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Abstract—It was demonstrated in earlier work that, by approx- The direct computation of (1) requirgg(1W?2) operations
imating its range kernel using shiftable functions, the norlinear  per pixel. In fact, the direct computation is slow for praati
bilateral filter can be computed using a series of fast convations. settings of W [12]. To address this issue, researchers have

Previous approaches based on shiftable approximation haye . . . .
however, been restricted to Gaussian range kernels. In thigork, come up with various fast algorithms [12] - [17]. While

we propose a novel approximation that can be applied teany Some of these algorithms can reduce the complexitg (o)
range kernel, provided it has a pointwise-convergent Fouer operations per pixel for any arbitraby’, there is, however, no

series. More specifically, we propose to approximate the Gasian available guarantee on the approximation quality that aan b
range kernel of the bilateral filter using a Fourier basis, wtere the achieved using these algorithms. In fact, as reported if, [16

coefficients of the basis are obtained by solving a series addst- imati lead to visible distorti in th
squares problems. The coefficients can be efficiently comped a poor approximation can fead to visible distortons in the

using a recursive form of the QR decomposition. By controliig  filtered image. Only recently, a quantitative analysis ohya
the cardinality of the Fourier basis, we can obtain a good traeoff fast algorithm was presented in [18].
bEtW%Tn tthe fun-tiTe ancé the fi||t6fing aCCL;fa?ﬁ In paftiﬂ_‘;ﬂ_ we In Section 1, we recall the idea of constant-time bilateral
are aple 10 guarantee supb-pixel accuracy tor tne overall Tigrin : : ; : :
which is notgprovided by mgst existing n¥ethods for fast bilaergi flIt_erlng using Fpurler (C_omplex exponential) kernels [’191
filtering. We present simulation results to demonstrate thespeed this Wo_rk, we build on this idea t_o propose a new a_Igorlthm for
and accuracy of the proposed algorithm. approximating (1) using the shiftable Fourier basis. The-co
tribution of this work is not the fast algorithm itself, butther
the approximation scheme in Section lll, and the subsequent
approximation guarantee in Section IV. The approximation
scheme can be applied smy arbitrary range kernel that has
. INTRODUCTION a pointwise-convergent Fourier series. In this respectnote

The bilateral filter was introduced by Tomasi and Manduclthat all previous approaches based on shiftable approiimat
in [1] as a non-linear extension of the classical Gaussitar.fil were restricted to Gaussian range kernels [16], [19], [2@.
The bilateral filter employs a range kernel along with a spatiprovide some representative results concerning the spedd a
kernel for performing edge-preserving smoothing of imagesaccuracy of the resulting algorithm in Section V, where we
Since its introduction, the bilateral filter has found wipke=ad also compare the empirical accuracy of the filtering with the
applications in image processing, computer graphics, ctenp bounds predicted by our analysis.
vision, and computational photography [2] - [8].

In this paper, we will consider a general form of the bilatera Il. SHIETABLE BILATERAL FILTERING
filter where an arbitrary kernel is used for the range filtigyin It was demonstrated in [16], [19] that the bilateral filtenca

and a box or Gaussian kernel is used for the spatial filteri%% d di ) G : luti .
[1]. In particular, consider an imaggé: I — R, wherel C Z? decompose Into a Series of aussian convo u_t|0n§ using
shiftable functions. In particular, since our presentrieseé is

is a finite rectangular lattice. The output of the bilatertubfi _ . . .
far: [ — R is given by in the shiftable complex exponential, consider the funrctio

Index Terms—bilateral filter, shiftability, Fourier basis, fast
algorithm, accuracy.
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Yieqw(i) o(fi—j) — f(3)) e
where¢(t) is the range kernel and(i) is the spatial kernel. where:> = —1. By setting (4) as the range kerng{t), we
The spatial kernel is usually a Gaussian [1], can decompose the numerator in (1) as
w(i) = exp (—|i||?/20?) . 2 N
(i) = exp (=[li]*/202) @) S e exp( mf () Fa(6)
The window(2 of the spatial kernel is a local neighbourhood ne_N
of the origin. For exampleQ = [—-W, W]? for the Gaussian where
kernel, wherel/' = 30,. The original proposal in [1] was to
use a Gaussian range kernel given by F,(i) = Zw(j)f(i —j)exp (anf(i — j)), (5)
o(t) = exp (—17/20?). (3) 7e

) It is clear that a similar decomposition can be obtainedHer t
In more recent work, exponential range kernels have beeh s ominator of (1). We readily recognize (5) to be a Gaussian
91, [10], [11]. convolution. As is well-known, the Gaussian convolution in
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summary, we can decompose the bilateral filtering into a@seri I1l. PROGRESSIVEFOURIER APPROXIMATION
of Gaussian filtering. The fashiftable algorithm resulting  \we now explain how the above shortcomings can be fixed.

from this decomposition is summarized in Algorithm 1. Wens noted above, the argumentin (3) takes on the values
useG*(4) in line 5 to denote the complex-conjugate@f:). |f(i—j)— f(4)| asi and; varies over the image. In particular,

In line 6, we usel” andG to denote the Gaussian filtering of; takes values imr = {0, 1, ..., T}, where
the imagesF'(i) and G(i). To avoid confusion, we note that o .
the formal structure of Algorithm 1 is somewhat differerrfr T = max I;fleﬁgi |f(i—=3) = fO)I-

that of the shiftable algorithms in [16], [19]. While the dues , . ,

and sine components of the complex exponential were used' fi'S: 7" is the dynamic range of the image measured over the
[16], [19], we work directly with the complex exponential ipwindow €2, which is typlcally_ smaller than the_full Qynamlc
Algorithm 1. Note that we have abused notation in usfigg(i) an9€- We can computé using the fast algorithm in [22];

to denote the shiftable approximation of (1) in Algorithm 1.the run-time of the algorithm does not depend on the size
of Q. Without loss of generality, we assume that the range

kernely(t) is symmetric. The problem is that of approximating
¢(t) using a shiftable function over the half-intery@J 7']. We
propose to use the shiftable Fourier basis for this purpose.
particular, we fix some orde¥ > 1, and consider the shiftable

Data: Imagef : I — R;
Parameters Filter w(i), andw, N, and(c,)-n<n<N-

Result Shiftable approximation of (1). - function N
Initialize : SetP(i) = 0 andQ(i) = 0 for all i € I; on(t) =do + Z dy, cos (nwt) , (6)
forn=—-N,...,N do n=1

G(i) = exp (snw f (1)) for i € I;
F(i)=G(i)f@) fori e I;

1

2

j wherew = 7/T. As is well-known, using the identityos § =
5 H(i) = c¢,G*(i) for i € I

6

7

8

9

(exp(tl)+exp(—uh))/2, we can write (6) as in (4), wherg =
dp, andcy,, = (1/2)d,, forn =1,..., N. The key difference
with [20] is with respect to the rule used to set the coeffitgen
do,...,dy In (6). These are set to be the standard Fourier
coefficients of¢(¢) in [20]. In keeping with the arguments
end : ; : :
) ) ) ) presented in earlier, we take a different approach andddste

Set far(i) = P(i)/Q() for all i € 1. try to minimize the erroi(t) — ¢y (t) at the discrete points

Algorithm 1: Shiftable Bilateral Filtering. t € Ap. In particular, we consider the problem of finding
do, ..., dy that minimizes the gross error

2
> () —en(1)” 7
If the range kernel is not shiftable, one can approximate it teAr

using a shiftable function. For example, the shiftablee@is This is the classical linear least-squares problem, wheee t
cosines were used in [16] to approximate the Gaussian kernglknowns arely, ..., dy. Indeed, using matrix-notation, we
Shiftable approximation using pol_ynomials.was Iat_er pnese  ~5n write (7) adlb— Ad|2, whered = (do, . ..,dy), b is the
in [19]. More recently, the classical Fourier basis was usgflscretization ofs(t) at the pointg € A, and the columns of
for this purpose in [20]. The above approximations, howevex are the corresponding discretization of the basis funstion

ComputeG = F xw andG = G * w;
P(i) = P(i)+ H(i) - F(i) fori € I,
Qi) = Q(i) + H(i) - G(i) for i € I

[N
o

come with the following shortcomings: in (6). In particular, let us denote
e They are customized to work with the Gaussian kernel, )
and cannot be extended to general range kernels, such as the €y = min [b—Ad|" (8)

exponential kernel [10], [11]. Even for the Gaussian kernel ) . . o )
the proposal in [20] requires one to compute the coefficient&® following fact is the basis of our approximation algionit

of the Fourier series. This is computationally intensiveg(e © P& discussed next. _ ,
requires numerical integration, or some analytical proger  Froposition 3.1 (Decay of Error): Assume that the Fourier

particular to the kernel), and cannot be done on-the-flyedud series of the range kernel converges pointwise on the mterv
the authors in [20] work with an approximation of the Fouriet— 1> T]- That s, fort € [T T},

coefficients, which is only valid for smatt, . lim on(t) = o(t),
e Notice that, in most applications of the bilateral filtereth N—roo
argument in (3) assumes discrete values. This should be takeseredy, ..., dx in (6) are the Fourier coefficients af(t).

into consideration while designing the shiftable appraadion. Then&y decays to zero a8/ — oc.

The approximations in [16], [20], however, do not necesgari Proof: Indeed, letey be the error in (7) wherpy (¢)
guarantee that the approximation error at these discréteéspois taken to be theV-th order Fourier approximation af(t).

are within some user-defined tolerance. This makes it difficChen, by optimality, we havéy < ey. Since, by assumption,

to quantify the overall filtering accuracy. In this paper, wey — 0 as N — oo, the proposition follows. ]
propose a rather simple optimization principle, which has aVe note that the Fourier series converges pointwise for any
efficient implementation. This provides us with the desirecbntinuously-differentiable function, e.g., Gaussianl aoly-
control on the numerical accuracy of the overall filtering. nomials. Convergence is also guaranteed for functions that



are continuous and piecewise-differentiable [23], suclthas Data: Kernel ¢(t), half-periodT, and tolerance.
exponential. Thus, the assumption in Proposition 3.1 @@veér Result N andd € RY.
the commonly used kernels [1], [10], [11]. 1w=mn/T;
Proposition 3.1 suggests the following numerical scheme; A, = {0,1,...,T};
We fix some user-defined tolerance We begin withNV = 1, 3 b= [p(t)]ienr, € RTH;
and solve (8) to gefy. If Ex < &2, we stop. Else, we increase 4 Initialize: N = 1:
N by one and proceed, unfily < £2. In other words, we solve | s Seta € R7*! to be the all-ones vector:
a series of least-squares problems, where the basis mtrix ¢ A — a:
at each step is obtained by augmenting thén the previous | 7 R = ||a||;
step. The whole process can be efficiently implemented @sing s Q = a/R;
recursive version of the modified QR algorithm [24]. The main ¢ p = Q7'b;
idea is that (8) can be computed by solviRgl = Q”b using | 19 £ — b—Qpl;
back-substitution, wherd = QR is the QR-decomposition | 11 while £ > ¢ do
of A. In the recursive computatio®, R, andQ”b at each | 1, Setr ¢ RY to be the all-zeros vector;
iteration is computed from the corresponding quantitiethen | (3 N=N-+1;
previous iteration using cheap operations. An adaptafitm® | 14 a = [cos (Nwt)]yen, € RTTH;
recursive algorithm to our problem is provided in Algorithm (5 A=[A]a

2. In steps 3 and 14, we discretize the kernel and the incoming for k=1,...,N—1do
Fourier basis. In step 18, denotes the&-th component of. | 17 Setq;, to be thek-th column of Q;
18 re = al qy;
IV. FILTERING ACCURACY 19 a=a—rgqg;

Suppose we are given a range keragl) and tolerance. | 20 end
We compute the approximation ord®¥rand the corresponding| 2t rn = |alf;
coefficientsdy, . .., dy using Algorithm 2. This gives us the| 22 a=(1/ry)a;
corresponding kerneby (¢) in (4), which is used to approxi-| 2 | Q=[Q | a] € RTTIXN;
mate (1) using Algorithm 1. In particular, the approximatio| 24 p=[p|a’b] €RY;
provided by Algorithm 1 is given by 25 | Add a row of zeros tdR;
. o , S 2% | R=[R|r];

For i) = Yicaw(en (i —4) - £(0) £ - j)_ @ |27 | SolveRd = p using back-substitution;

Yicaw()en (fi—35) — £(i)) 28 | £=|b—Ad|;
By construction, for alk € Ay, 2 end
Algorithm 2: Progressive Fourier Approximation.
6(t) —en ()] < e (10)

Similar to [18], we consider thé,, (worst-case) error

N , A ) the overall run-time of Algorithm 1. Indeed, the time reeuir
/57 = forllo = max {|fer(i) — for(i)] : i€ 1} (11) to filter a single512 x 512 image with a Gaussian kernel is
Our goal is to bound (11), which provides us with an estimagdready abouz0 milliseconds. In Figure 1, we give an example
of the pixelwise difference between the outputs of the exaet the approximation result obtained using Algorithm 2 with
and the approximate bilateral filter. In fact, a simple asisly ¢ = 1€-3. In Figure 2, we compare the coefficients obtained

(cf. Appendix) give us the following result. using Algorithm 2 with that obtained by expanding the raised
Proposition 4.1 (Filtering Accuracy): cosines [16] into (4). Notice that the former decays muchemor
9T= rapidly and hence requires fewer terms.
| fer — fBFlloc € —=—. (12)
w(0) — e .

In other words, the filtering error is essentially within ateén  , = oo 0

factor of the kernel approximation errer To arrive at (12)
we have assumed that the weights of the spatial filter add
unity. Indeed, this assumption can be made since the s .
filter appears in both the numerator and denominator o ©=

and (9). *
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V. SIMULATION AND CONCLUSION @ (b)

All simulations reported here were performEd USing Matlabg 1. Left: Target Gaussiafw, = 30) and the Fourier approximation
8.4 on a MacBook Air with 1.3 GHz Intel Core i5 processofN = 9) obtained using Algorithm 1. Right: Coefficients g, .. ., co.
and 4 GB memory. The typical run-time of Algorithm 2 was
betweenl-15 milliseconds (depending on the ord¥) for the We present some results on tBarbara image for which
simulations reported in this section. This is a small facdf 7 was computed to b&17. We note that the run-time of



the local intensity distribution into our analysis. Detioa

of a tighter bound will require a more sophisticated analysi
The present work is a first step in that direction. To best of
our knowledge, with the exception of [13], this is the only
approximation algorithm that comes with a provable guarant
on the filtering accuracy.

T T T T T
0.1F —® Binomial coefficients | 7
b ?|— Proposed coefficients

0.08 .
0.06

0.04+

TABLE Il
VARIATION OF THE RUN-TIME WITH € FOR THE Barbara IMAGE WHEN

002} H H 1 os = 3 AND o = 30. ALSO SHOWN IS THE ORDERN.
H € le-5 | 1e-4 | 1e-3 | 0.01 | 0.1
‘ 5 .1’0221115 20 25 30 35 E)Tr%' N 12 11 10 8 7
Fast € = 1e-3) | 910mg 850mg 780mg 715mg 670ms
Fig. 2. Comparison of the normalized binomial coefficientsnf [16] with
that obtained using Algorithm 2 (= 1e-3) wheno, = 10.
TABLE IV

COMPARISON OF THE PREDICTED BOUND AND THE ACTUAL o, ERROR

the direct implementation of (1) depends only on the image

FOR THEBarbara IMAGE AT s = 3 AND o, = 30.

size ands,. On the other hand, the run-time of the proposed

; . . € le-8 le-5 le-4 le-3 0.01
algorithm depends off’, tolerances, image size, and... The N 15 12 11 10 8
fact that the run-time is almost independentoqf (constant- Actual (11) | 2.7e-8 | 1.1-4 [ 9e-4 | 0.01 0.3
time algorithm) is evident from the results in Table |. Theatim [ Predicted (12)] 2.4e-4 [ 0.2 25 295 | 561

fluctuations are essentially due to the variable paddingireq
to handle the boundary conditions for the spatial filtering.
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TABLE |
RUN-TIME FOR THE512 X 512 Barbara IMAGE AT DIFFERENT os AND
FIXED o = 30. THE RUN-TIME OF THE DIRECT IMPLEMENTATION IS95

SECONDS
os 1 2 5 8 10 15 VIl. APPENDIX
Fast € = 1e-3) | 630mg 635mg 638mg 640mg 645mg 650mg In this section, we outline the main steps in the derivation

of (12). We write (1) asfgr(i) = P1(z)/Q1(i), where

The run-time of the proposed algorithm scales inversely , , o . .
with o, which was also observed for the shiftable filtering in Pi(i) = Z w(io(fi = 3) = F(D)) (i =),

[16], [22], [20]. In particular, asr, gets small, the Gaussian jeq
range kernel tends to a Dirac-like distribution [23]. As igliv and . _ o .
known, the Dirac distribution is formally composed of all Q1(i) = ZW(J)¢(f(Z —Jj) - f(l))-

frequencies. The implication of this fact is that a laiyeis J€Q

required to approximate the kernel for small and hence the Similarly, we write (9) asfsr(i) = P»(i)/Q2(i), where
increase in run-time. This is demonstrated with an example i , , o , o
Table Il. However, notice that even for smail, the proposed P(i) = Z w(g)en (f(i—j) = f(@)fG— ),
algorithm is much faster than the exact implementation. For jeQ

o, > 20, the speedup is by a couple of orders. and

Q2(i) = > _w(i)en (f(i—j) — fi)).

TABLE Il jen
SAME AS IN TABLE |, EXCEPT THAT 0 IS VARIED AND 05 = 3. THE

RUN-TIME OF THE DIRECT IMPLEMENTATION IS95 SECONDS

Then fgr(i) — fBF(i) can be expressed as
100 1
200m¢g

0 [pr@(Qe) — Qi) + () - P0)]. - (13)

. i _ From (10), we havd|@Q1 — Q2||cc < . On the other hand,
In Table Ill, we present the variation of run-time W'thnote that|| for | < T. This is becausepr(i) is given by

tolerances for a fixed filter setting. It is seen that the orde[he convex combination off (i —j) : j € 2}. Therefore, from
N and hence the run-time changes rather slowly with (10), we get| P, — Ps||oo < Te. ' ,

(almost logarithmically in1/¢). We have however not been” 14 gptain a lower-bound fo6) (i)
able to establish this empirical fact, which is deeply tiedHhe -
working of Algorithm 2. We next compare the bound in (12) Q1(i) = w(0)¢(0) + positive terms> w(0),

with the actuall., error for theBarbara image in Table IV. \here we have used the non-negativity of the range and bpatia
We note I;?at the edr_ror iSbWit_hinl the prediCtetadeﬁound.'I!E fagternels. Therefore, using the inverse triangle inequalieyget

we are able to predict sub-pixel accuracy when 1e5. The , , , ,

bounds are, however, far from being tight. One of the reasons |@2(0)] = Q1(2) = |Q2(7) = Q1 ()] = w(0) —e.
for this is that we have not incorporated any informationwgboBY incorporating the above bounds into (13), we get (12).

50
450mg

10
2.1s

15
1.5s

20
840mg
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634mg

or

Fast € = 1e-3)

in (13), we note that



REFERENCES

[1] C. Tomasi and R. Manduchi, “Bilateral filtering for graynd color
images,”Proc. |EEE International Conference on Computer Mision, pp.
839-846, 1998.

[2] E. P. Bennett and L. McMillan, “Video enhancement usiner-pixel
virtual exposures,’”ACM Transactions on Graphics, vol. 24, no. 3, pp.
845-852,Proc. ACM Siggraph, 2005.

[3] H. Winnemoller, S. C. Olsen, and B. Gooch, “Real-time eddabstrac-
tion,” Proc. ACM Sggraph, pp. 1221-1226, 2006.

[4] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi, dftal
filtering-based optical flow estimation with occlusion dgi@n,” Proc.
European Conference on Computer Vision, pp. 211-224, 2006.

[5] E. P. Bennett and L. McMillan, “Video enhancement usiner-pixel
virtual exposures,”ACM Transactions on Graphics, vol. 24, no. 3, pp
845-852, 2005.

[6] K. N. Chaudhury and K. Rithwik, “Image denoising using tiapally
weighted bilateral filters; A SURE and fast approacRjoc. |IEEE
International Conference on Image Processing, pp. 108-112, 2015.

[7] B. M. Oh, M. Chen, J. Dorsey, and F. Durand, “Image-baseztieting
and photo editing,Proc. Annual Conference on Computer Graphics and
Interactive Techniques, pp. 433-442, 2001.

[8] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi, dftal
filtering-based optical flow estimation with occlusion dgi@n,” Proc.
European Conference on Computer Mision, pp. 211-224, Springer, 2006.

[9] B. K. Gunturk, “Fast bilateral filter with arbitrary raegand domain
kernels,” IEEE Transactions on Image Processing, vol. 20, no. 9, pp.
2690-2696, 2011.

[10] K. Al-Ismaeil, D. Aouada, B. Ottersten, and B. Mirbac¢Bijlateral filter
evaluation based on exponential kernelsyternational Conference on
Pattern Recognition, pp. 258-261, 2012.

[11] Q. Yang, “Hardware-efficient bilateral filtering foreseo matching,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
36, no. 5, pp.1026-1032, 2014.

[12] F. Durand and J. Dorsey. “Fast bilateral filtering foe ttlisplay of high-
dynamic-range imagesACM Transactions on Graphics, vol. 21, no. 3,
pp. 257-266, 2002.

[13] Q. Yang, K. H. Tan, and N. Ahuja, “Real-tim@(1) bilateral filtering,”
Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp.
557-564, 2009.

[14] S. Paris and F. Durand, “A fast approximation of theteital filter using
a signal processing approach®toc. European Conference on Computer
Vision, pp. 568-580, 2006.

[15] F. Porikli, “Constant timeO(1) bilateral filtering,” Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[16] K. N. Chaudhury, D. Sage, and M. Unser, “F&3(1) bilateral filtering
using trigonometric range kernel$EEE Transactions on Image Process-
ing, vol. 20, no. 12, pp. 3376-3382, 2011.

[17] K. N. Chaudhury, “Fast and accurate bilateral filteringing Gauss-
polynomial decomposition,”’Proc. IEEE International Conference on
Image Processing, pp. 2005-2009, 2015.

[18] S. An, F. Boussaid, M. Bennamoun, and F. Sohel, “Quatité error
analysis of bilateral filtering,TEEE Sgnal Processing Letters, vol. 22,
no. 2, pp. 202-206, 2015.

[19] K. N. Chaudhury, “Constant-time filtering using shifta kernels,”|EEE
Sgnal Processing Letters, vol. 18, no. 11, pp. 651 - 654, 2011.

[20] K. Sugimoto and S. |. Kamata, “Compressive bilateraefing,” IEEE
Transactions on Image Processing, vol. 24, no. 11, pp. 3357-3369, 2015.

[21] R. Deriche, “Recursively implementing the Gaussiad #s derivatives,
Research Report, INRIA-00074778, 1993.

[22] K. N. Chaudhury, “Acceleration of the shiftable algbr for bilateral
filtering and nonlocal means/EEE Transactions on Image Processing,
vol. 22, no. 4, pp. 1291-1300, 2013.

[23] L. Grafakos,Classical Fourier Analysis, vol. 2, New York: Springer,
2008.

[24] J. Demmel,Applied Numerical Linear Algebra, Society for Industrial
and Applied Mathematics, 1997.



