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Abstract

As a metric for amplitude fluctuation of orthogonal frequency division multiplexing (OFDM) signal,

cubic metric (CM) has received an increasing attention because it is more closely related to the distortion

induced by nonlinear devices than the well-known peak-to-average power ratio (PAPR). In this paper,

the properties of CM of OFDM signal is investigated. First, asymptotic distribution of CM is derived.

Second, it is verified that 1.7 times oversampling rate is good enough to capture the CM of continuous

OFDM signals in terms of mean square error, which is also practically meaningful because the fast

Fourier transform size is typically 1.7 times larger than the nominal bandwidth in the long-term evolution

(LTE) of cellular communication systems.

Index Terms

Cubic metric (CM), fast Fourier transform (FFT), orthogonal frequency division multiplexing (OFDM),

oversampling, peak-to-average power ratio (PAPR).

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is an attractive multicarrier modulation

technique for broadband wireless access systems due to its strong immunity to multipath fading

and high spectral efficiency. However, OFDM signals suffer from high amplitude fluctuation

which causes performance degradation due to nonlinear devices. A well-known metric for
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amplitude fluctuation of OFDM signal is peak-to-average power ratio (PAPR). Many research

efforts have been carried out to find efficient PAPR reduction techniques [1]–[6]. Also, the

distribution of the PAPR of continuous OFDM signal was derived [7] and it is widely accepted

that four times oversampling is enough to capture the PAPR of continuous OFDM signals [8].

Another metric for amplitude fluctuation of OFDM signals has been considered [9][10], which

is known as cubic metric (CM) [11]. Studies on PAPR and CM suggest that, except for large

power backoff, CM is more closely related to the amount of distortion induced by a nonlinear

power amplifier than PAPR [10]. Moreover, after analyzing certain OFDM-type signals that are

considered to meet the goal of the long-term evolution (LTE), it was shown in the 3GPP that

CM predicts amplifier power de-rating more accurately than PAPR [12].

Thus, recent research to reduce the CM for the LTE systems has been carried out [13]–[16].

For example, in [13], the clipping and filtering method to reduce the CM instead of PAPR is

proposed, where the descent clipper different to the conventional clipper is designed. In [14],

the tone reservation method is proposed, where minimizing the CM value is set to the objective

function of convex optimization.

A great deal of the literature has been devoted to research on the properties of the PAPR

metric as in [7][8]. On the contrary, such analysis on the CM has not been done before. Thus, it

is worth revealing more about the behavior of this metric. In this paper, an asymptotic probability

distribution of CM for continuous OFDM signals is derived. Also, sufficient oversampling rate

for capturing the CM of continuous OFDM signals is obtained.

II. CUBIC METRIC

The CM of OFDM signals is defined as [12]

CM
∣∣
dB

,
RCM

∣∣
dB
− RCMref

∣∣
dB

K

where RCM is the raw CM defined by

RCM[s(t)]
∣∣
dB

, 20 log

[
rms

[(
|s(t)|

rms[s(t)]

)3]]
(1)

for a continuous OFDM signal s(t) and both RCMref

∣∣
dB

and K are determined according to the

considered OFDM systems [12]. As an example, in the downlink of LTE, RCMref

∣∣
dB

= 1.52 dB
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and K = 1.56 are used. Thus, from (1), we are only interested in

RCM[s(t)] =

√
E
[(
|s(t)|√
Pav

)6]
where Pav is the average power of the continuous OFDM signal s(t). To simplify analysis, we

will use the square of it as

ξ , (RCM[s(t)])2 = E
[(
|s(t)|√
Pav

)6]
.

In practice, instead of calculating the CM of continuous OFDM signals, we calculate the CM

of discrete OFDM signals. Let s(t) be a continuous OFDM signal and its L times oversampled

OFDM signal sequence be represented as

sn,L , s(nTs/LN), 0 ≤ n ≤ LN − 1

where Ts is the OFDM signal period, N is the number of subcarriers, and L is a real number

larger than or equal to one.

Without loss of generality, the input symbols in frequency domain are assumed to be statis-

tically independent, identically distributed (i.i.d.) random variables with zero mean, where the

input symbol is the complex data of each subcarrier. Then the OFDM signal components in time

domain are given by the sum of i.i.d. random variables. Thus, from the central limit theorem

(CLT), the magnitude of sn,L is Rayleigh distributed [7]. Therefore, if it is normalized as

r(t) , |s(t)|/
√
Pav

rn,L , |sn,L|/
√
Pav,

the probability distribution functions (PDFs) of r(t) and rn,L are given as

fr(t)(r) = frn,L(r) = 2 re−r
2

.

Finally, for the discrete OFDM signal sequence obtained by L times oversampling, ξ and RCM

are expressed as

ξL =
1

LN

LN−1∑
n=0

r6n,L (2)

and

RCML =
√
ξL.
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III. PROPERTIES OF r6n,L

In (2), ξL is sample mean of r6n,L’s and thus in this section we investigate the properties of

the random variable r6n,L. By the definition of Weibull distribution, the power transformation

wn,L , r6n,L of the Rayleigh distributed random variable rn,L is known as Weibull distribution

[17]. The PDF and cumulative distribution function (CDF) of wn,L are given as

fwn,L(w) =
1

3
w−

2
3 exp(−w

1
3 )

and

Fwn,L(w) = 1− exp(−w
1
3 ),

respectively. The kth-order moment of wn,L is known as E[wkn,L] = Γ(1 + 3k), where Γ(a) =

(a − 1)! is the Gamma function for an integer x and E[·] denotes expectation value. Then we

have

E[wn,L] = 3! = 6 (3)

E[w2
n,L] = 6! = 720

Var(wn,L) = 684 (4)

where Var(·) denotes variance.

Now, we calculate the covariance of two random variables wn,L and wn′,L′ , which will

be denoted as Cov(wn,L, wn′,L′). For this, we first obtain it with the continuous time lag τ ,

Cov(w(t), w(t+ τ)), where w(t) = r6(t). The joint moment of w(t) and w(t+ τ) is expressed

as [17]

E[wp(t)wq(t+ τ)] = (1− ρ2τ )1+3p+3qΓ(1 + 3p) Γ(1 + 3q) 2F1(1 + 3p, 1 + 3q; 1; ρ2τ ) (5)

where 2F1(·, ·; ·; ·) is the Gauss hypergeometric function and ρτ = ρs(t),s(t+τ) is the Pearson’s

correlation coefficient between s(t) and s(t+ τ) [17]. From (3) and (5), we have

Cov(w(t), w(t+ τ)) = E[w(t)w(t+ τ)]− E[w(t)]E[w(t+ τ)] = 36(9ρ2τ + 9ρ4τ + ρ6τ ).

It can be assumed as in [7] that the power spectrum of baseband OFDM signal has conjugate

symmetry, which is valid because the power spectrum of baseband OFDM signal can be designed

to have symmetry at the center of the bandwidth by giving proper frequency offset. This

assumption guarantees the autocorrelation function of s(t), E[s(t)s(t+τ)∗], to be a real function.
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In any case, the frequency offset is immaterial to our analysis, because it does not change the

magnitude of the envelope of OFDM signal. In this case, the normalized autocorrelation function

ρτ is known as [7]

ρτ =
sin(πNτ/Ts)

N sin(πτ/Ts)

for τ 6= 0 and clearly ρτ = 1 for τ = 0. Note that ρτ = 0 when

τ = ±Ts
N
,±2Ts

N
,±3Ts

N
, · · ·

which implies the well known fact that the elements of the Nyquist sampled OFDM signal

sequence are mutually independent.

The time lag between two discrete samples wn,L and wn′,L′ is

τ =
nTs
LN
− n′Ts
L′N

.

Finally, the covariance of wn,L and wn′,L′ is given as

Cov(wn,L, wn′,L′) = 36(9ρ2τ + 9ρ4τ + ρ6τ )

∣∣∣∣
τ=nTs

LN
−n′Ts
L′N

. (6)

IV. DISTRIBUTION OF RCM

In this section, we obtain the asymptotic distribution of RCML by investigating the distribution

of ξL first.

A. Mean and Variance of ξL

The mean of ξL is clearly 6 from (3) because ξL is sample mean of wn,L. To find the variance

of ξL, suppose that LN is an odd integer. Even though LN can be any real number larger than

or equal to N , it is not difficult to show that discrepancy by the assumption is negligible. Since

sn,L is a complex stationary Gaussian process, both rn,L and wn,L are also stationary random

process. Therefore, the variance of ξL becomes

Var(ξL) = σ2
L =

Var(wn,L)

LN
+

2

(LN)2

LN−1∑
k=1

(LN − k) Cov(w0,L, wk,L). (7)

We can separate the summation in (7) into two parts and change the index of variable as

σ2
L =

Var(wn,L)

LN
+

2

(LN)2

( LN−1
2∑

k=1

(LN−k) Cov(w0,L, wk,L)+

LN−1
2∑

k=1

k Cov(w0,L, wLN−k,L)

)
. (8)
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Using (4) and the fact that the covariance Cov(w0,L, wk,L) in (6) is symmetric and periodic with

the period LN , (8) is rewritten as

σ2
L =

684

LN
+

2

LN

LN−1
2∑

k=1

Cov(w0,L, wk,L).

Consider the following two extreme cases using (6).

1) For the Nyquist Sampling Rate: We have

σ2
1 =

684

N
.

2) For the Continuous OFDM Signal: We have

σ2
∞ = lim

L→∞
σ2
L = lim

L→∞

2

LN

LN−1
2∑

k=1

Cov(w0,L, wk,L)

=
72

Nπ
lim
L→∞

LN−1
2∑

k=1

(
9

(
sin(kπ

L
)

N sin( kπ
LN

)

)2

+ 9

(
sin(kπ

L
)

N sin( kπ
LN

)

)4

+

(
sin(kπ

L
)

N sin( kπ
LN

)

)6)
π

L

=
72

Nπ

∫ Nπ
2

0

9

(
sin(x)

N sin( x
N

)

)2

+ 9

(
sin(x)

N sin( x
N

)

)4

+

(
sin(x)

N sin( x
N

)

)6

dx (9)

=
36

5N5
+

117

N3
+

2799

5N
.

Unless N is too small, it becomes approximately σ2
∞ ≈ 2799/5N . The detailed derivation of

the integration in (9) is explained in Appendix.

B. Distribution of ξL

1) The Nyquist Sampling Rate Case (L = 1): In this case, wn,1’s are i.i.d. and thus ξ1 is

asymptotically Gaussian distributed due to CLT. That is,

ξ1
a.s.∼ N

(
6, σ2

1

)
where a.s. means that the random variable is asymptotically distributed.

2) Natural Number Sampling Rate Case (L is a natural number): It is easy to see that in

this case, ξL is asymptotically Gaussian distributed. We divide LN OFDM signal components

sn,L into L subsets S0,S1, · · · ,SL−1 in the interleaved pattern as

Sq = {sn,L
∣∣ n = Lp+ q, 0 ≤ p ≤ N − 1}, 0 ≤ q ≤ L− 1.
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Since the components sn,L in the set Sq are mutually independent, CLT can be applied to each set.

Then we have L asymptotically Gaussian distributions that are correlated. The sum of correlated

Gaussian random variables is still Gaussian. Therefore, when L is a natural number, we have

ξL
a.s.∼ N

(
6, σ2

L

)
.

3) Continuous OFDM Signal Case (L → ∞): Clearly, the distribution of ξ∞ converges to

some distribution as L increases and we already checked that the distributions of ξL for all

natural number L are asymptotically Gaussian distribution. Therefore, the distribution of ξ∞ is

also Gaussian such that

ξ∞
a.s.∼ N

(
6, σ2

∞

)
.

4) L is a Real Number: Under some assumptions, the above three cases can be integrated

into one general result. The CLT can be applied to m-dependent random process [18], where

m-dependent means that two samples from a random process with the interval larger than m

have no statistical dependency. wn,L is an m-dependent random process from the fact that the

correlation of the stationary random process wn,L may rapidly diminish as the interval exceeds

Ts/N [7]. Therefore, for any real number L larger than one, ξL can be considered as Gaussian

distributed.

C. Distribution of RCML

∣∣
dB

For the Gaussian distributed ξL with mean 6 and variance σ2
L, complementary CDF (CCDF)

of ξL is given as

P (ξL > a) = 1− FξL(a) =
1

2

[
1− erf

(
a− 6

σL
√

2

)]
.

Thus, CCDF of RCML

∣∣
dB

is

P (RCML

∣∣
dB
> a) = P (ξL > 10

a
10 )

=
1

2

[
1− erf

(
10

a
10 − 6

σL
√

2

)]
where erf(a) = 2√

π

∫ a
0
e−t

2
dt is the error function.
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Fig. 1. Comparison of simulated and analytical CCDFs of RCM∞
∣∣
dB

.

Fig. 1 compares the simulated and analytical CCDFs of RCM∞
∣∣
dB

. Though we have obtained

the distribution of RCML

∣∣
dB

for general value of L, due to lack of space, we only present the

comparison when L → ∞, which is of importance practically. In the simulation, L is set to

32, which is enough to represent the continuous OFDM signal, and 16-quadrature amplitude

modulation is used. It is widely known that the metrics describing the envelope behavior of

OFDM signals such as CM and PAPR do not depend on the modulation order. Note that analysis

is based on Gaussian approximation in Section IV-B. Unfortunately, Weibull distribution is a

kind of heavy-tailed distribution and thus the sum of Weibull random variables slowly converges

to Gaussian distribution as N increases but it shows good agreement when N is large as shown

in Fig. 1.
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V. OVERSAMPLING RATE TO CAPTURE THE CM OF CONTINUOUS OFDM SIGNAL

Radically, the metrics such as PAPR and CM have to be calculated from continuous OFDM

signals. However, it is impossible to handle with the continuous OFDM signal and instead one

calculates the metrics from the oversampled discrete OFDM signal with sufficient oversampling

rate. In this case, the metrics calculated from the oversampled OFDM signal can be viewed as

an estimator for the metrics of the continuous OFDM signal. For instance, in the case of the CM

calculation, RCML is the estimator for true parameter RCM∞. It is natural that a high sampling

rate guarantees low estimation error but it also entails high complexity. Thus, finding a sufficient

sampling rate is of great importance.

In [8], upper bounds on the estimation error of PAPR according to L is derived and it is

proposed that four times oversampling rate is enough to capture the PAPR of continuous OFDM

signals. However, in the case of CM, this approach is not useful. Differing from the PAPR, the

estimator RCML rarely shows extremely large estimation error. Therefore, the total inspection

approach is not suitable in the case of CM. This is due to the fact that the Weibull distribution

is a kind of heavy-tailed distribution which means that its variance is quite large. For instance,

when the OFDM signal sequence is an impulse signal with N = 1024, it has RCM1 = 1024

and RCM∞ ' 759. In this case, the square error |RCM1 − RCM∞|2 ' 7× 104 is much larger

than the mean square error (MSE) E[|RCM1 − RCM∞|2] ' 5× 10−3. Thus, in this section we

statistically approach this problem by deriving the MSE E[|RCML −RCM∞|2] according to L.

A. Joint PDF of ξL and ξ∞

To obtain the MSE E[|RCML − RCM∞|2] = E[|
√
ξL −

√
ξ∞|2], first we find the joint PDF

of ξL and ξ∞ which is clearly bivariate Gaussian distribution from our investigation in Section

IV-B. We already checked their mean values E[ξL] = E[ξ∞] = 6. Next, the correlation coefficient

June 24, 2015 DRAFT
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between ξL and ξ∞ is given as

ρξL,ξ∞ =
Cov(ξL, ξ∞)

σLσ∞

= lim
L′→∞

∑LN−1
n=0

∑L′N−1
n′=0 Cov(wn,L, wn′,L′)

σLσ∞LL′N2

= lim
L′→∞

∑LN−1
n=0

∑L′N−1
n′=0 36(9ρ2τ + 9ρ4τ + ρ6τ )

∣∣
τ=nTs

LN
−n′Ts
L′N

σLσ∞LL′N2

=
36

σLσ∞πLN2
·
LN−1∑
n=0

∫ −nπ
L

+Nπ

−nπ
L

9

(
sin(x)

N sin( x
N

)

)2

+ 9

(
sin(x)

N sin( x
N

)

)4

+

(
sin(x)

N sin( x
N

)

)6

dx

where the equation in the integration is periodic with the period Nπ. Thus, we have

ρξL,ξ∞ =
36

σLσ∞πN
·
∫ Nπ

0

9

(
sin(x)

N sin( x
N

)

)2

+ 9

(
sin(x)

N sin( x
N

)

)4

+

(
sin(x)

N sin( x
N

)

)6

dx

=
σ∞
σL

. (10)

In terms of estimation theory, ρξL,ξ∞ = σ∞/σL implies that ξL can be considered as an unbiased

minimum MSE estimator of ξ∞. That is, orthogonality principle E[(ξL − ξ∞) ξ∞] = 0 and

unbiased property E[ξL] = E[ξ∞] are satisfied.

B. MSE between ξL and ξ∞

Using the orthogonality principle, the MSE between ξL and ξ∞ is obtained as

E[|ξL − ξ∞|2] = σ2
L − σ2

∞. (11)
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Fig. 2. Comparison of simulated and analytical E[|ξL − ξ∞|2] for various L.

Fig. 2 compares E[|ξL − ξ∞|2] values obtained by simulation and analysis, which shows a

good agreement. Analytical results are given by using (11) and simulation results are obtained

by testing randomly generated 105 OFDM signal sequences.

C. MSE between RCML and RCM∞

The MSE between RCML and RCM∞ can be obtained as

E[|RCML − RCM∞|2] = E[|
√
ξL −

√
ξ∞|2]

= 12− 2 · E[
√
ξLξ∞]

a.s.∼ 12− 2

∫ ∞
0

∫ ∞
0

√
ξLξ∞ fξL,ξ∞(ξ1, ξ2) dξ1 dξ2

where fξL,ξ∞(ξ1, ξ2) is the joint Gaussian PDF of ξ1 and ξ2 with the correlation coefficient ρξL,ξ∞

in (10).

Fig. 3 compares E[|RCML − RCM∞|2] values obtained by simulation and analysis using

Gaussian approximation. From a practical viewpoint, MSE is usually normalized as E[|RCML−
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RCM∞|2]/E[|RCM∞|2] = E[|RCML − RCM∞|2]/6. Thus, one can conclude that 1.7 times

oversampling gives the normalized MSE smaller than about 10−4 for practical value of N ≥ 256,

which is remarkable because the FFT size is typically 1.7 times larger than the nominal bandwidth

for the LTE cellular communication systems [19].

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
10

-5

10
-4

10
-3

10
-2

10
-1

E
[|

R
C

M
L
-R

C
M

∞

|2
]

Oversampling rate (L)

 Analytical (N=256)

 Analytical (N=512)

 Analytical (N=1024)

 Analytical (N=2048)

 Simulation (N=256)

 Simulation (N=512)

 Simulation (N=1024)

 Simulation (N=2048)

Fig. 3. Comparison of simulated and analytical E[|RCML − RCM∞|2] for various L using Gaussian approximation.

VI. CONCLUSION

In this paper, the properties of CM are investigated. First, asymptotic distribution of the CM is

obtained, which shows a good agreement to simulation results when the number of subcarriers is

large. Second, the oversampling rate good enough to capture the CM of the continuous OFDM

signal is investigated. We confirmed that 1.7 times oversampling rate is good enough for that

purpose from a viewpoint of MSE, which is of great importance because the FFT size is typically

1.7 times larger than the nominal bandwidth for the LTE cellular communication systems.
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APPENDIX

Derivation of
∫ Nπ

2

0
( sin(x)
N sin( x

N
)
)rdx When r =2, 4, and 6

It is known that there are several methods to derive
∫ Nπ

2

0
( sin(x)
N sin( x

N
)
)rdx when r = 2. By

expanding one of them, both cases of r = 4 and 6 are derived analogously as follows. Without

loss of generality, by using N = 2M and change of variables, we have more simplified expression

as ∫ Nπ
2

0

(
sin(x)

N sin( x
N

)

)r
dx =

1

2rM r−1

∫ π

0

(
sin(2Mx)

sin(x)

)r
dx

where (
sin(2Mx)

sin(x)

)r
= 2r(cos(x) + cos(3x) + · · ·+ cos((2M − 1)x))r. (12)

Since the integral is over [0, π], only part of coefficients contribute to the integration. For example,

when r = 2, all the cross terms from the polynomial expansion in (12) becomes zero after

integration, i.e.,
∫ π
0

cos(x) cos(3x)dx = 0. After some manipulations, we have(
sin(2Mx)

sin(x)

)2

= 22

(
M

2
+ z2(x)

)
(

sin(2Mx)

sin(x)

)4

= 24

(
1

24

(
M + 8M3

)
+ z4(x)

)
(

sin(2Mx)

sin(x)

)6

= 26

(
1

160

(
M + 5M3 + 44M5

)
+ z6(x)

)
where zr(x) denotes all terms which become zero after integration over [0, π]. Finally, we have∫ Nπ

2

0

(
sin(x)

N sin( x
N

)

)2

dx =
π

2∫ Nπ
2

0

(
sin(x)

N sin( x
N

)

)4

dx = π

(
1

3
+

1

6N2

)
∫ Nπ

2

0

(
sin(x)

N sin( x
N

)

)6

dx = π

(
11

40
+

1

8N2
+

1

10N4

)
.
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