings

and the remaining labelings for sequential classification of activities. The results over two contemporary

and challenging datasets (TUM Kitchen and CMU-MMAC) show that:

• compared with a baseline classifier providing single-frame classification and standard structural SVM,

the proposed PR-SSVM always achieves the highest overall F1 scores, with improvements ranging

between 11 and 19 percentage points over the runner-up (Tables I, II and IV);

• compared with the other two classifiers, PR-SSVM achieves the most appealing trade-off between DR
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and FAR, with overall values always better than standard structural SVM;

• compared with previous results, PR-SSVM obtains an improvement of over 14 percentage points on

TUM Kitchen and 31 points on CMU-MMAC (Tables III and V).

In addition, the proposed partial ranking extension is not restricted to sequential classification, but can

be applied to any label structure and any sub-set of constraints. Since the proposed loss decomposes over

single labels, the efficient loss-augmented inference proper of structural SVM is retained.
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