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Abstract—It was demonstrated in earlier work that, by approx-
imating its range kernel using shiftable functions, the non-linear
bilateral filter can be computed using a series of fast convolutions.
Previous approaches based on shiftable approximation have,
however, been restricted to Gaussian range kernels. In thiswork,
we propose a novel approximation that can be applied toany
range kernel, provided it has a pointwise-convergent Fourier
series. More specifically, we propose to approximate the Gaussian
range kernel of the bilateral filter using a Fourier basis, where the
coefficients of the basis are obtained by solving a series of least-
squares problems. The coefficients can be efficiently computed
using a recursive form of the QR decomposition. By controlling
the cardinality of the Fourier basis, we can obtain a good tradeoff
between the run-time and the filtering accuracy. In particular, we
are able to guarantee sub-pixel accuracy for the overall filtering,
which is not provided by most existing methods for fast bilateral
filtering. We present simulation results to demonstrate thespeed
and accuracy of the proposed algorithm.

Index Terms—bilateral filter, shiftability, Fourier basis, fast
algorithm, accuracy.

I. I NTRODUCTION

The bilateral filter was introduced by Tomasi and Manduchi
in [1] as a non-linear extension of the classical Gaussian filter.
The bilateral filter employs a range kernel along with a spatial
kernel for performing edge-preserving smoothing of images.
Since its introduction, the bilateral filter has found widespread
applications in image processing, computer graphics, computer
vision, and computational photography [2] - [8].

In this paper, we will consider a general form of the bilateral
filter where an arbitrary kernel is used for the range filtering,
and a box or Gaussian kernel is used for the spatial filtering
[1]. In particular, consider an imagef : I → R, whereI ⊂ Z

2

is a finite rectangular lattice. The output of the bilateral filter
fBF : I → R is given by

fBF(i) =

∑

j∈Ω w(j) φ
(

f(i− j)− f(i)
)

f(i− j)
∑

j∈Ω w(j) φ
(

f(i− j)− f(i)
) , (1)

whereφ(t) is the range kernel andw(i) is the spatial kernel.
The spatial kernel is usually a Gaussian [1],

w(i) = exp
(

−‖i‖2/2σ2
s

)

. (2)

The windowΩ of the spatial kernel is a local neighbourhood
of the origin. For example,Ω = [−W,W ]2 for the Gaussian
kernel, whereW = 3σs. The original proposal in [1] was to
use a Gaussian range kernel given by

φ(t) = exp
(

−t2/2σ2
r

)

. (3)

In more recent work, exponential range kernels have been used
[9], [10], [11].
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The direct computation of (1) requiresO(W 2) operations
per pixel. In fact, the direct computation is slow for practical
settings ofW [12]. To address this issue, researchers have
come up with various fast algorithms [12] - [17]. While
some of these algorithms can reduce the complexity toO(1)
operations per pixel for any arbitraryW , there is, however, no
available guarantee on the approximation quality that can be
achieved using these algorithms. In fact, as reported in [16],
a poor approximation can lead to visible distortions in the
filtered image. Only recently, a quantitative analysis of Yang’s
fast algorithm was presented in [18].

In Section II, we recall the idea of constant-time bilateral
filtering using Fourier (complex exponential) kernels [19]. In
this work, we build on this idea to propose a new algorithm for
approximating (1) using the shiftable Fourier basis. The con-
tribution of this work is not the fast algorithm itself, but rather
the approximation scheme in Section III, and the subsequent
approximation guarantee in Section IV. The approximation
scheme can be applied toany arbitrary range kernel that has
a pointwise-convergent Fourier series. In this respect, wenote
that all previous approaches based on shiftable approximation
were restricted to Gaussian range kernels [16], [19], [20].We
provide some representative results concerning the speed and
accuracy of the resulting algorithm in Section V, where we
also compare the empirical accuracy of the filtering with the
bounds predicted by our analysis.

II. SHIFTABLE BILATERAL FILTERING

It was demonstrated in [16], [19] that the bilateral filter can
be decomposed into a series of Gaussian convolutions using
shiftable functions. In particular, since our present interest is
in the shiftable complex exponential, consider the function

ϕN (t) =
N
∑

n=−N

cn exp(ιnωt), (4)

where ι2 = −1. By setting (4) as the range kernelφ(t), we
can decompose the numerator in (1) as

N
∑

n=−N

cn exp
(

− ιnwf(i)
)

Fn(i),

where

Fn(i) =
∑

j∈Ω

w(j)f(i − j) exp
(

ιnωf(i− j)
)

. (5)

It is clear that a similar decomposition can be obtained for the
denominator of (1). We readily recognize (5) to be a Gaussian
convolution. As is well-known, the Gaussian convolution in
(5) can be efficiently implemented at constant-time complexity
(with respect toσs) using separability and recursion [21]. In
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summary, we can decompose the bilateral filtering into a series
of Gaussian filtering. The fastshiftable algorithm resulting
from this decomposition is summarized in Algorithm 1. We
useG∗(i) in line 5 to denote the complex-conjugate ofG(i).
In line 6, we useF̄ andḠ to denote the Gaussian filtering of
the imagesF (i) andG(i). To avoid confusion, we note that
the formal structure of Algorithm 1 is somewhat different from
that of the shiftable algorithms in [16], [19]. While the cosine
and sine components of the complex exponential were used in
[16], [19], we work directly with the complex exponential in
Algorithm 1. Note that we have abused notation in usingfBF(i)
to denote the shiftable approximation of (1) in Algorithm 1.

Data: Imagef : I → R;
Parameters: Filter w(i), andω, N , and(cn)−N≤n≤N .
Result: Shiftable approximation of (1).

1 Initialize : SetP (i) = 0 andQ(i) = 0 for all i ∈ I;
2 for n = −N, . . . , N do
3 G(i) = exp (ınωf(i)) for i ∈ I;
4 F (i) = G(i)f(i) for i ∈ I;
5 H(i) = cnG

∗(i) for i ∈ I;
6 ComputeḠ = F ∗ w and Ḡ = G ∗ w;
7 P (i) = P (i) +H(i) · F̄ (i) for i ∈ I;
8 Q(i) = Q(i) +H(i) · Ḡ(i) for i ∈ I;
9 end

10 SetfBF(i) = P (i)/Q(i) for all i ∈ I.
Algorithm 1: Shiftable Bilateral Filtering.

If the range kernel is not shiftable, one can approximate it
using a shiftable function. For example, the shiftable raised-
cosines were used in [16] to approximate the Gaussian kernel.
Shiftable approximation using polynomials was later presented
in [19]. More recently, the classical Fourier basis was used
for this purpose in [20]. The above approximations, however,
come with the following shortcomings:
• They are customized to work with the Gaussian kernel,
and cannot be extended to general range kernels, such as the
exponential kernel [10], [11]. Even for the Gaussian kernel,
the proposal in [20] requires one to compute the coefficients
of the Fourier series. This is computationally intensive (e.g.,
requires numerical integration, or some analytical properties
particular to the kernel), and cannot be done on-the-fly. Indeed,
the authors in [20] work with an approximation of the Fourier
coefficients, which is only valid for smallσr .
• Notice that, in most applications of the bilateral filter, the
argumentt in (3) assumes discrete values. This should be taken
into consideration while designing the shiftable approximation.
The approximations in [16], [20], however, do not necessarily
guarantee that the approximation error at these discrete points
are within some user-defined tolerance. This makes it difficult
to quantify the overall filtering accuracy. In this paper, we
propose a rather simple optimization principle, which has an
efficient implementation. This provides us with the desired
control on the numerical accuracy of the overall filtering.

III. PROGRESSIVEFOURIER APPROXIMATION

We now explain how the above shortcomings can be fixed.
As noted above, the argumentt in (3) takes on the values
|f(i−j)−f(j)| asi andj varies over the image. In particular,
t takes values inΛT = {0, 1, . . . , T }, where

T = max
i∈I

max
j∈Ω

|f(i− j)− f(j)|.

Thus,T is the dynamic range of the image measured over the
window Ω, which is typically smaller than the full dynamic
range. We can computeT using the fast algorithm in [22];
the run-time of the algorithm does not depend on the size
of Ω. Without loss of generality, we assume that the range
kernelφ(t) is symmetric. The problem is that of approximating
φ(t) using a shiftable function over the half-interval[0, T ]. We
propose to use the shiftable Fourier basis for this purpose.In
particular, we fix some orderN ≥ 1, and consider the shiftable
function

ϕN (t) = d0 +
N
∑

n=1

dn cos (nωt) , (6)

whereω = π/T . As is well-known, using the identitycos θ =
(exp(ιθ)+exp(−ιθ))/2, we can write (6) as in (4), wherec0 =
d0, andc±n = (1/2)dn for n = 1, . . . , N . The key difference
with [20] is with respect to the rule used to set the coefficients
d0, . . . , dN in (6). These are set to be the standard Fourier
coefficients ofφ(t) in [20]. In keeping with the arguments
presented in earlier, we take a different approach and instead
try to minimize the errorφ(t) − ϕN (t) at the discrete points
t ∈ ΛT . In particular, we consider the problem of finding
d0, . . . , dN that minimizes the gross error

∑

t∈ΛT

(

φ(t) − ϕN (t)
)2
. (7)

This is the classical linear least-squares problem, where the
unknowns ared0, . . . , dN . Indeed, using matrix-notation, we
can write (7) as‖b−Ad‖2, whered = (d0, . . . , dN ), b is the
discretization ofφ(t) at the pointst ∈ ΛT , and the columns of
A are the corresponding discretization of the basis functions
in (6). In particular, let us denote

EN = min
d∈RN+1

‖b−Ad‖2. (8)

The following fact is the basis of our approximation algorithm
to be discussed next.

Proposition 3.1 (Decay of Error): Assume that the Fourier
series of the range kernel converges pointwise on the interval
[−T, T ]. That is, fort ∈ [−T, T ],

lim
N→∞

ϕN (t) = φ(t),

whered0, . . . , dN in (6) are the Fourier coefficients ofφ(t).
ThenEN decays to zero asN → ∞.

Proof: Indeed, leteN be the error in (7) whenϕN (t)
is taken to be theN -th order Fourier approximation ofφ(t).
Then, by optimality, we haveEN ≤ eN . Since, by assumption,
eN → 0 asN → ∞, the proposition follows.
We note that the Fourier series converges pointwise for any
continuously-differentiable function, e.g., Gaussian and poly-
nomials. Convergence is also guaranteed for functions that
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are continuous and piecewise-differentiable [23], such asthe
exponential. Thus, the assumption in Proposition 3.1 covers
the commonly used kernels [1], [10], [11].

Proposition 3.1 suggests the following numerical scheme:
We fix some user-defined toleranceε2. We begin withN = 1,
and solve (8) to getEN . If EN < ε2, we stop. Else, we increase
N by one and proceed, untilEN ≤ ε2. In other words, we solve
a series of least-squares problems, where the basis matrixA

at each step is obtained by augmenting theA in the previous
step. The whole process can be efficiently implemented usinga
recursive version of the modified QR algorithm [24]. The main
idea is that (8) can be computed by solvingRd = QTb using
back-substitution, whereA = QR is the QR-decomposition
of A. In the recursive computation,Q,R, andQTb at each
iteration is computed from the corresponding quantities inthe
previous iteration using cheap operations. An adaptation of this
recursive algorithm to our problem is provided in Algorithm
2. In steps 3 and 14, we discretize the kernel and the incoming
Fourier basis. In step 18,rk denotes thek-th component ofr.

IV. F ILTERING ACCURACY

Suppose we are given a range kernelφ(t) and toleranceε.
We compute the approximation orderN and the corresponding
coefficientsd0, . . . , dN using Algorithm 2. This gives us the
corresponding kernelϕN (t) in (4), which is used to approxi-
mate (1) using Algorithm 1. In particular, the approximation
provided by Algorithm 1 is given by

f̂BF(i) =

∑

j∈Ω w(j)ϕN

(

f(i− j)− f(i)
)

f(i− j)
∑

j∈Ω w(j)ϕN

(

f(i− j)− f(i)
) . (9)

By construction, for allt ∈ ΛT ,

|φ(t) − ϕN (t)| ≤ ε. (10)

Similar to [18], we consider theℓ∞ (worst-case) error

‖fBF − f̂BF‖∞ = max
{

|fBF(i)− f̂BF(i)| : i ∈ I
}

. (11)

Our goal is to bound (11), which provides us with an estimate
of the pixelwise difference between the outputs of the exact
and the approximate bilateral filter. In fact, a simple analysis
(cf. Appendix) give us the following result.

Proposition 4.1 (Filtering Accuracy):

‖fBF − f̂BF‖∞ ≤
2Tε

w(0) − ε
. (12)

In other words, the filtering error is essentially within a certain
factor of the kernel approximation errorε. To arrive at (12),
we have assumed that the weights of the spatial filter add up to
unity. Indeed, this assumption can be made since the spatial
filter appears in both the numerator and denominator of (1)
and (9).

V. SIMULATION AND CONCLUSION

All simulations reported here were performed using Matlab
8.4 on a MacBook Air with 1.3 GHz Intel Core i5 processor
and 4 GB memory. The typical run-time of Algorithm 2 was
between1-15 milliseconds (depending on the orderN ) for the
simulations reported in this section. This is a small fraction of

Data: Kernelφ(t), half-periodT , and toleranceε.
Result: N andd ∈ R

N .
1 ω = π/T ;
2 ΛT = {0, 1, . . . , T };
3 b = [φ(t)]t∈ΛT

∈ R
T+1;

4 Initialize : N = 1;
5 Seta ∈ R

T+1 to be the all-ones vector;
6 A = a;
7 R = ‖a‖;
8 Q = a/R;
9 p = QTb;

10 E = ‖b−Qp‖;
11 while E > ε do
12 Setr ∈ R

N to be the all-zeros vector;
13 N = N + 1;
14 a = [cos (Nωt)]t∈ΛT

∈ R
T+1;

15 A = [A | a];
16 for k = 1, . . . , N − 1 do
17 Setqk to be thek-th column ofQ;
18 rk = aTqk;
19 a = a− rkqk;
20 end
21 rN = ‖a‖;
22 a = (1/rN )a;
23 Q = [Q | a] ∈ R

(T+1)×N ;
24 p = [p | aTb] ∈ R

N ;
25 Add a row of zeros toR;
26 R = [R | r];
27 SolveRd = p using back-substitution;
28 E = ‖b−Ad‖;
29 end
Algorithm 2: Progressive Fourier Approximation.

the overall run-time of Algorithm 1. Indeed, the time required
to filter a single512 × 512 image with a Gaussian kernel is
already about20 milliseconds. In Figure 1, we give an example
of the approximation result obtained using Algorithm 2 with
ε = 1e-3. In Figure 2, we compare the coefficients obtained
using Algorithm 2 with that obtained by expanding the raised-
cosines [16] into (4). Notice that the former decays much more
rapidly and hence requires fewer terms.
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Fig. 1. Left: Target Gaussian(σr = 30) and the Fourier approximation
(N = 9) obtained using Algorithm 1. Right: Coefficientsc−9, . . . , c9.

We present some results on theBarbara image for which
T was computed to be217. We note that the run-time of
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Fig. 2. Comparison of the normalized binomial coefficients from [16] with
that obtained using Algorithm 2 (ε = 1e-3) whenσr = 10.

the direct implementation of (1) depends only on the image
size andσs. On the other hand, the run-time of the proposed
algorithm depends onT , toleranceε, image size, andσr. The
fact that the run-time is almost independent ofσs (constant-
time algorithm) is evident from the results in Table I. The small
fluctuations are essentially due to the variable padding required
to handle the boundary conditions for the spatial filtering.

TABLE I
RUN-TIME FOR THE512 × 512 Barbara IMAGE AT DIFFERENTσs AND

FIXED σr = 30. THE RUN-TIME OF THE DIRECT IMPLEMENTATION IS95
SECONDS.

σs 1 2 5 8 10 12
Fast (ε = 1e-3) 630ms 635ms 638ms 640ms 645ms 650ms

The run-time of the proposed algorithm scales inversely
with σr, which was also observed for the shiftable filtering in
[16], [22], [20]. In particular, asσr gets small, the Gaussian
range kernel tends to a Dirac-like distribution [23]. As is well-
known, the Dirac distribution is formally composed of all
frequencies. The implication of this fact is that a largeN is
required to approximate the kernel for smallσr, and hence the
increase in run-time. This is demonstrated with an example in
Table II. However, notice that even for smallσr, the proposed
algorithm is much faster than the exact implementation. For
σr > 20, the speedup is by a couple of orders.

TABLE II
SAME AS IN TABLE I, EXCEPT THATσr IS VARIED AND σs = 3. THE

RUN-TIME OF THE DIRECT IMPLEMENTATION IS95 SECONDS.

σr 10 15 20 30 50 100
Fast (ε = 1e-3) 2.1s 1.5s 840ms 634ms 450ms 200ms

In Table III, we present the variation of run-time with
toleranceε for a fixed filter setting. It is seen that the order
N and hence the run-time changes rather slowly withε
(almost logarithmically in1/ε). We have however not been
able to establish this empirical fact, which is deeply tied to the
working of Algorithm 2. We next compare the bound in (12)
with the actualℓ∞ error for theBarbara image in Table IV.
We note that the error is within the predicted bound. In fact,
we are able to predict sub-pixel accuracy whenε < 1e-5. The
bounds are, however, far from being tight. One of the reasons
for this is that we have not incorporated any information about

the local intensity distribution into our analysis. Derivation
of a tighter bound will require a more sophisticated analysis.
The present work is a first step in that direction. To best of
our knowledge, with the exception of [13], this is the only
approximation algorithm that comes with a provable guarantee
on the filtering accuracy.

TABLE III
VARIATION OF THE RUN-TIME WITH ε FOR THEBarbara IMAGE WHEN

σs = 3 AND σr = 30. ALSO SHOWN IS THE ORDERN .

ε 1e-5 1e-4 1e-3 0.01 0.1
N 12 11 10 8 7

Fast (ε = 1e-3) 910ms 850ms 780ms 715ms 670ms

TABLE IV
COMPARISON OF THE PREDICTED BOUND AND THE ACTUALℓ∞ ERROR

FOR THEBarbara IMAGE AT σs = 3 AND σr = 30.

ε 1e-8 1e-5 1e-4 1e-3 0.01
N 15 12 11 10 8

Actual (11) 2.7e-8 1.1-4 9e-4 0.01 0.3
Predicted (12) 2.4e-4 0.2 2.5 29.5 561
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VII. A PPENDIX

In this section, we outline the main steps in the derivation
of (12). We write (1) asfBF(i) = P1(i)/Q1(i), where

P1(i) =
∑

j∈Ω

w(j)φ
(

f(i− j)− f(i)
)

f(i− j),

and
Q1(i) =

∑

j∈Ω

w(j)φ
(

f(i− j)− f(i)
)

.

Similarly, we write (9) asf̂BF(i) = P2(i)/Q2(i), where

P2(i) =
∑

j∈Ω

w(j)ϕN

(

f(i− j)− f(i)
)

f(i− j),

and
Q2(i) =

∑

j∈Ω

w(j)ϕN

(

f(i− j)− f(i)
)

.

ThenfBF(i)− f̂BF(i) can be expressed as

1

Q2(i)

[

fBF(i)
(

Q2(i)−Q1(i)
)

+ P1(i)− P2(i)
]

. (13)

From (10), we have‖Q1 − Q2‖∞ ≤ ε. On the other hand,
note that‖fBF‖∞ ≤ T . This is becausefBF(i) is given by
the convex combination of{f(i−j) : j ∈ Ω}. Therefore, from
(10), we get‖P1 − P2‖∞ ≤ Tε.

To obtain a lower-bound forQ2(i) in (13), we note that

Q1(i) = w(0)ϕ(0) + positive terms≥ w(0),

where we have used the non-negativity of the range and spatial
kernels. Therefore, using the inverse triangle inequality, we get

|Q2(i)| ≥ Q1(i)− |Q2(i)−Q1(i)| ≥ w(0)− ε.

By incorporating the above bounds into (13), we get (12).
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