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Abstract—We propose a hybrid message passing method
for distributed cooperative localization and tracking of mobile
agents. Belief propagation and mean field message passing are
employed for, respectively, the motion-related and measurement-
related part of the factor graph. Using a Gaussian belief approx-
imation, only three real values per message passing iteration
have to be broadcast to neighboring agents. Despite these very
low communication requirements, the estimation accuracy can
be comparable to that of particle-based belief propagation.

Index Terms—Belief propagation, mean field approximation,
cooperative localization, distributed estimation, information pro-
jection, Kullback-Leibler-divergence, mobile agent network.

I. I NTRODUCTION

Cooperative localization is a powerful approach for mobile
networks [1]–[5]. An attractive methodology for cooperative
localization is sequential Bayesian estimation via message
passing algorithms [6]. In particular, distributed beliefprop-
agation (BP) message passing algorithms were proposed in
[2], [3], [7]–[11] to localize static or mobile agents. Feasible
implementations involve certain approximations and use, e.g.,
particle methods [2], [3], [8]–[10] or the sigma point technique
[11]. Each message transmitted between neighboring agents
is a set of hundreds or more particles in the former case
[2], [3], [8] and a mean and a covariance matrix, i.e., five
real numbers in 2-D localization, in the latter case. For static
agents, also message passing algorithms based on expectation
propagation [12], [13] or the mean field (MF) approximation
[14] were proposed. Similarly to sigma point BP [11], they
use a Gaussian approximation and the transmitted messages
consist of a mean and a covariance matrix.

In this letter, building on the theoretical framework in
[15], we present a distributed hybrid BP–MF message passing
method for cooperative localization and tracking of mobile
agents. We employ BP and MF [15] for, respectively, the
motion-related and measurement-related part of the underlying
factor graph, and we use a Gaussian belief approximation.
Each BP–MF iteration includes an information projection
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[16] that is efficiently implemented by means of a Newton
conjugate-gradient technique [17]. Our method can achieve
an accuracy comparable to that of BP-based methods with the
same communication cost as the MF method [14], i.e., three
real numbers per transmitted message in 2-D localization.

This letter is organized as follows. The system model is
described in Section II. The hybrid BP–MF scheme is devel-
oped in Section III, and the Gaussian belief approximation in
Section IV. Section V presents simulation results.

II. SYSTEM MODEL

The mobile network at discrete timen ∈ {1, ..., N} is
described by a set of network nodesVn and a set of edgesEn

representing the communication/measurement links between
the nodes. The setVn is partitioned into a setVn

M of mobile
agents at unknown positions and a setVn

A of static anchors at
known positions. An edge(k, l) ∈ En indicates the fact that
agent or anchorl transmits data to agentk and, concurrently,
agentk acquires a noisy measurement of its distance to agent
or anchor l. The edge setEn is partitioned into a setEn

M

of edges between certain agents, i.e.,(k, l) ∈ En
M implies

k, l ∈ Vn
M, and a setEn

MA of edges between certain agents
and anchors, i.e.,(k, l) ∈ En

MA implies k ∈ Vn
M and l ∈ Vn

A.
Information exchange between agents is bidirectional, i.e.,
(k, l) ∈ En

M implies (l, k) ∈ En
M. We consider a distributed

scenario where each agent knows only its own measurements.
Since the anchors have exact knowledge of their own position,
they do not need to acquire measurements and receive position
information from neighboring nodes. Accordingly, anchors
transmit position information to agents but not vice versa,i.e.,
(k, l)∈En

MA implies (l, k) /∈ En
MA.

Let the vectorxn
k denote the state of agentk ∈ Vn

M at time
n∈ {1, ..., N}. Moreover, letxn ,

[

xn
k

]

k∈Vn

M

and x1:n ,
[

xi
]n

i=1
. While our approach applies to any linear-Gaussian

motion model, we here consider specifically those two motion
models (MMs) that are most frequently used in practice. In
MM1, xn

k = pn
k ∈ R

2 is the 2-D position of agentk at time
n. If agentk belongs to the network at timesn andn−1, i.e.
k ∈ Vn

M ∩ Vn−1
M , thenpn

k is assumed to evolve according to
the Gaussian random walk model [18]

pn
k = pn−1

k +
√
Tvn

k .

Here,T is the duration of one time step andvn
k ∈R

2 is zero-
mean Gaussian driving noise with component varianceσ2

v .
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Note thatvn
k can be interpreted as a random velocity. In MM2,

xn
k =

[

(pn
k )

T (vn
k )

T
]T

, wherevn
k ∈ R

2 is the 2-D velocity of
agentk at time n. For k ∈ Vn

M ∩ Vn−1
M , xn

k is assumed to
evolve according to the constant velocity model [18]

xn
k = Fxn−1

k +Gan
k . (1)

Here,an
k ∈ R

2 is zero-mean Gaussian driving noise (a random
acceleration) with component varianceσ2

a. Moreover,F =
[

1 T
0 1

]

⊗ I2 and G =
[

T 2/2
T

]

⊗ I2, where⊗ denotes the

Kronecker product andIm is them×m identity matrix. Note
that in both MM1 and MM2, the state-transition probability
density function (pdf)p(xn

k |xn−1
k ) is Gaussian. For agents

that are part of the network at timen but not at timen − 1,
i.e., k ∈ Vn

M \ Vn−1
M , we setp(xn

k |xn−1
k ) = p(xn

k ), where
the prior pdf p(xn

k ) is Gaussian. Under common statistical
independence assumptions onvn

k or an
k [3], the joint prior

pdf of all agent states up to timen is given by

p(x1:n) =

n
∏

i=1

∏

k∈Vi

M

p
(

xi
k|xi−1

k

)

. (2)

If (k, l) ∈ En, agentk ∈ Vn
M acquires at timen a noisy

measurement of its distance to agent or anchorl,

dnk,l = ‖pn
k−pn

l ‖+ wn
k,l . (3)

The measurement errorwn
k,l is assumed zero-mean Gaussian

with varianceσ2
w. Note that the local likelihood function

p(dnk,l|pn
k ,p

n
l ) is nonlinear inpn

k andpn
l . Let d1:n

,
[

di
]n

i=1

with dn
,
[

dnk,l
]

(k,l)∈En
. Assuming that allwn

k,l are indepen-
dent, the global likelihood function involving all measurements
and all states up to timen factors according to

p(d1:n|x1:n) =

n
∏

i=1

∏

(k,l)∈Ei

M

p
(

dik,l|pi
k,p

i
l

)

∏

(κ,λ)∈Ei

MA

p
(

diκ,λ|pi
κ, p̃

i
λ

)

,

(4)
wherep̃n

λ denotes the (known) position of anchorλ∈Vn
A.

III. T HE PROPOSEDMESSAGEPASSING SCHEME

The task of agentk ∈ Vn
M is to estimate its statexn

k from the
total measurement vectord1:n, for n ∈ {1, . . . , N}. We will
consider the minimum mean-square error (MMSE) estimator

x̂
n
k ,

∫

xn
k p(x

n
k |d1:n)dxn

k , k ∈ Vn
M . (5)

Calculating the posterior pdfp(xn
k |d1:n) involved in (5) by

direct marginalization of the joint posterior pdfp(x1:n|d1:n)
is infeasible because of the excessive dimension of integra-
tion and becaused1:n is not locally available at the agents.
Next, we develop a distributed message passing scheme that
approximatesp(xn

k |d1:n), k ∈ Vn
M, n ∈ {1, . . . , N}.

By Bayes’ rule, p(x1:n|d1:n) ∝ p(d1:n|x1:n)p(x1:n),
where p(x1:n) and p(d1:n|x1:n) factor as in (2) and (4),
respectively. This factorization underlies the proposed hybrid
BP–MF message passing scheme, which provides approximate
marginal posterior pdfs (“beliefs”)qk(xn

k ) ≈ p(xn
k |d1:n) for

all k ∈Vn
M. Our scheme is an instance of the general hybrid

BP–MF message passing scheme presented in [15]. We use
BP for the motion-related factorsp(xn

k |xn−1
k ) and MF for the

measurement-related factorsp(dnk,l|pn
k ,p

n
l ), and we suppress

all messages sent backward in time (cf. [3]). We thus obtain
the following iterative scheme at timen: In message passing
iteration t ∈ {1, ..., t∗}, beliefsq[t]k (xn

k ) are calculated as

q
[t]
k (xn

k ) =
1

Z
mk→k(x

n
k )

∏

l∈Nn

k

m
[t]
l→k(p

n
k ), k ∈ Vn

M , (6)

whereZ is a normalization constant andNn
k , {l |(k, l)∈En}

is the set of agents and anchors communicating with agentk
at timen (termed “neighbors”). The factors in (6) are obtained
as

mk→k(x
n
k ) =











∫

q
[t∗]
k (xn−1

k )p(xn
k |xn−1

k )dxn−1
k ,

k ∈ Vn
M ∩ Vn−1

M

p(xn
k ), k ∈ Vn

M\Vn−1
M

(7)

and

m
[t]
l→k(p

n
k ) = exp

(
∫

q
[t−1]
l (xn

l ) ln p(d
n
k,l|pn

k ,p
n
l )dx

n
l

)

. (8)

(Note that pn
l = p̃n

l if l is an anchor.) This recursion is
initialized with q

[0]
k (xn

k ) = mk→k(x
n
k ).

In a distributed implementation, each agentk broadcasts its
belief q[t−1]

k (xn
k ) to its neighborsl ∈ Nn

k and receives the
neighbor beliefsq[t−1]

l (xn
l ), l ∈ Nn

k . These beliefs are then
used to calculate the messagesm

[t]
l→k(p

n
k ), l ∈ Nn

k at agentk
as in (8). These messages, in turn, are needed to calculate the
updated beliefq[t]k (xn

k ) at agentk according to (6). Aftert∗

iterations, the final beliefq[t
∗]

k (xn
k ) is used for state estimation,

i.e. q[t
∗]

k (xn
k ) is substituted forp(xn

k |d1:n) in (5).

IV. GAUSSIAN BELIEF APPROXIMATION

Inspired by [14, Section IV], we introduce an approximation
of the message passing scheme (6)–(8) such that the beliefs
are constrained to a certain class of Gaussian pdfs. This leads
to a significant reduction of both interagent communication
and computational complexity relative to a particle-based
implementation. We first consider MM2. A more detailed
derivation is provided in [19].

A. Gaussian Belief Approximation for MM2

We constrain the beliefs to Gaussian pdfs by using the
information projection approach [16], i.e., substituting for
q
[t]
k (·) in (6)

q̃
[t]
k (·) , argmin

g∈G

D
[

g
∥

∥q
[t]
k

]

. (9)

Here, D
[

g‖q
]

,
∫

g(x) ln g(x)
q(x) dx is the Kullback-Leibler

divergence andG is the set of 4-D Gaussian pdfsg(x) =

N(x;µ,C) with covariance matrix of the formC =
[

cp c
c cv

]

⊗
I2. We will denote the mean and covariance matrix of
q̃
[t]
k (xn

k ) = N
(

xn
k ; (µ

n
k )

[t], (Cn
k )

[t]
)

defined in (9) as(µn
k )

[t] =
[

(µn
p,k)

[t]

(µn
v,k)

[t]

]

and (Cn
k )

[t] =

[

(cnp,k)
[t] (cnk )[t]

(cnk )[t] (cnv,k)
[t]

]

⊗ I2. Because

direct computation of the minimizer (9) is infeasible, we resort
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to an iterative method. To that end, we first derive an analytical
expression of the objective functionD

[

g
∥

∥q
[t]
k

]

in (9), which
we abbreviate byF [t]

k (θ) with θ , [µT cp cv c]T. Using the
factorization in (6), this function can be expressed as

F
[t]
k (θ) = D[g‖mk→k]−

∑

l∈Nn

k

G
[t]
k,l(µp, cp) + γ , (10)

whereµp is the 2-D vector consisting of the first two entries
of µ, γ is a constant, and

G
[t]
k,l(µp, cp) ,

∫

N(pn
k ;µp, cpI2) lnm

[t]
l→k(p

n
k )dp

n
k . (11)

To derive an expression ofD[g‖mk→k] in (10), we note
that for k ∈ Vn

M ∩ Vn−1
M , due to the Gaussiañq[t]k (xn

k ) and
the linear-Gaussian model (1), the message in (7) (in which
q
[t∗]
k (xn−1

k ) is replaced bỹq[t
∗]

k (xn−1
k )) is also Gaussian, i.e.,

mk→k(x
n
k ) = N(xn

k ;η
n
k ,Σ

n
k ). By using (1) and standard

Gaussian integral identities [20], we obtain fork ∈ Vn
M∩Vn−1

M

ηn
k = F(µn−1

k )[t
∗] , Σ

n
k = F (Cn−1

k )[t
∗]FT+σ2

aGGT.(12)

For k ∈ Vn
M \ Vn−1

M , ηn
k and Σ

n
k equal, respectively, the

mean and covariance matrix of the Gaussian priorp(xn
k ) =

N(xn
k ;η

n
k ,Σ

n
k ). Accordingly, we obtain in either case [20]

D[g‖mk→k] =
1

2

[

tr
(

(Σn
k )

−1C
)

− ln det(C)

+ (µ−ηn
k )

T(Σn
k )

−1(µ−ηn
k )
]

+ γ′, (13)

where γ′ is a constant. Furthermore, one can express
G

[t]
k,l(µp, cp) in (11) via an expectation of−(dnk,l −

‖zn
k,l‖)2/σ2

w, where zn
k,l is a 2-D Gaussian random vector

with meanµp − (µn
p,l)

[t−1] and variancecp + (cnp,l)
[t−1]. For

l ∈ Vn
A, in particular,(µn

p,l)
[t−1] = p̃n

l and(cnp,l)
[t−1] = 0. By

using expressions of the first-order and second-order moments
of the Rician pdf [21], one obtains [19]

G
[t]
k,l(µp, cp)

= −d2µ+ 2cp

2σ2
w

+
dnk,l
σ2
w

√

πC

2
M

(

−1

2
; 1;− d2µ

2C

)

+ γ′′, (14)

wheredµ ,
∥

∥µp−(µn
p,l)

[t−1]
∥

∥, C , cp+(cnp,l)
[t−1], M(· ; · ; ·)

denotes the confluent hypergeometric function of the first kind
[22], andγ′′ is a constant.

B. Iterative Minimization Algorithm for MM2

To derive an iterative algorithm for computing an approx-
imation of (θn

k )
[t] =

[

(µn
k )

[t]T (cnp,k)
[t] (cnv,k)

[t] (cnk )
[t]
]T

, i.e.,

of the minimizer of (10), we set the gradient ofF [t]
k (θ) to

zero. This yields the following system of non-linear fixed-
point equationsθ = (χn

k )
[t](θ), whereof(θn

k )
[t] is a solution:

µ = ηn
k +Σ

n
k

∑

l∈Nn

k

∂G
[t]
k,l(µp, cp)

∂µ
, (15)

cp =
c2

cv
+

(

Jn
k,11+ Jn

k,22

2
−

∑

l∈Nn

k

∂G
[t]
k,l(µp, cp)

∂cp

)−1

, (16)

cv =
c2

cp
+

2

Jn
k,33+ Jn

k,44

, (17)

c =
1 +

√

1 + (Jn
k,13 + Jn

k,24)
2 cpcv

Jn
k,13 + Jn

k,24

, (18)

with Jn
k,ij ,

[

(Σn
k )

−1
]

ij
. The partial derivatives in (15) and

(16) can be calculated using the relationdM(−1/2;1;x)
dx =

−M(1/2; 2;x)/2 [22], whereM(−1/2; 1; x) can be com-
puted efficiently via an approximation [23, Section 4.5].

A Newton conjugate-gradient method [17, Chapter 7.1] is
now applied to (15)–(18) to solve the systemθ = (χn

k )
[t](θ)

in jmax steps, starting from an initial valueθ0. The method
iteratively computesθj+1 = (I7 − Ψj)θj + Ψj(χ

n
k )

[t](θj),
where Ψj is the inverse of the Hessian matrix ofF [t]

k (θ)
at θj . The Hessian matrix is approximated via the conjugate
gradient, which requires onlyF [t]

k (θ) and its gradient [17].
While the algorithm’s convergence has not been proven so far,
it is suggested by our simulations. The algorithm may produce
a local minimum ofF [t]

k (θ), since this function is not convex
in general. Therefore, the algorithm is run several times with
different values ofθ0, and the result yielding the smallest
value ofF [t]

k (θ) is retained. In our simulations, we used the
generic routinescipy.optimize.fmin_tnc [24].

C. Gaussian Belief Approximation for MM1

The results in Sections IV-A and IV-B can be used with
minor changes also for MM1. We here haveµ= µp andC =

cpI2, and the Gaussian belief approximation readsq̃
[t]
k (pn

k ) =

N
(

pn
k ; (µ

n
p,k)

[t], (cnp,k)
[t]
I2

)

. The objective functionF [t]
k (θ)

(with θ , [µT
p cp]

T) is still given by (10) together with (13)
and (14); however, the expressions (12) are replaced by

ηn
k = (µn−1

k )[t
∗] , Σ

n
k = (Cn−1

k )[t
∗] + Tσ2

v I2 , (19)

where(µn−1
k )[t

∗] = (µn−1
p,k )[t

∗] and(Cn−1
k )[t

∗] = (cn−1
p,k )[t

∗]
I2.

Finally, fixed point equations inµp and cp are obtained by

setting to zero the gradient ofF [t]
k (θ), and an iterative belief

approximation algorithm is again based on these equations.

D. Distributed Cooperative Localization Algorithm

The results of the previous subsections lead to a distributed
algorithm for cooperative localization in which only parame-
ters of Gaussian pdfs have to be communicated. At timen,
agentk performs the following operations:

1. Mobility update: For k ∈ Vn
M ∩ Vn−1

M , ηn
k and Σ

n
k are

calculated from(µn−1
k )[t

∗] and (Cn−1
k )[t

∗] as in (12) (for
MM2) or as in (19) (for MM1). Fork ∈ Vn

M \Vn−1
M , ηn

k and
Σ

n
k are the mean and covariance matrix of the Gaussian prior

pdf p(xn
k ), which are assumed already available at agentk.

2. Iterative message passing: The message passing iterations
are initialized (t = 0) with (µn

k )
[0]= ηn

k and (Cn
k )

[0]= Σ
n
k .

At iteration t ∈ {1, . . . , t∗}, agentk broadcasts(µn
p,k)

[t−1]

and(cnp,k)
[t−1] and receives from the neighbors(µn

p,l)
[t−1] and
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Fig. 1. Average outage probability versus outage threshold: (a) atn=1 for both MMs, (b) atn=30 for MM1, and (c) atn=30 for MM2.

(cnp,l)
[t−1], l ∈ Nn

k . Note that the anchors (l ∈ Nn
k ∩ Vn

A)
broadcast their true position, so that(µn

p,l)
[t−1] = p̃n

l and
(cnp,l)

[t−1] = 0. Then, new parameters(µn
k )

[t] and (Cn
k )

[t] are
calculated using the iterative belief approximation algorithm.
After the last iteration (t= t∗), an approximation of the MMSE
state estimatêxn

k in (5) is obtained as(µn
k )

[t∗]. This equals
the result of (5) withp(xn

k |d1:n) replaced bỹq[t
∗]

k (xn
k ).

The iterative belief approximation algorithm usesηn
k and

Σ
n
k , which are locally available at agentk, and(µn

p,l)
[t−1] and

(cnp,l)
[t−1], l ∈Nn

k , which were received from the neighbors of
agentk. Therefore, at each message passing iterationt, each
agentk must broadcast to its neighborsl ∈Nn

k only three real
values, namely, two for(µn

p,k)
[t−1] and one for(cnp,k)

[t−1].

V. SIMULATION RESULTS

We consider a region of interest (ROI) of size120m×120m
with the same|Vn

M|=41 agents and|Vn
A|=18 anchors at all

N = 30 simulated time stepsn. The anchors are regularly
placed within the ROI. To avoid boundary effects, agents
leaving the ROI reenter it at the respective opposite side.
Agents and anchors have a communication radius of20m;
thereby, each agent communicates with one or two anchors.
The agents measure distances according to (3) withσw=1m.
For generating the agent trajectories, we setT = 1s, σv =√
1.5m/s, andσa =

√
0.03m/s2. The initial agent positions

are uniformly drawn on the ROI and, for MM2, the initial
agent velocities are drawn from a Gaussian pdf with mean
[0 0]T and covariance matrix0.6·I2. For initializing the various
algorithms, the prior pdf forp0

k is chosen Gaussian with mean
µ0

p,k and covariance matrix900·I2. Here, if agentk is adjacent
to one anchorl, thenµ0

p,k is uniformly drawn from a circle
of radiusd0k,l around the true anchor positioñp0

l , and if agent
k is adjacent to two anchorsl and l′, thenµ0

p,k is chosen as
(p̃0

l + p̃0
l′)/2. For MM2, the pdf forv0

k is chosen Gaussian
with mean[0 0]T and covariance matrix0.6 · I2.

We compare the proposed hybrid BP–MF method as stated
in Section IV-D (abbreviated BPMF) with nonparametric BP
(NBP) and sigma point BP (SBP). NBP [8] is an extension
of the particle-based BP method of [2] to mobile agents, and
SBP [11] is a low-complexity sigma-point-based BP scheme
in which, similarly to BPMF, only Gaussian parameters are
communicated. Our simulation of NBP uses 800 particles.
For simulating BPMF, we perform the fixed-point iteration
(with 30 iteration steps) multiple times with different initial

valuesθ0. More specifically, 20 initial values ofµ are drawn
from mk→k(x

n
k ), 20 are drawn fromq̃[t

∗]
k (xn−1

k ), and, for
each adjacent anchorl, 20 are uniformly drawn from an
annulus of radiusdnk,l and radial width 3σw around p̃n

l

[2]. Furthermore, the initial values ofcp and, for MM2,
of cv and c are always equal to the respective parameters
of q̃

[t∗]
k (xn−1

k ). Our measure of performance is the outage
probabilityPout , Pr

[

‖p̂n
k − p̃n

k‖ > τ
]

, wherep̃n
k is the true

position of agentk at timen, p̂n
k is a corresponding estimate,

andτ > 0 is a threshold.
Fig. 1 shows the simulated outage probabilityP̂out, averaged

over 30 simulation trials, of the three methods versus the
outage thresholdτ . It is seen that, atn=1, BPMF outperforms
NBP and SBP fort∗= 30; in particular, SBP performs poorly.
Since BPMF and SBP use a Gaussian approximation, one may
conclude that in the case of a noninformative prior (which
is in force atn = 1), the Gaussian approximation degrades
the performance of a pure BP scheme like SBP more than
that of the proposed hybrid BP–MF scheme. Atn = 30,
for MM1, BPMF performs as NBP and SBP. However, for
MM2, where the state can be predicted more accurately from
the previous time, SBP outperforms both BPMF and NBP.
Indeed, as previously observed in [11], SBP works very well
when informative prior knowledge is available. We expect that
NBP would be similarly accurate if more particles were used;
however, the complexity of SBP grows quadratically with the
number of particles. It is also seen that for both MMs, contrary
to BPMF, the performance of NBP and SBP atn = 30 does
not improve whent∗ is increased beyond5. We note that in
less dense networks, where beliefs can be multimodal, NBP
can be expected to outperform SBP and BPMF.

The communication requirements, in terms of number of
real values broadcast per message passing iterationt by each
agentk to adjacent agentsl ∈Nn

k , are3 for BPMF, 5 for SBP,
and1600 for NBP.

VI. CONCLUSION

The proposed algorithm for cooperative localization and
tracking combines the advantages of existing BP and MF
methods: its accuracy is similar to that of particle-based BP
although only three real values per message passing iteration
are broadcast by each agent, instead of hundreds of particles.
Our simulations showed that the algorithm performs particu-
larly well relative to pure BP-based methods when the prior
information on the agent positions is imprecise.
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