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Abstract—We propose a hybrid message passing method [16] that is efficiently implemented by means of a Newton
for distributed cooperative localization and tracking of mobile  conjugate-gradient technique_]17]. Our method can achieve
agents. Belief propagation and mean field message passingear g accuracy comparable to that of BP-based methods with the
employed for, respectively, the motion-related and meas@ment- L .
related part of the factor graph. Using a Gaussian belief appox- same communication c0§t as the MF m_et@ [14],.|.e._, three
imation, only three real values per message passing iteran eal numbers per transmitted message in 2-D localization.
have to be broadcast to neighboring agents. Despite theserye This letter is organized as follows. The system model is
low communication requirements, the estimation accuracy @  described in Sectioflll. The hybrid BP—MF scheme is devel-
be comparable to that of particle-based belief propagation oped in SectiofiTll, and the Gaussian belief approximation i

Index Terms—Belief propagation, mean field approximation, Section V. SectiofLV presents simulation results.
cooperative localization, distributed estimation, infomation pro-

jection, Kullback-Leibler-divergence, mobile agent netvork.
Il. SYSTEM MODEL

I. INTRODUCTION The mobile network at discrete time € {1,...,N} is

Cooperative localization is a powerful approach for mobildescribed by a set of network nodes and a set of edgeS™
networks [1]-[5]. An attractive methodology for coopevati representing the communication/measurement links betwee
localization is sequential Bayesian estimation via messaie nodes. The satf™ is partitioned into a sevy; of mobile
passing algorithmd [6]. In particular, distributed belfgbp- agents at unknown positions and a ¥t of static anchors at
agation (BP) message passing algorithms were proposeckiwn positions. An edgék, ) € £" indicates the fact that
[2], [B], [7]-[L1] to localize static or mobile agents. Féde agent or anchof transmits data to agentand, concurrently,
implementations involve certain approximations and ugg, e agentk acquires a noisy measurement of its distance to agent
particle methods]2][13][18][10] or the sigma point teadune  Or anchorl. The edge set™ is partitioned into a sety;
[11]. Each message transmitted between neighboring age®ftscdges between certain agents, i@, l) € & implies
is a set of hundreds or more particles in the former casel € Vy;, and a setfy;, of edges between certain agents
21, [Bl, [B] and a mean and a covariance matrix, i.e., fivdhd anchors, i.e.(k,l) € &f;, implies k € Vy; andl € Vy.
real numbers in 2-D localization, in the latter case. FotisstaInformation exchange between agents is bidirectional, i.e
agents, also message passing algorithms based on expectafi.\) € &y implies (I, k) € &. We consider a distributed
propagation[[12],[[13] or the mean field (MF) approximatiogcenario where each agent knows only its own measurements.
[14] were proposed. Similarly to sigma point BP_[11], theyince the anchors have exact knowledge of their own position
use a Gaussian approximation and the transmitted messaf€y do not need to acquire measurements and receive positio
consist of a mean and a covariance matrix. information from neighboring nodes. Accordingly, anchors

In this letter, building on the theoretical framework irfransmit position information to agents but not vice versa,
[15], we present a distributed hybrid BP—MF message passitfg!) € Exia implies (1, k) & Efja-
method for cooperative localization and tracking of mobile Let the vectorz;: denote the state of agehte Vy; at time
agents. We employ BP and MF_[15] for, respectively, the € {1,..., N}. Moreover, letz" £ [iBZ}ke% and '™ £
motion-related and measurement-related part of the uyidgrl [a;l} ?:1_ While our approach applies to any linear-Gaussian
factor graph, and we use a Gaussian belief approximatigiietion model, we here consider specifically those two motion
Each BP-MF iteration includes an information projectiomodels (MMs) that are most frequently used in practice. In
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Note thatv}’ can be interpreted as a random velocity. In MM2BP—-MF message passing scheme presented in [15]. We use
zp = [(pZ)T (UZ)T} T, wherev? € R? is the 2-D velocity of BP for the motion-related facto;ts(mﬂm};‘*l) and MF for the
agentk at timen. Fork € Vi N Vi~ x is assumed to Measurement-related factopéd; |pj;, '), and we suppress

evolve according to the constant velocity modell [18] all messages sent backward in time (Ef. [3]). We thus obtain
the following iterative scheme at time In message passing
ap = Fz; "' + Gaj. (1) iterationt € {1,...,t*}, beliefs¢!’! (z7) are calculated as
Here,a} € R? is zero-mean Gaussian driving noise (a random M, n 1 " M n N
acceleration) with component variane@. Moreover, F = q, (z}) = 7 misi(@) [[mie i), keVi, ()

1T T2%/2 lenNy
[0 1} ®I, and G = { T } ® I, where® denotes the _ o N
whereZ is a normalization constant add = {I|(k,l) €&E™}

Kronecker product andl, is them xm identity matrix. Note is the set of agents and anchors communicating with agent

that n both MMl and MMZ,nt_hle _state-tran_s|t|on probab|I|tyat timen (termed “neighbors”). The factors ibl(6) are obtained
density function (pdf)p(x}|x;” ") is Gaussian. For agents

i i — t -1 -1 —1
_that are parzt of Ezhfe1 network at t:lmentitit not at t|nmen 1, fCIzE ](‘BZ p(@p|ap ) da
e, ke Vi \Vy o we setp(xp|x, ) = p(x}), where

ny __ n n—1
the prior pdfp(x}) is Gaussian. Under common statistical Mk (Th) = ]iiVM MV @
independence assumptions of or a} [3], the joint prior p(xy), keVi\Vy
pdf of all agent states up to timeis given by and
pa) =TT TI vlailei ™). (2) k) = exp( [ <w?>1np<dz,l|pz,p7>dw?). (®)
=1 keVj;

(Note thatpy = p;' if I is an anchor.) This recursion is
initialized with ¢! (<) = my . (x7).
In a distributed implementation, each agértroadcasts its

belief q,[f’l] (x}) to its neighbors € N}’ and receives the

neighbor beliequl[t_” (z]'), | € Nj'. These beliefs are then
n .
The mea_lsurem;ant errar;, is assumed zero-mean Gau;smused to calculate the messagﬂgi)k(p}ﬁ), I € N7 at agentk
with variance o;,. Note that the local likelihood function as in [8). These messages, in turn, are needed to calcutate th
. . . 1: A 1mn ’ 1
p(dZ,l|pZA’ p}') is nonlinear inp}: andpj'. Letd ™ = [d'];_ updated belief;” (x}) at agentk according to[(). After*
H n o i3 H 7 H *
with d" = [dk,z](k_i?e_gn- Assuming that allwy;, are indepen- jierations, the final belief’ (@) is used for state estimation,
dent, the global li ehh_ood function |nvolv!ng all measments ; o ql[ct ](332) is substituted fotp(mmdl:") in ).
and all states up to time factors according to

p(d "z =TT I p(diilpi-pi) T p(di.lpk.B5).

If (k,1) € &, agentk € V{; acquires at timex a noisy
measurement of its distance to agent or anc¢hor

di, = |pk —pI'll +wi, - 3

IV. GAUSSIAN BELIEF APPROXIMATION

Inspired by[[14, Section V], we introduce an approximation

= khes () B (4)  of the message passing scheffle (8)—(8) such that the beliefs
wherep) denotes the (known) position of anchbe V. are constrained to a certain class of Gaussian pdfs. This lea
to a significant reduction of both interagent communication
I1l. THE PROPOSEDMESSAGEPASSING SCHEME and computational complexity relative to a particle-based

implementation. We first consider MM2. A more detailed
The task of agent € Vyj is to estimate its statej; fromthe gerivation is provided in[[19].

total measurement vectat' ", for n € {1,...,N}. We will
consider the minimum mean-square error (MMSE) estimatQ{ Gaussian Belief Approximation for MM2

We constrain the beliefs to Gaussian pdfs by using the

~n A n n| gln n n
T = /m’C pxild™)dxy, k€ Vi ®) information projection approach [[16], i.e., substituting for

Calculatin i nghny i 4.'() in @)

g the posterior pdf(xz}|d" ") involved in [3) by "k

direct marginalization of the joint posterior pgfa'"|d" ™) @1 () 2 argmin D[g||g}] . (9)
is infeasible because of the excessive dimension of integra 9€9

tion and because' ™" i.s qot locally available aF the agentSere. D[g||q] A fg(m)ln%dm is the Kullback-Leibler
Next, we develop al_dlstrlbuted message passing scheme m%rgence and; is the set of 4-D Gaussian pdfgz) =
approximateg(xz}|d "), ke Vi, n € {1,...,N}. _ . _ -

By Bayes rule, p(z'"|d"™) o« p(d""|z"")p(z!™), N(z; p, C) with covariance matrix of the forr@’ = {C”CV} ®
where p(x'") and p(d""|x'") factor as in [2) and[{4), I,. We will denote the mean and covariance matrix of
respectively. This factorization underlies the proposgbrid g\ (z7) = N (z7; (up)), (C})) defined in[®) agpuy)!t) =
BP-MF message passing scheme, which provides approximtg;’,)!"! n (g (ep )t
marginal posterior pdfs (“beliefs™y; () ~ p(z|d"™) for Ff“?/lk)[t]] and (C))1 = (c% )il (e @ I>. Because
all k€ Vg. Our scheme is an instance of the general hybrdirect computation of the minimizer](9) is infeasible, weor



to an iterative method. To that end, we first derive an aradyti . — ¢ 2 , (17)
expression of the objective functmD[qu[t]] in (@), which ¢ Jisst Jia
we abbreviate b;F[t]( 0) with @ 2 [u" ¢p ¢y c|™. Using the - o
factorization in [[B), this function can be expressed as o — 1+ \/1 + (‘]’%13 + ‘]"%24) pv (18)
Jias T Ik ,
FN6) = Dlglmiai] — > C¥y(bpcp) v, (10) ’ ’
LEN: with Jp,. = [(2")*1} The partial derivatives i (15) and

Whereup is the 2-D vector consisting of the first two entrieqTg) can be calculated using the rem,ggw
of p, v is a constant, and —M(1/2;2;x)/2 [22], where M(—1/2;1; z) can be com-
puted efficiently via an approximatioE[lZS, Section 4.5].

A Newton conjugate-gradient methdd [17, Chapter 7.1] is
_ . . now applied to[(T5)}E(18) to solve the systém= ()1 (0)
To derive an expression oD[g||my—] in (ﬂ._ﬂ), we note i j .. steps, starting from an initial valugy,. The method
that for k € Vg N V!, due to the Gaussiaajl,: (z}) and jteratively compute®; ; = (I; — )0, + ¥;(x}) ](49]),
thte linear-Gaussian mode[l] 31) the messagd_ln (7) (in Whlg\}’hereq, is the inverse of the Hessian matrix ﬂ }( 0)
gr (z~") is replaced byj)! '(z; 1)) is also Gaussian, i.e., af 0;. The Hessian matrix is approximated via the conjugate
mysk(ay) = N(@png, Zi). By using {1) and Standf‘rdgrament which requires only”/(9) and its gradient[[17].
Gaussian integral identities [20], we obtain foe ViV \hile the algorithm’s convergence has not been proven so far
it is suggested by our simulations. The algorithm may preduc
a local minimum ofF,Lt] (0), since this function is not convex
For k € Vi \ Vgl—l, ny and X} equal, respectively, the in general. Therefore, the algorithm is run several timeth wi
mean and covariance matrix of the Gaussian pp((mf”) — different vaIues off,, and the result yielding the smallest
N(x;m}, =}). Accordingly, we obtain in either case [20] Vvalue ofF 1(6) is retained. In our simulations, we used the
generic routlnescipy .optimize.fmin_tnc [24].

G (st cp) 2 / N(D: gy cpla) nml?, () dpp. (10)

ny = Fup ), Sp=F(Cp Y FT +0,GGT.(12)

1 o
Dlg|lmi—k] = 5 [tr((Z3)7'C) — Indet(C)
+ (=) (Z) (k—n)] ++, (13) C. Gaussian Belief Approximation for MM1
where 7/ is a constant. Furthermore, one can expressThe results in Sections IVAA ard IV}B can be used with

Gg]l(ﬂpacp) in () via an expectation of—(dy, — minor changes also for MM1. We here hawe= y1, andC =
Iz, 11)?/0%, wherez, is a 2-D Gaussian random Veclol, 1,, and the Gaussian belief approximation reagi]s{pk)
with meangs, - (1)1 and variancesp + (cg,)~1. For N(py; (upk)[t] (e )LL), The objective function;”(8)
leVy, in part|cular( pl =y and (cp, Pt =o0. By (with 0 £ [p) cp]T) is still given by [10) together witH (13)

using expressions of the first-order and second order mtsmegnq [14); however, the expressiohs](12) are replaced by
of the Rician pdf[[2]l], one obtain5[19]

n n—1\[t"] n__ n—1\[t*] 9
e = (g, )", — (7 YT 47621, (19)
Gg]l(upv Cp) k 1 k 1 k k 1 1
dit 20 mC 1 & where(pp ) = (up )T and(C T = (L.
= — M(—=;1;—=%= ) +7", (14) Finally, f|xed point equations |mp and ¢, are obtalned by
202 02 9 97 20

whered,, = ||Np—(u{},l)“_”||, C 2 CP+(CS,1)“_1]: M(-;-:-)

denotes the confluent hypergeometric function of the finsd ki

[22], and~” is a constant.

B. lterative Minimization Algorithm for MM2

setting to zero the gradient df ( ), and an iterative belief
approximation algorithm is again based on these equations.

D. Distributed Cooperative Localization Algorithm

The results of the previous subsections lead to a distbute
algorithm for cooperative localization in which only param

To derive an iterative algorithm for computing an approxers of Gaussian pdfs have to be communicated. At time

, i.e.,
) to

imation of (67) = [(n O (e (¢ AT
of the minimizer of [ID), we set the gradlent &6

AT (e

zero. This yields the following system of non- I|near fixedealculated from(pu)

point equation® = (x})!* }( ), whereof(67)" is a solution:

kl up,cp

p=mnp+3} Z : (15)
leN
(t] -1
c? St I e 9Gy; (Kps cp)
_ L (Tent ke POk Hp o) 16
& cﬁ( . > e ) (16)

lEN]

agentk performs the following operations:

1. Mobility update: For k € VNV, o and X} are
P HE and (€Y as in [I2) (for
MM2) or as in [ﬂ)) (for MM1). Fork € Vi \ Vi n7 and
3.} are the mean and covariance matrix of the Gaussian prior
pdf p(x}), which are assumed already available at agent

2. Iterative message passing: The message passing iterations
are initialized ¢ = 0) with (u)l = n7 and (C}H)I = =7,
At iteration t € {1,...,t*}, agentk broadcasts(py )"
and(cp )"~ and receives from the neighbd(s; )[t—” and
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Fig. 1. Average outage probability versus outage thresh@)datn =1 for both MMs, (b) atn = 30 for MM1, and (c) atn = 30 for MM2.

(cgyl)[t*”, I € NJ'. Note that the anchord € N N V}) values,. More specifically, 20 initial values g are drawn
broadcast their true position, so thaty, =1 = i)? and from mg_x(x}), 20 are drawn fromj,[f (z} '), and, for
(Cﬁl)[tfl] = 0. Then, new paramete(w};)t and (CY) are each adjacent anchdr 20 are uniformly drawn from an
calculated using the iterative belief approximation aigon. annulus of radiusd;;;, and radial width3o,, around p;’
After the last iteration/(= ¢*), an approximation of the MMSE [2]. Furthermore, the initial values of, and, for MM2,
state estimate:} in () is obtained a$uk)t I. This equals of cv and ¢ are always equal to the respective parameters
the result of [(5) Wlthp(mk|d1") replaced bqu }( ). of q,C (mk b. Our measure of performance is the outage
The iterative belief approximation algorrthm usgg and Probability Pou = Pr(||pf — PkH > 7], wherepj, is the true
WhICh are |oca||y available at ageht and( )[t 11 and pOSIthﬂ of agent: at timen, pk is a Correspondlng estimate,
(e, )[t U, 1€ N, which were received from the neighbors ofNd7 > 0 is a threshold.
agentk. Therefore at each message passing iterati@ach  T19-l shows the simulated outage probability,, averaged

agentk must broadcast to its neighbdrs A" only three real over 30 simulation trials, of the three methods versus the
values, namely, two fO(N k)t 11" and one for( )[t 1] outage threshold. It is seen that, at =1, BPMF outperforms

NBP and SBP for* = 30; in particular, SBP performs poorly.
Since BPMF and SBP use a Gaussian approximation, one may
conclude that in the case of a noninformative prior (which
We consider a region of interest (ROI) of sil80mx 120m is in force atn = 1), the Gaussian approximation degrades
with the sameVy;| =41 agents andV}| = 18 anchors at all the performance of a pure BP scheme like SBP more than
N = 30 simulated time steps. The anchors are regularlythat of the proposed hybrid BP—MF scheme. At= 30,
placed within the ROI. To avoid boundary effects, agenfer MM1, BPMF performs as NBP and SBP. However, for
leaving the ROI reenter it at the respective opposite sid@M2, where the state can be predicted more accurately from
Agents and anchors have a communication radiu20h; the previous time, SBP outperforms both BPMF and NBP.
thereby, each agent communicates with one or two ancharsileed, as previously observed in][11], SBP works very well
The agents measure distances accordinflto (3) avite-Im.  when informative prior knowledge is available. We expeet th
For generating the agent trajectories, we %et= 1s, 0, = NBP would be similarly accurate if more particles were used;
V1.5m/s, ando, =+/0.03m/s%. The initial agent positions however, the complexity of SBP grows quadratically with the
are uniformly drawn on the ROI and, for MM2, the initialnumber of particles. It is also seen that for both MMs, cagtra
agent velocities are drawn from a Gaussian pdf with meam BPMF, the performance of NBP and SBP7at 30 does
[0 0] and covariance matrix.6-I>. For initializing the various not improve when* is increased beyons. We note that in
algorithms, the prior pdf fop? is chosen Gaussian with mearless dense networks, where beliefs can be multimodal, NBP
) ;. and covariance matrig00-I,. Here, if agent: is adjacent can be expected to outperform SBP and BPMF.
to one anchot, then Ng,k is uniformly drawn from a circle  The communication requirements, in terms of number of
of radiusd(,il around the true anchor positigi}, and if agent real values broadcast per message passing iteratigneach
kis adjacent to two anchoisand?’, thenu  Is chosen as agentk to adjacent agentisc N, are3 for BPMF, 5 for SBP,
(p) + py/)/2. For MM2, the pdf forv) is chosen Gaussianand 1600 for NBP.
with mean|0 0]" and covariance matrif.6 - I,.
We compare the proposed hybrid BP—MF method as stated
in Section[IV-D (abbreviated BPMF) with nonparametric BP The proposed algorithm for cooperative localization and
(NBP) and sigma point BP (SBP) NBP] [8] is an extensiotmacking combines the advantages of existing BP and MF
of the particle-based BP method 6f [2] to mobile agents, amdethods: its accuracy is similar to that of particle-baséd B
SBP [11] is a low-complexity sigma-point-based BP schenathough only three real values per message passing @erati
in which, similarly to BPMF, only Gaussian parameters ar@e broadcast by each agent, instead of hundreds of particle
communicated. Our simulation of NBP uses 800 particle®ur simulations showed that the algorithm performs patticu
For simulating BPMF, we perform the fixed-point iteratiodarly well relative to pure BP-based methods when the prior
(with 30 iteration steps) multiple times with differenttial information on the agent positions is imprecise.

V. SIMULATION RESULTS

VI. CONCLUSION
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