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Abstract
Iterative shrinkage/thresholding algorithm (ISTA) is a well-studied method for finding sparse solu-
tions to ill-posed inverse problems. In this letter, we present a data-driven scheme for learning optimal
thresholding functions for ISTA. The proposed scheme is obtained by relating iterations of ISTA to layers
of a simple deep neural network (DNN) and developing a corresponding error backpropagation algorithm
that allows to fine-tune the thresholding functions. Simulations on sparse statistical signals illustrate
potential gains in estimation quality due to the proposed data adaptive ISTA.

1 Introduction

The problem of estimating an unknown signal from noisy linear observations is fundamental in signal pro-
cessing. The estimation task is often formulated as the linear inverse problem

y=Hx+e, (1)

where the objective is to recover the unknown signal x € RY from the noisy measurements y € RM. The
matrix H € RM*YN models the response of the acquisition device and the vector e € RM represents the
measurement noise, which is often assumed to be independent and identically distributed (i.i.d.) Gaussian.

A standard approach for solving ill-posed linear inverse problems is the regularized least-squares estimator

~ 1
x:argmin{||y—Hx||%2 —i—)\R(x)} , (2)
x€ERN 2

where R is a regularizer that promotes solutions with desirable properties and A > 0 is a parameter that
controls the strength of regularization. In particular, sparsity-promoting regularization, such as £;-norm
penalty R(x) £ ||x]|¢,, has proved to be successful in a wide range of applications where signals are naturally
sparse. Regularization with the ¢;-norm is an essential component of compressive sensing theory [1,2], which
establishes conditions for accurate estimation of the signal from M < N measurements.

The minimization (2) with sparsity promoting penalty is a non-trivial optimization task. The challenging
aspects are the non-smooth nature of the regularization term and the massive quantity of data that typically
needs to be processed. Proximal gradient methods [3] such as iterative shrinkage/thresholding algorithm
(ISTA) [4-6] or alternativng direction method of multipliers (ADMM) [7, 8] are standard approaches to
circumvent the non-smoothness of the regularizer while simplifying the optimization problem into a sequence
of computationally efficient operations.

For the problem (2), ISTA can be written as

2l I-yH"H)x" ' +yHy (3a)
x' + T(z'59N), (3b)
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Figure 1: Visual representation of the optimization scenario considered in this letter. ISTA with a pointwise
nonlinearity ¢ is initialized with a signal x° which results in the estimate x* after T iterations. The algorithm
proposed here allows to efficiently refine ¢ by comparing x” against the true signal x from a set of training
examples.

where I is the identity matrix and v > 0 is a step-size that can be set to v = 1/L with L £ \,...(HH) to
ensure convergence [9]. Iteration (3) combines the gradient descent step (3a) with a proximal operator (3b)
that reduces to a pointwise nonlinearity

T(z;A) = prox, g (2) (4a)
2 ar;gjerﬁin {;(JL‘ —2)%+ )\R(a:)} . (4b)

for convex and separable regularizers such as the ¢1-norm penalty.

In this letter, we consider the problem of learning an optimal nonlinearity 7 for ISTA given a set of
L training examples {X¢,y/}sep,....r)- Specifically, as illustrated in Fig. 1, we interpret iteration (3) as a
simple deep neural network (DNN) [10,11] with T layers and develop an efficient algorithm that allows to
determine optimal T directly from data. Simulations on sparse statistical signals show that data adaptive
ISTA substantially improves over the ¢;-regularized reconstruction by approaching the performance of the
minimum mean squared error (MMSE) estimator.

2 Related Work
3 Related Work

Starting from the early works [4-6], iterative thresholding algorithms have received significant attention
in the context of sparse signal estimation. Accelerated variants of ISTA were proposed by, among others,
Bioucas-Dias and Figueiredo [12], and Beck and Teboulle [9]. The method has also inspired approximate
message passing (AMP) algorithm by Donoho et al. [13], as well as its Bayesian extensions [14,15]. In
particular, it was shown that, in the compressive sensing setting, one can obtain an optimal estimation
quality by adapting the thresholding function of AMP to the statistics of the signal [16]. The primary
difference of the work here is that the optimal thresholding functions are learned directly from independent
realizations of the data, rather than being explicitly designed to the assumed statistics. The other difference
is that ISTA, unlike AMP, contains no inherent assumptions on the randomness of the measurement matrix
H [17].

More recently, several authors have considered relating iterative algorithms to DNNs. For example, in
the context of sparse coding, Gregor and LeCun [18] proposed to accelerate ISTA by learning the matrix H
from data. The idea was further refined by Sprechmann et al. [19] by considering an unsupervised learning
approach and incorporating a structural sparsity model for the signal. In the context of the image deconvo-
lution problem, Schmidt and Roth [20] proposed a scheme to jointly learn iteration dependent dictionaries



and thresholds for ADMM. Similarly, Chen et al. [21] proposed to parametrize nonlinear diffusion models,
which are related to the gradient descent method, and learned the parameters given a set of training images.
This letter extends those works by specifically learning separable thresholding functions for ISTA. Unlike
the matrices H, thresholding functions relate directly to the underlying statistical distributions of i.i.d. sig-
nals x. Furthermore, by optimizing for the same nonlinearity across iterations, we obtain the MSE optimal
ISTA for a specific statistical distribution of data, which, in turn, allows us to evaluate the best possible
reconstruction achievable by ISTA.

4 Main Results

By defining a matrix S £ I — yHTH, vector b = yH”y, as well as nonlinearity ¢(-) £ T(-,7)), we can
re-write ISTA as follows

N

2h Z St + by, (5a)
n=1

T < P(2m), (5b)

where m € [1,..., N].

4.1 Problem Formulation

Our objective is now to design an efficient algorithm for adapting the function ¢, given a set of L training
examples {xy, yg}ge[l’m’ 1], as well as by assuming a fixed number iterations 7. In order to devise a compu-
tational approach for tuning ¢, we adopt the following parametric representation for the nonlinearities

FEF S (% -*) (6)

k=—K

where ¢ £ {c} ke[-K,....k], are the coefficients of the representation and ¢ is a basis function, to be discussed
shortly, positioned on the grid A[-K,—K +1,..., K] C AZ. We can reformulate the learning process in

terms of coefficients ¢ as follows :
1
Ezargmin{LZé’(c,Xg,yg)} (7)

where C C R?5+1 is is used to incorporate some prior constraints on the coefficients and £ is a cost functional
that guides the learning. The cost functional that interests us in this letter is the MSE defined as

1
S(C7Xay) £ §||X_XT(C’Y)H?27 (8)

where xT is the solution of ISTA at iteration 7, which depends on both the coefficients ¢ and the given
data vector y. Given a large number of independent and identically distributed realizations of the signals
{x¢,y¢}, the empirical MSE is expected to approach the true MSE of ISTA for nonlinearities of type (6).
Thus, by solving the minimization problem (7) with the cost (8), we are seeking the MMSE variant of ISTA
for a given statistical distribution of the signal x and measurements y.

4.2 Optimization

For notational simplicity, we now consider the scenario of a single training example and thus drop the indices
£ from the subsequent derivations. The generalization of the final formula to an arbitrary number of training
samples L is straightforward.



Algorithm 1 Backpropagation for evaluating VE&(c)

input: measurements y, signal x, current value of coefficients ¢, and number of ISTA iterations 7.
output: the gradient VE&(c).
algorithm:

1. Run T iterations of ISTA in eq. (5) by storing intermediate variables {z’},c[,... 7] and the final estimate

xT.

2. Initialize: Sett=T,rT =xT —x, and g7 = 0.
3. Compute:

g g+ [T (11a)

1« STdiag(¢'(z"))r! (11b)

4. If t = 0, return VE(c) = g°, otherwise, set ¢t < ¢ — 1 and proceed to step 3).

We would like to minimize the following cost

£e) 2 Jx—xT @I = 5 3 (o — (€] 9)

m=1

where we dropped the explicit dependence of x” on y for notational convenience. The optimization of the
coeflicients is performed via the projected gradient iterations

¢ = projc(ci_1 - ,uVE(ci_l)), (10)

where ¢ = 1,2,3,..., denotes the iteration number of the training process, p > 0 is the step-size, which is
also called the learning rate, and proj. is an orthogonal projection operator onto the convex set C.

We now devise an efficient error backpropagation algorithm for computing the derivatives of & with
respect to coefficients ¢. First, note that we can write the iteration (5) with the nonlinearity (6) as follows

K

v =) = > < - k) (12)

k=—K

for all m € [1,..., N]. The gradient can be obtained by evaluating

T
vE(©) = | (@] (T (e) - %) (13)

where we define

d 4, s [ Ox ox!
— = e 14
8cx (c) L%K Ock (142)
Ozt 9zt
867[( e BCK
=1 N (14b)
9zt dzt,
867[( e BCK
By differentiating (12) and simplifying the resulting expression, we obtain
ozt Ozt=1
Smn | 57— | » 15
i Z B (15)



where we defined a matrix W , £ (2! /A — k). Then, for any vector r € RY, we obtain

mk T
N N
ozt }
m P = ‘l’?m Tim 16
] "
N N
(‘33&‘1}
+ n Smnrm ! an )
X [T st
which translates to the following vector equation
oxt1" oxt—11" _
[&} r:[lI't]Tr—i—[ 50 } STdiag(¢’(z"))r, (17)

where the operator diag(g) creates a matrix and places the vector g into its main diagonal. Note that since
the initial estimate x° does not depend on ¢, we have that
0x°
e
By applying the equation (17) recursively starting from ¢ = T" and by using (18), we obtain

oxT oxT-117" .
{8(: c} STdiag(y' (z7))r”

—0. (18)

T
:| I‘T _ [‘I’T]TI‘T+ |:
——
éngl L2y

oxT—1 T
_ T-1 T—1
=g + { 9c r

_ ngl 4 [lIlel}TrTfl

T—1

A —
LgT—2

8XT—2
N [ Oc

T
:| STdiag(go’(ZT_l))rT_l
rT—2

7-27T
ox } T—2

_ T2
-8 +[ Jc

01T
=g’ + {%XC} r’ =g
This suggests the error backpropagation algorithm summarized in Algorithm 1 that allows one to obtain (13).

The remarkable feature of Algorithm 1 is that it allows one to efficiently evaluate the gradient of ISTA
with respect to the nonlinearity . Its computational complexity is equivalent to running a single instance
of ISTA, which is a first-order method, known to be scalable to very large scale inverse problems. Finally,
equipped with Algorithm 1, nonlinearity ¢ can easily be optimized by using an online learning approach [22]

summarized in Algorithm 2.

1>

4.3 Representation with B-Splines

In our implementation, we represent the nonlinearity ¢ in terms of its expansion with polynomial B-Splines
(For more details, see an extensive review of B-Spline interpolation by Unser [23]). Accordingly, our basis
function corresponds to 1 = B¢, where B refers to a B-Spline of degree d > 0. Within the family of
polynomial splines, cubic B-Splines

%—\z|2+@ when 0 < |z| <1
BP2) =9 L2—|2)))  when1<|z]<2 (20)
0 when 2 < |z,



Algorithm 2 Online learning for solving (7)

input: set of L training examples {x¢,y¢}e[1,....1), learning rate 1 > 0, and constraint set C C R+,
output: nonlinearity ¢ specified by learned coefficients ¢.
algorithm:

1. Initialize: Set i = 1 and select c® € C.
2. Select a small subset {x,} and {y¢}, uniformly at random, from the set of L training examples.

3. Using the selected training examples, update ¢ as follows

¢’ « proje(ct — puVE(c™)) (19)

4. Return ¢ = ¢! if a stopping criterion is met, otherwise set i < i + 1 and proceed to step 2).

SNR (dB)
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Figure 2: Quantitative evaluation on sparse signals. Average SNR is plotted against the measurement rate
M/N when recovering N = 512 Benoulli-Gaussian signal x from measurements y under i.i.d. H. Note the
proximity of MMSE-ISTA to the support-aware genie.

tend to be the most popular in applications—perhaps due to their minimum curvature property [23]. B-
Splines are very easy to manipulate. For instance, their derivatives are computed through the following
formula

S = e ) - - ), (2)

which simply reduces the degree by one. By applying this formula to the expansion of ¢, we can easily
obtain a closed form expression for ¢’ in terms of quadratic B-Splines

322 when 0 < |z < 1
B (z) = § — 523 —|2]) when 5 <|2| <3 (22)
0 when 2 < |z].

5 Experiments

To verify our learning scheme, we report results of ISTA with learned MSE optimal nonlinearities (denoted
MMSE-ISTA) on the compressive sensing recovery problem. In particular, we consider the estimation of a
sparse Bernoulli-Gaussian signal x with an i.i.d. prior p;(x,) = pN (2, 0,1) + (1 — p)d(z,), where p € (0,1]
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Figure 3: Illustration of the learning process for M/N = 0.7. On the left side, SNR of training is plotted
for each training iteration. On the right side, the final learned shrinkage (solid) is compared to the standard
soft-thresholding under optimal .

is the sparsity ratio, N(-, 1, 0%) is the Gaussian probability distribution function of mean y and variance o2,

and ¢ is the Dirac delta distribution. In our experiments, we fix the parameters to N = 512 and p = 0.2, and
we numerically compare the signal-to-noise ratio (SNR) defined as SNR (dB) £ 10logy, (||x[|7,/Ilx — %II7,),
for the estimation of x from linear measurements of form (1), where e has variance set to achieve SNR of 30
dB, and where the measurement matrix H is drawn with i.i.d. A(0,1/M) entries.

We compare results of MMSE-ISTA against three alternative methods. As the first reference method, we
consider standard least absolute shrinkage and selection operator (LASSO) [24] estimator, which corresponds
to solving (2) with ¢;-norm regularizer. In addition to LASSO, we consider MMSE variant of the generalized
AMP (GAMP) algorithm [15], which is known to be nearly optimal for recovery of sparse signals from
random measurements. Finally, we consider a support-aware MMSE estimator (genie), which provides an
upper bound on the reconstruction performance of any algorithm.

The regularization parameter A of LASSO was optimized for the best SNR performance. Similarly,
the parameters of GAMP were set to their statistically optimal values. The implementation of LASSO
is based on FISTA [9]. Both FISTA and GAMP were run for a maximum of 1000 iterations or un-
til convergence that was measured using the relative change in the solution in two successive iterations
lxt —xt=1|e,/l|xt 71 le, < 1072 The number of layers of MMSE-ISTA was set to 7' = 200. Learning was
performed by using online learning in Algorithm 2 that was run for 1000 iterations with the learning rate
of = 10=%. The nonlinearity ¢ was defined with 8000 basis functions that were spread uniformly over the
dynamic range of the signal and was initialized to correspond to the soft-thresholding function with optimal
A

Figure 2 reports the SNR performance of all algorithms under test after averaging the results of 1000
Monte Carlo trials. The results show that the quality of estimated signal can be considerably boosted by
using nonlinearities ¢ that are adapted to the data. In particular, the SNR performance of MMSE-ISTA
is significantly better than that of LASSO and is about 1 dB away from the SNR obtained by GAMP at
higher values of M/N. Figure 3 illustrates the per-iteration evolution of SNR evaluated on the training
sample during the learning process (left), as well as the final shape of the learned nonlinearity (right). As
can be appreciated from these plots, the learning procedure deviates the shape of nonlinearity ¢ from the
soft-thresholding function, which leads to a significant increase in SNR of the solution.

6 Conclusion

The scheme developed in this letters is useful for optimizing the nonlinearities of ISTA given a set of inde-
pendent realizations of data samples. By using this scheme, we were able to benchmark the best possible
reconstruction achievable by ISTA for i.i.d. sparse signals. Specifically, in the context of compressive sensing,
we showed that by optimizing the nonlinearities the performance of ISTA improves by several dBs and ap-



proaches that of the optimal estimator. Future investigations of ISTA under optimal nonlinearities may lead
to an improved understanding of the relationship between statistical estimators and iterative reconstruction
algorithms.
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