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Abstract

In this letter, a joint robust transmit/receive adaptive beamforming for multiple-input multiple-

output (MIMO) radar based on probability-constrained optimization approach is developed in the case

of Gaussian and arbitrary distributed mismatch present in both the transmit and receive signal steering

vectors. A tight lower bound of the probability constraint is also derived by using duality theory. The

formulated probability-constrained robust beamforming problem is nonconvex and NP-hard. However,

we reformulate its cost function into a bi-quadratic function while the probability constraint splits

into transmit and receive parts. Then, a block coordinate descent method based on second-order cone

programming is developed to address the biconvex problem. Simulation results show an improved

robustness of the proposed beamforming method as compared to the worst-case and other existing

state-of-the-art joint transmit/receive robust adaptive beamforming methods for MIMO radar.
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duality.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has become the focus of intensive research [1]-

[4]. MIMO radar with colocated antennas allows to form a virtual array with a larger number

of virtual antenna elements. It significantly enhances resolution [5] and parameter identifiability

[6], [7], allows for direct applicability of adaptive arrays for target detection [6], [8], [9], and

enhances flexibility for transmit beampattern design [10]-[14].

Robust adaptive beamforming has been widely used to achieve higher resolution capability

in the traditional frame work of phased receive array [15]-[26]. The well-known sample ma-

trix inversion (SMI) beamformer [15]-[19] has been recently used in the MIMO radar (joint

transmit/receive) beamforming context in [30], [31]. However, the SMI beamformer does not

provide sufficient robustness against a mismatch between the presumed and actual transmit and

receive steering vectors. The so-called loaded SMI (LSMI) [22], [24], [25] and the worst-case

optimization-based beamformers [27]-[29] can be used, but they may be overly conservative in

practical applications, because the actual worst operational conditions may occur with a rather

low probability. Robust adaptive beamforming approaches developed in [33]-[36] for traditional

phased arrays are then more appropriate since they are designed to guarantee the robustness

against the signal steering vector mismatch with a certain selected probability.

In this letter, we propose a joint robust transmit/receive adaptive beamforming for MIMO

radar using the probability-constrained optimization and provide a mathematical analysis of the

tight lower bound for the probability constraint by using duality theory for the case of arbitrary

distributed mismatch. We transfer the primal nonconvex optimization problem into a biconvex

problem [37] and address it by using block coordinate descent (BCD) approach [38]-[42].

II. SIGNAL MODEL

Consider a MIMO radar system equipped with Mt transmit and Mr receive antenna elements.

Both the transmit and receive arrays are assumed to be closely located so that they share the

same spatial angle of a far-field target. Let φ(t) , [φ1(t), . . . , φMt(t)]
T be the waveform vector

that contains the complex envelopes of orthogonal waveforms which are emitted by different

transmit antennas, i.e.,
∫
T
φi(t)φ

∗
j(t)dt = δ(i − j), i, j = 1, . . . ,Mt, where T is the pulsewidth

and δ(·) is the Kronecker delta function. Here (·)T and (·)∗ stand for the transpose and complex

conjugate operations, respectively.
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Assuming that k targets are present, the Mr × 1 received complex observation vector can be

written as

x(t, τ) =
k∑
i=1

βi(τ)
[
aTt (θi)φ(t)

]
ar(θi) + n(t, τ) (1)

where τ is the slow time index, i.e., the pulse number, βi(τ) is the reflection coefficient of

the ith source with variance σ2
β , at(θ) and ar(θ) are the transmit and receive steering vectors,

respectively, and n(t, τ) is zero-mean white Gaussian noise. The reflection coefficients βi(τ), i =

1, . . . , k are assumed to remain constant during the whole pulse, but vary independently from

pulse to pulse.

By matched filtering the received data to the Mt orthogonal waveforms at the receiving end

and stacking the individual vector components in one column vector, the MtMr× 1 virtual data

vector can be obtained as

y(τ) , vec

(∫
T

x(t, τ)φH(t)dt

)
=

k∑
i=1

βi(τ)at(θi)⊗ ar(θi) + ñ(τ)

(2)

where ñ(τ) is the MtMr × 1 noise vector whose covariance is given by σ2
NIMtMr , vec(·) is the

operator that stacks the columns of a matrix into one column vector, ⊗ denotes the Kronecker

product, and (·)H stands for the Hermitian transpose.

In contrast to the traditional phased-array radar, the mismatches existing in both the transmit

and receive steering vectors have to be considered in MIMO radar. Then, the actual transmit

and receive steering vectors can be modeled as [32]

ãt , at + et, ‖et‖ 6 εt; ãr , ar + er, ‖er‖ 6 εr (3)

where et and er are unknown complex vectors describing the transmit and receive steering vector

mismatches, respectively, and ‖·‖ denotes the Euclidean norm of a vector.

In the mismatched case, the actual virtual steering vector can be constructed as

d̃ = ãt ⊗ ãr = (at + et)⊗ (ar + er)

= at ⊗ ar + at ⊗ er + et ⊗ ar + et ⊗ er.
(4)
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The bound on the norm of the virtual steering vector mismatch can be then found as

‖e‖ = ‖at ⊗ er + et ⊗ ar + et ⊗ er‖

6 ‖at ⊗ er‖+ ‖at ⊗ er‖+ ‖at ⊗ er‖

6
√
Mtεr +

√
Mrεt + εtεr , ε.

(5)

It can be seen that the bound (5) which is composed of three terms is much larger than that of

et and er considered separately. Thus, the worst-case approach which uses the loose bound (5)

may be too ovely conservative.

III. PROBABILITY-CONSTRAINED OPTIMIZATION

Since the worst-case approach may be too overly conservative, especially in MIMO radar

context, we suggest to use the probability-constrained optimization-based approach [33]-[36].

The key idea of this approach is to maintain the beamformer distortionless response only

for operational conditions which occur with a sufficiently high probability rather than for all

operational conditions corresponding to the uncertainty set. Then the joint transmit/receive robust

adaptive beamforming problem for MIMO radar can be formulated as

min
w

wHR̂w

s.t. Pr{wH (ãt ⊗ ãr) > 1} > p

(6)

where p is a certain probability value, which can be selected according to the quality of

service (QoS) requirements, Pr{·} stands for the probability operator, et and er are assumed

to be random, and R̂ , 1
L

L∑
τ=1

y(τ)yH(τ) is the sample covariance matrix used in practical

applications. Here L is the training sample size.

The general probability-constrained problem (6) is nonconvex and NP-hard. However, thanks

to the MIMO radar structure, the joint transmit/receive beamforming vector has the following

Kronecker form w = u⊗v. Thus, we can reformulate the cost function of (6) into a bi-quadratic

cost function.

Using the equalities a⊗ b = vec
(
baT

)
and vec (A)H · vec (B) = tr

(
AHB

)
, we obtain that

wH (ãt ⊗ ãr) =
(
uH ãt

) (
vH ãr

)
. Then the probability constraint in (6) can be reformulated as

Pr{wH (ãt ⊗ ãr) > 1} = Pr{|uH ãt||vH ãr| > 1}

> Pr{|uH ãt| > 1 ∩ |vH ãr| > 1} > p.
(7)
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Since et and er are independent identically distributed (i.i.d.), and using the fact that any functions

of independent random variables are statistically independent [43], we can split the constraint

(7) into two constraints as

Pr{|uH ãt| > 1} > η1, Pr{|vH ãr| > 1} > η2. (8)

The probability values η1 and η2 are chosen separately at the transmitter and receiver so that

η1η2 = p and η1, η2 6 1. Note that η1 and η2 are preselected based on the robustness requirements

to mismatches at the transmitter and receiver. Thus, η1 and η2 are not the optimization variables.

For example, η1 = η2 =
√
p satisfies the conditions.

Let us obtain a simplified approximate form of the probability constraints (8). If |uHat| >

|uHet| and |vHar| > |vHer|, i.e., if the steering vector mismatches are reasonably small, then

from the triangle inequality it follows that

|uH (at + et)| > |uHat| − |uHet|

|vH (ar + er)| > |vHar| − |vHer|.
(9)

Using (8) and (9), the problem (6) can be reformulated as

min
u,v

(u⊗ v)H R̂ (u⊗ v)

s.t. Pr
{
|uHet| 6 |uHat| − 1

}
> η1

Pr
{
|vHer| 6 |vHar| − 1

}
> η2.

(10)

The problem (10) becomes mathematically tractable if we additionally assume a specific

analytic form for the probability operator Pr{·} and make some approximations. In the sequel,

we will consider two practically important cases corresponding to two different assumptions on

the probability density function (pdf) of the transmit and receive steering vector mismatches et

and er.

A. Mismatches With Gaussian Distribution

Consider the case of a complex zero-mean symmetric Gaussian distribution for et and er, i.e.,

et ∼ CN (0Mt ,Ct) , er ∼ CN (0Mr ,Cr) (11)

where 0Mt and 0Mr denote the Mt × 1 and Mr × 1 vector of zeros, respectively, Ct and Cr

capture the second-order statistics of the uncertainties in the transmit and receive steering vectors,

respectively. .
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We consider the receive steering vector mismatch and note that the same considerations apply

to the transmit steering vector mismatch. It is easy to show that the random variable vHer has the

complex Gaussian distribution, that is, vHer ∼ CN
(
0Mr ,v

HCrv
)
, and its real and imaginary

parts are real i.i.d. Gaussian.

Let us use the fact that if x and y are two real i.i.d. zero mean Gaussian random variables

with the variance σ2, then z =
√
x2 + y2 is Rayleigh-distributed with the cumulative density

function (cdf) given as F (z) = 1− e−z2/2σ2 . Using this fact, the probability constraint (8) at the

receiver can be written as

Pr
{
|vHer| 6 |vHar| − 1

}
= 1− exp

(
−(|vHar| − 1)2

vHCrv

)
> η2.

(12)

The inequality in the second line of (12) can be equivalently rewritten as

|vHar| −

√
ln

(
1

1− η2

)∥∥∥C 1
2
r v
∥∥∥ > 1. (13)

Observing that the cost function in (10) is unchanged when u and v undergo an arbitrary

phase rotation, the problem (10) can be further rewritten as

min
u,v

(u⊗ v)H R̂ (u⊗ v)

s.t. uHat − γ11
∥∥∥C 1

2
t u
∥∥∥ > 1, Im(uHat) = 0

vHar − γ12
∥∥∥C 1

2
r v
∥∥∥ > 1, Im(vHar) = 0

(14)

where γ11 ,
√
ln((1− η1)−1), and γ12 ,

√
ln((1− η2)−1).

The problem (14) has separate constraints for u and v, but coupled objective. For such type of

problems of minimizing a continuous function of several blocks of variables, the block coordinate

descent (BCD) methods are widely used [38]-[42]. At each iteration of BCD, a single block of

variables is optimized, while the remaining variables are held fixed. Thus, we develop here a

BCD type method for addressing the problem (14). It can be seen that if one of the vectors u or

v is fixed, the cost function of the problem (14) can be transformed into a quadratic function with

respect to the other vector. Hence, it can be solved based on the second-order cone programming

(SOCP) using, for example, the CVX toolbox [44].
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Algorithm 1 : Interative SOCP Method
1: Given: initial value u0 =

at

‖at‖ , k = 0, tolerance δ

Repeat: k = k + 1

2: Solve (15), obtain voptk−, vk := voptk−

3: Solve (16), obtain uoptk−, uk := uoptk−

Until

4:
‖uoptk−−uk−1‖
‖uoptk−‖

< δ and ‖v
opt
k−−vk−1‖
‖voptk−‖

< δ

Return

5: Output: uopt and vopt.

Let us fix u and choose uk = uoptk−. It is obvious that there is a scaling determinacy between

u and v. Then, (14) boils down to

min
v

(uk ⊗ v)H R̂ (uk ⊗ v)

s.t.
(
uHk at − γ11

∥∥∥C 1
2
t uk

∥∥∥)(vHar − γ12
∥∥∥C 1

2
r v
∥∥∥) > 1

Im(vHar) = 0

(15)

By solving (15), we obtain the optimal solution voptk−1. Then we fix v and choose vk = voptk−.

The problem (14) boils down respectively to

min
u

(u⊗ vk)
H R̂ (u⊗ vk)

s.t.
(
uHat − γ11

∥∥∥C 1
2
t u
∥∥∥)(vHk ar − γ12

∥∥∥C 1
2
r vk

∥∥∥) > 1

Im(uHat) = 0.

(16)

The overall algorithm for addressing (14) is then given as in Algorithm 1. The convergence of

a large class of BCD methods is investigated in [41].

B. Mismatch With Arbitrary Distribution

Consider now the case when the transmit and receive steering vector mismatches are arbitrary

distributed and only the first and second-order statistics are known.

Using the Chebyshev inequality which states that for any zero-mean random variable τ with

variance σ2
τ and positive real number α, we obtain Pr{|τ | > α} 6 σ2

τ

α2 . Then the probability
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constraint (8) at the receiver can be expressed as

Pr
{
|vHer| 6 |vHar| − 1

}
= 1− vHCrv

(|vHar| − 1)2
> η2. (17)

Further, (17) can be rewritten at both the transmit and receive sides as

|uHat| − γ21
∥∥∥C 1

2
t u
∥∥∥ > 1, |vHar| − γ22

∥∥∥C 1
2
r v
∥∥∥ > 1 (18)

where γ21 ,
(√

1− η1
)−1

, and γ22 ,
(√

1− η2
)−1. We can see that the difference between the

cases of the mismatch with arbitrary and Gaussian distribution is in the coefficients γ11, γ12 and

γ21, γ22 only. Thus, the problem in the case of the mismatch with arbitrary distribution can be

addressed in the same way as before.

IV. TIGHT LOWER BOUND FOR THE PROBABILITY CONSTRAINT USING DUALITY THEORY

For simplicity, let us eliminate the subscripts in our notations and instead use simply the

notations a, e, and C. The tight lower bound problem is

min
f(e)

Pr{|vH(a+ e)| > 1} (19)

where f(e) is the pdf of e. It can be reformulated as [45]

min
f(e)

Pr{g(e) > 1}

s.t. E{eeH} = C∫
e

f(e)de = 1, E{e} = 0

(20)

where g(e) , |vH(a+e)|2. To find the dual problem for (20), we first introduce the Lagrangian

function as

L(f(e), µ,η,T) = Pr{g(e) > 1}+ µ(1−
∫
e

f(e)de)

+ ηH(0− E{e}) + tr(TH(C− E{eeH}))

= µ+ tr(THC)

+

∫
g(e)>1

[1− (µ+ ηHe+ tr(THeeH))]f(e)de

+

∫
g(e)61

[0− (µ+ ηHe+ tr(THeeH))]f(e)de

(21)
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where µ, η, and T are the Lagrange multipliers and T = TH . With the implicit pdf constraint

f(e) > 0, the Lagrange dual function of the problem (20) is given as

g(µ,η,T) = min
f(e)>0

L(f(e), µ,η,T). (22)

Note that the minimum of the first integral in (21) with the nonnegative pdf f(e) constrain is

zero if µ+ ηHe+ tr(THeeH) 6 1, otherwise the minimum is unbounded below. Similarly, the

minimum of the second integral with the nonnegative pdf f(e) constrain is zero if µ + ηHe +

tr(THeeH) 6 0, otherwise the minimum is unbounded below. It is easy to see that the condition

µ+ηHe+tr(THeeH) 6 0 must hold for both g(e) > 1 and g(e) 6 1, i.e., ∀g(e), and therefore,

∀e, while the condition µ + ηHe + tr(THeeH) 6 0 must hold for ∀g(e) 6 1. Then the dual

problem to (20) can be formulated as

max
µ,η,T

µ+ tr(THC)

s.t. µ+ ηHe+ tr(THeeH) 6 1, ∀e

µ+ ηHe+ tr(THeeH) 6 0, ∀g(e) 6 1

T = TH .

(23)

Let us define

ẽ ,

e
1

 , C̃ ,

C 0

0H 1

 ,Z ,

TH 1
2
ηH

1
2
ηH µ

 ,
A ,

 vvH vvHa

aHvvH aHvvHa− 1

 .
Thus, the second constrain in (23) can be rewritten as ẽHZẽ 6 0,∀ẽHAẽ 6 0. Further, according

to S-Lemma it becomes Z − λA 4 0,∀λ > 0. Then the problem (23) in compact form can be

expressed as

max
Z

tr(ZC̃)

s.t. Z−

 0 0

0H 1

 4 0, Z = ZH

Z− λA 4 0, ∀λ > 0.

(24)
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Since the Lagrange dual problem yields the lower bound of the primal problem, we can finally

state that

min
f(e)

Pr{g(e) > 1} = max
Z

tr(ZC̃). (25)

V. SIMULATION RESULTS

We assume a uniform linear array (ULA) of 10 antenna elements that is used for both

transmitting and receiving, i.e., Mt = 10 and Mr = 10. Antenna elements are spaced half a

wavelength apart from each other. The plane-wave target impinges on the array from θs = 3◦

and two interfering sources arrive from directions θi1 = 30◦ and θi2 = 50◦, respectively. The

interference-to-noise ratio (INR) is assumed to be 20 dB for both interferences, and 100 Monte-

Carlo runs are used to obtain each point in our simulations curves.

Consider the scenario with Ricean propagation medium where the mismatch vectors et and

er are modelled as

e =
σ√
MN

N∑
n=1

ejψna(θ0 + θn)

where M stands for Mt or Mr, σ is the power of scattered nonline-of-sight (NLOS) components,

N is the number of NLOS components, ψn is the phase shift parameter of the nth NLOS

component, and θn is angular shift. The parameters θn and ψn, n = 1, . . . , N are independently

and uniformly drawn in each simulation run from [−2.5◦, 2.5◦] and [0, 2π), respectively. The

values N = 10 and σ2 = 0.3M are taken.

For comparison, ε = 9 is chosen for the worst-case robust beamformer [32]. For the LSMI

beamformer, the fixed diagonal loading parameter γ = 10 is chosen. For the proposed probability-

constrained optimization based joint transmit/receive robust adaptive beamformer, p = 0.9 while

η1 = 0.93 and η2 = p/η1 = 0.9677 are taken.

The output SINRs versus SNR are shown in Fig. 1. We can see that the proposed method

based on the probability-constrained optimization for the case of arbitrary distributed mismatches

has the best performance among all the techniques tested. These improvement is especially

remarkable at high SNRs. However, the performance of the probability-constrained optimization

based method with Gaussian mismatch distribution is worse than that for the worst-case robust

beamformer. It can be explained by the fact that the actual mismatch corresponding to the

considered Ricean scenario is not Gaussian.
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Fig. 1. Output SINR versus SNR for K=100 and INR=20dB.

VI. CONCLUSION

A joint transmit/receive robust adaptive beamforming method for MIMO radar has been

developed based on the probability-constrained optimization. Specifically, we have considered

the mismatches in the desired signal steering vectors at both transmit and receive arrays to

be random. The original probability-constrained optimization problem has been converted into

a biconvex problem and addressed by using BCD approach. The proposed technique offers a

better performance than several state-of-the-art counter parts.
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