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A Low-Complexity Transceiver Design in

Sparse Multipath Massive MIMO Channels

Yuehua Yu, Peng Wang, He (Henry) Chen, Yonghui Li, and BrankaVucetic

Abstract

In this letter, we develop a low-complexity transceiver design, referred to as semi-random beam

pairing (SRBP), for sparse multipath massive MIMO channels. By exploring a sparse representation of

the MIMO channel in the virtual angular domain, we generate aset of transmit-receive beam pairs in a

semi-random way to support the simultaneous transmission of multiple data streams. These data streams

can be easily separated at the receiver via a successive interference cancelation (SIC) technique, and the

power allocation among them are optimized based on the classical waterfilling principle. The achieved

degree of freedom (DoF) and capacity of the proposed approach are analyzed. Simulation results show

that, compared to the conventional singular value decomposition (SVD)-based method, the proposed

transceiver design can achieve near-optimal DoF and capacity with a significantly lower computational

complexity.

Index Terms

Massive MIMO, transceiver design, channel sparsity, DoF

I. INTRODUCTION

The multiple-input-multiple-output (MIMO) technique hasbeen known as an effective way

to significantly increase the capacity of wireless communications. Theoretically, the capacity

of a MIMO system can increase linearly with the minimum number of the transmit (Tx) and

receive (Rx) antennas for fixed Tx power and bandwidth [1]. When the number of antennas

becomes very large, such as in massive MIMO systems, multiple gains (e.g., rate increase and
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transmission reliability, etc.) can further scale up by possible orders of magnitude compared to

the current state-of-art [2].

To achieve the capacity of a MIMO system, singular value decomposition (SVD) approach

has been widely used in the open literature to decompose the MIMO channel into a set of

parallel single-input-single-output (SISO) subchannels, over which multiple independent signal

streams can be transmitted without mutual interference [3]. However, the computational cost of

the SVD-based design becomes prohibitively high in massiveMIMO systems. One approach to

reduce the computational complexity in such systems is the antenna selection technique, which

can achieve a similar diversity gain as the all-participation setup but significantly sacrifice the

degree of freedom (DoF) and thereby the capacity of MIMO systems [4].

On the other hand, recent studies have demonstrated that, asthe system dimension increases,

the physical MIMO channels exhibit a sparse structure due toinsufficient scatterers in prop-

agations [5], [6]. Several low-complexity transceivers have been developed in [7] to exploit

the channel sparsity of a point-to-point large-scale MIMO system. However, the designs in [7]

focused on a particular low-rank millimeter wave scenario,which may fail to capture the full

DoF of general multipath massive MIMO systems. To the best ofour knowledge, how to capture

the full DoF of sparse multipath massive MIMO channels usinglow-complexity transceiver has

not been well addressed in open literatures.

Motivated by this, in this letter we develop a novel low-complexity transceiver design, namely

semi-random beam pairing (SRBP), for sparse multipath massive MIMO channels. The SRBP

algorithm is designed based on the virtual channel model in angular domain [8], [9]. Specifically,

a set of transmit-receive beam pairs are generated in a semi-random way. Each beam pair is

used to transmit one data stream such to enable the simultaneous data transmission. These data

streams can be easily separated at the receiver via a successive interference cancelation (SIC)

technique, and the power allocation among them are optimized based on the classical water-

filling principle. An analytical expression for the achieved DoF of SRBP is derived. Numerical

results demonstrate that SRBP can achieve near-optimal DoFand capacity performance but has

a much lower computational complexity.
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II. SYSTEM MODEL

Consider a massive MIMO system with anNt-element Tx uniform linear array (ULA) and an

Nr-element Rx ULA [10]. By assuming a frequency-flat fading channel between the two ends,

the Tx and Rx signals are related by

y = Hx+ n, (1)

wherex∈CNt×1 is the Tx signal withCm×n representing the set of allm×n complex matrices,n

is a length-Nr vector of complex additive white Gaussian noise, andH∈CNr×Nt is the physical

multipath channel matrix given by [8], [9]

H =
√

NrNt

∑L

ℓ=1
gℓar(ωr,ℓ)a

H
t (ωt,ℓ). (2)

In (2), the Tx and Rx antennas are linked viaL propagation paths with complex gains{gℓ},

angles of departure (AoDs){ωt,ℓ} and angles of arrival (AoAs){ωr,ℓ}, and (·)H represents

the conjugate transpose operation. The steering vectorat(ωt) and response vectorar(ωr) are

expressed, respectively, as

at(ωt) =
1√
Nt

[

1, e−j2πωt , · · · , e−j2πωt(Nt−1)

]T

, (3)

ar(ωr) =
1√
Nr

[

1, e−j2πωr , · · · , e−j2πωr(Nr−1)

]T

, (4)

where(·)T represents the transpose operation.

As discussed in [8], [9],H can be characterized and represented by a virtual channelHv in

angular domain with the following relationship

H =
∑Nr

i=1

∑Nt

j=1
Hv(i, j)ar(ω̄r,i)a

H
t (ω̄t,j)

= ArHvA
H
t , (5)

where {ω̄r,i = i/Nr} and {ω̄t,j = j/Nt} are the uniformly sampledvirtual AoAs and AoDs,

respectively, andHv(i, j) approximately equals to the sum of gains of a sub-set of pathswhich

are unresolvable in thejth virtual AoD and theith virtual AoA. Consequently,Ar andAt are

discrete Fourier transform matrices, and then the virtual representationHv is unitarily equivalent

to the physical channel matrixH with the relationshipHv = AH
r HAt.

When the number of antennas increases, resolvable paths that contribute to the channel power

gain become less due to the insufficient scatterers in propagations [5], [6]. In other words, there
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are less non-zero entries inHv with other entries being approximate to zero when there are no

scattering in the corresponding virtual angles. In this sense, it would be valid to assume thatHv

tends to be sparse. In order to further capture the sparse property, we follow [8], [9], [11] to

expressHv as

Hv ≈ M⊙Hiid, (6)

where⊙ denotes the element-wise product,Hiid is an independent and identically distributed

(i.i.d.) complex Gaussian matrix, andM is a binary mask matrix with each of its entries being

1 if its counterpart inHv is nonzero and0 otherwise. It is worth noting that each non-zero entry

M(i, j) corresponds to the paths from thejth virtual AoD to theith virtual AoA.

For the channelHv in (6), the channel capacity can be achieved via the optimal SVD-based

transceiver design. Mathematically, we have

C(ρ |Hv ) = max
ρi:

∑
i
ρi=ρ

∑D

i=1 log(1 + ρiλ
2
i ), (7)

whereD is the rank ofHv and represents the DoF of systems,λi is theith singular value ofHv, ρ

is the total Tx power andρi is the allocated power based on the optimal water-filling technique

for the ith eigen channel. However, the computational complexity ofthe SVD-based method

becomes prohibitively high in massive MIMO systems with large-scale antennas. Motivated

by this, in this letter we propose a low-complexity transceiver design for the sparse multipath

massive MIMO channel elaborated in the next section.

III. PROPOSED LOW-COMPLEXITY TRANSCEIVER DESIGN

In this section, a low-complexity transceiver design is developed and analyzed for sparse

multipath massive MIMO channels. The proposed design adopts a SRBP approach combined

with the water-filling and SIC techniques. For simplicity weelaborate our design based on the

symmetric case forNt=Nr=N . The general case whereNt6=Nr is readily extendable.

A. SRBP-based Transceiver Design

The main idea of the SRBP is to generate multiple Tx-Rx beam pairs in angular domain, with

each pair transmitting one data stream. We aim at generatingas many beam pairs as possible

so as to approach the full DoF of systems. The SRBP is performed on the binary mask matrix
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Fig. 1. Illustration of the pairing and temporarily excluding procedures.

M which maintains the same sparsity asHv. Specifically, it consists of the following three

main processes.

1) Initialization. Remove the all-zero rows inM which make no contribution to channel

gains. The downsize matrix ofM is denoted byM̄ ∈ CN̄×N .

2) Lower-triangulation. This process typically consists ofN steps. At theℓth step, the

following operations are performed on the operating matrixM̄(ℓ) (which is a sub-matrix

of M̄) as illustrated in blue color in Fig. 1.

a) Beam pairing:

• Find a weight-1 row1 in M̄(ℓ) and move this unique “1”
(

e.g., in theith row and

jth column) to the top-left ofM̄(ℓ) via row/column permutations to obtain̄M(ℓ)
temp.

In mathematics,

M̄
(ℓ)
temp= Ē

(ℓ)T

i M̄(ℓ)Ē
(ℓ)
j , (8)

whereĒ(ℓ)
i =[ei, e1, · · · , ei−1, ei+1, · · · em(ℓ) ] is the row permutation matrix,m(ℓ) is

the row dimension ofM̄(ℓ) and ei is the unit vector with1 at the ith entry and

zeros otherwise. The column permutation matrixĒ
(ℓ)
j can be obtained similarly.

• UpdateM̄(ℓ)
temp to M̄(ℓ+1) by removing the originalith row, jth column and the

resulting all-zero rows.

b) Temporarily column excluding:

1We hereafter term a row withk non-zero entries as a weight-k row.
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• If there is no weight-1 row in M̄(ℓ), we random select one (e.g.,kth) column in

M̄(ℓ) and move it to the right most of̄M(ℓ) to obtainM̄(ℓ)
temp. In mathematics,

M̄
(ℓ)
temp=M̄(ℓ)E

(ℓ)
k , (9)

whereE(ℓ)
k =[e1, · · · , ek−1, ek+1, · · ·eN−ℓ+1, ek].

• UpdateM̄(ℓ)
temp to M̄(ℓ+1) by removing the originalkth column and the resulting

all-zero rows.

After this process, the matrix̄M will be permuted into the form as shown in Fig. 2(a),

whereA∈CNd×Nd is a lower triangular matrix andB∈CN̄×Nex consists all the temporarily

excluded columns. Specifically,Nd denotes the achieved DoF andNex denotes the times

of temporarily excluding operations.

3) Further block lower-triangulation. This process aims at utilizing the non-zero entries in

B andC to achieve the potential power gains.

Scan the rows ofB from top to down. Assuming there areq (q≤Nex) non-zero entries

in the ith (i≤Nd) row of B for example. Move theseq 1’s via column permutations to

right next to the diagonal1 in the ith row of A. Similarly, scan the columns ofC from

right to left and move all1’s in C upwards to next to the diagonal blocks inA via row

permutations.

With this process, as showed in Fig. 2(b), the small blocks{Σi} on the diagonal are created

by the corresponding non-zero entries inB andC together with the diagonal elements in

A.

Finally, the corresponding complex channel matrixH̃v can be mapped fromM̄, and the

diagonal blocks inH̃v is denoted by{Σ̃i}. The eigen channel corresponding to the largest

singular value of each̃Σi then transmits one data stream. Moreover, by representingH̃v in the

block lower-triangular form, the receiver can adopt the SICtechnique to cancel the interferences

among multiple data streams. In this sense, the separable data streams can be treated as parallel

at the transmitter. The classical water-filling principle is thus adopted to achieve the optimal

power allocation among all data streams. Mathematically, the achieved capacity of the proposed

transceiver design can be expressed as

C(ρ̃
∣

∣

∣
H̃v ) = max

ρ̃i:
∑

i
ρ̃i=ρ

∑Nd

i=1 log(1 + ρ̃iλ̃
2
i ), (10)
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Fig. 2. Illustration ofM̄ and its example corresponding to Fig. 1.

whereλ̃i is the largest singular value of̃Σi.

Remark of Complexity: In the proposed SRBP transceiver design, the computational complex-

ity is mainly contributed by two aspects. The first aspect is the generation of the diagonal blocks

{Σ̃i}, which only involves row/column permutations with very lowcomplexity. The second one

is the SVD of{Σ̃i} to obtain the maximum eigen values{λ̃i}.

It is worth noting that the maximum size of̃Σi is upper-bounded by(N̄−Nd+1)×(Nex+1),

which is much smaller than that ofHv for N×N . In this case, the SVD of{Σ̃i} has much

lower complexity given byO
(

(N̄−Nd+1)(Nex+1)2
)

than that of the full-size channel matrix

Hv for O(N3) [12].

Furthermore, from the statistical perspective, the probability that a diagonal block̃Σi with the

exact size(N̄−Nd+1)×(Nex+1) in H̃v is extremely small, as it requires the entries in a certain

row of B and a corresponding column ofC are all non-zeros. This deduction is actually verified

in the latter numerical results, in which we show that more than 99% of {Σ̃i} are either single

element or vector. We thus can claim that the actual complexity of SRBP is further lower than
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the aforementioned upper bound.

B. DoF Analysis of the SRBP Algorithm

In this subsection we derive an analytical expression for the average achieved DoF of the

proposed SRBP algorithm.

As in [13], we adopt the Bernoulli distribution to model the channel sparsity. Specifically,

each entry ofM is assumed i.i.d. and to take value1 with a small probabilityδ and value0 with

the probability1−δ. Let p̂k denote the probability that a row ofM hask non-zero entries.When

the number of antennasN goes infinite,p̂k follows a Poisson distribution with the probability

mass function [14]

p̂k = e−β × βk/k!, k={0, 1, · · · , N}, (11)

whereβ=N×δ denotes the average number of1’s in each row.

After the initialization process,M is down-sized toM̄(1) with m(1) rows on average, which

is associated toN and p̂0 as

m(1)=N × (1− p̂0), (12)

and the probability that a row in̄M(1) hask non-zero entries is updated by

p
(1)
k = p̂k/(1− p̂0), k = {1, · · · , N}. (13)

In (12) and (13), the superscript(·)(1) denotes the value of a certain parameter after initialization

and before the first step oflower-triangulation process.

Note that after theN columns are either paired or temporarily excluded in thelower-triangulation

process, as illustrated in Fig. 2, the relationship between the average achieved DoF (Nd) and the

average times of temporarily excluding operations (Nex) is given by

Nd = N −Nex. (14)

In this case, the analytical expression ofNd will be obtained if we can find the expression

of Nex. To proceed, we denote byp(ℓ)ex the probability that the temporarily excluding operation

occurs in theℓth step. ThenNex can be obtained by summingp(ℓ)ex over ℓ for ℓ ∈ {1, . . . , N},

i.e.,

Nex =
∑N

ℓ=1
p(ℓ)ex . (15)
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TABLE I

L IST OF NOTATIONS AND THEIR PHYSICAL MEANINGS

Notation Physical Meaning

M̄
(ℓ) Operating Matrix in theℓth step,ℓ ∈ {1, . . . , N}.

m(ℓ) The average row-dimension of matrix̄M(ℓ).

N
(ℓ)
k

The average number of weight-k rows in M̄
(ℓ)

for k ∈ {1, . . . , N − (ℓ−1)}.

p
(ℓ)
k

The probability that a row ofM̄(ℓ) is weight-k.

Q
(ℓ)
k

The average number of rows reducing weight fromk to (k−1)

when updatingM̄(ℓ) in the ℓth step.

α
(ℓ)
k

The probability that a row reducing weight fromk to (k−1)

when updatingM̄(ℓ) in the ℓth step.

With the values ofm(1) andp(1)k , we first can obtain

p(1)ex = (1− p
(1)
1 )m

(1)

(16)

by realizing that the excluding operation occurs only when there is no weight-1 row in the current

operating matrixM̄(1). The value ofp(ℓ)ex for ℓ ∈ {2, . . . , N} should be calculated sequentially

as the execution oflower-triangulation process step by step. Without loss of generality, in the

following we explain how to calculatep(ℓ)ex for the ℓth step based on the parameters obtained in

the(ℓ−1)th step. That is, all notations with superscript(·)(ℓ−1) have already been known. Besides,

all other involved notations in this calculation and their corresponding physical meanings are

listed in Table. I.

Similar to (16),p(ℓ)ex can be expressed as

p(ℓ)ex=(1− p
(ℓ)
1 )m

(ℓ)

. (17)

We thus need to calculatep(ℓ)1 andm(ℓ) based on the parameters obtained in(ℓ−1)th step.

Recall that in each step oflower-triangulation process, one column is removed from the op-

erating matrix no matterbeam pairing or temporarily column excluding procedure is performed.

In this sense, the weight (i.e., number of1’s) of each row may be reduced when updating

the operating matrix. We assume there are a number ofQ
(ℓ−1)
1 rows on average changed from

weight-1 to all-zeros that should be removed when updatingM̄(ℓ−1) to M̄(ℓ). Thusm(ℓ) can be
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related withm(ℓ−1) as

m(ℓ) = m(ℓ−1)−Q
(ℓ−1)
1 , ℓ ∈ {2, . . . , N}. (18)

The value of the termQ(ℓ−1)
1 in (18) is contributed by two parts. The first part comes from

the selected weight-1 row of M̄(ℓ−1) in Beam pairing procedure, which becomes an all-zero row

in M̄(ℓ) with probability 1. The second part is from the remaining(N (ℓ−1)
1 −1) weight-1 rows

in M̄(ℓ−1), which may also be changed to weight-0 when removing the column containing the

selected “1”. Since the positions of 1’s in different rows are considered to be independent, we

can assume that the remaining(N (ℓ−1)
1 −1) weight-1 rows reduce weight with the same probability

α
(ℓ−1)
1 . Considering that the value ofN (ℓ−1)

1 could range from1 to m(ℓ−1) and according to the

full probability theory,Q(ℓ−1)
1 can be given by

Q
(ℓ−1)
1 =

m(ℓ−1)
∑

t=1

{

Pr(N
(ℓ−1)
1 = t)

[

1+(t−1)α
(ℓ−1)
1

]

}

=(1−α
(ℓ−1)
1 )

m(ℓ−1)
∑

t=1

Pr(N
(ℓ−1)
1 = t)+α

(ℓ−1)
1 E[N

(ℓ−1)
1 ]

=(1−α
(ℓ−1)
1 )(1−p(ℓ−1)ex )+α

(ℓ−1)
1 m(ℓ−1)p

(ℓ−1)
1 , (19)

whereE[·] represents the expectation of a random variable. Recall that the position of non-zero

entries in each row are assumed to be randomly distributed, then the more non-zero entries a

row has, the larger the probability that the weight will be reduced when removing column in

each step oflower-triangulation process. In this sense,α(ℓ−1)
1 can be given by

α
(ℓ−1)
1 =1/[N−(ℓ−1)+1]. (20)

asM̄(ℓ−1) has[N−(ℓ−1)+1] entries in each row.

So far,m(ℓ) can be obtained by substituting (20) into (19) and then (19) into (18). We now

turn to the calculation ofp(ℓ)1 , which is defined as the ratio ofN (ℓ)
1 andm(ℓ). Mathematically,

p
(ℓ)
1 = N

(ℓ)
1 /m(ℓ), (21)

where the value ofN (ℓ)
1 can be derived fromN (ℓ−1)

1 by first subtracting the average number of

rows reduced from weight-1 to weight-0 (i.e., Q(ℓ−1)
1 ) and then adding the average number of

rows reduced from weight-2 to weight-1 (i.e., Q(ℓ−1)
2 ) when updatingM̄(ℓ−1) to M̄(ℓ). That is,

N
(ℓ)
1 = N

(ℓ−1)
1 −Q

(ℓ−1)
1 +Q

(ℓ−1)
2 , (22)
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TABLE II

ACHIEVED DOF COMPARISON

Number of antennas 8 16 32 64 128

DoF: SRBP, analytical, Eq. (14) 4.59 8.95 17.56 34.8 69.99

DoF: SRBP, simulation 4.43 8.74 17.39 34.59 69.83

DoF: SVD, simulation 4.49 8.79 17.44 34.64 69.88

whereQ(ℓ−1)
2 is readily given by

Q
(ℓ−1)
2 = α

(ℓ−1)
2 N

(ℓ−1)
2 . (23)

Similar to (20),α(ℓ−1)
2 can be expressed by

α
(ℓ−1)
2 =2/[N−(ℓ−1) + 1]. (24)

Finally, by substituted (24) into (23) then (22) into (21), the value ofp(ℓ)1 in (17) have been

achieved. At the same time, we complete the calculation ofp
(ℓ)
ex . Note that due to the inherent

iterative feature of the proposed SRBP scheme, it is difficult to write a close-form expression

for its achievable DoF. But it can be numerically calculatedin an iterative way as elaborated in

(14)-(24).

IV. NUMERICAL RESULTS

We now provide some numerical results to illustrate the SRBPperformance. In the following

simulations, we follow the typical multiplexing configuration in [9] and setδ=1/N .

Table. II verifies the theoretical analysis of the achieved DoF of the sparse multipath massive

MIMO. We can see that the analytical and simulation results of SRBP are very close to each

other, which validates our theoretical analysis. Meanwhile, compared to the optimal SVD-based

scheme, the proposed SRBP design can achieve nearly the sameDoF for variousN .

Fig. 3 shows the average achievable capacity versus SNR forN=32 and N=64. We can

observe in this figure that the capacity of the proposed SRBP-based transceiver design can

approach that of the optimal SVD-based transceiver design over the entire SNR region. Note

that the simulation results of [7] are not compared in this letter as they considered a particular

low-rank scenario and did not utilize the full DoF of the system. Hence it is not suitable to solve

the considered problem in this paper.
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TABLE III

THE SIZE CLASSIFICATION OF{Σ̃i}

Size of{Σ̃i} Average Number Percentage

Single entry,1×1 24.65 70.93%

Row vector,a×1, a≤Nex+1 4.76 14.03%

column vector,1×b, b≤ (N̄−Nd)+1 5.17 14.95%

others 0.42 0.09%

Next, we numerically compare the computational complexityof the proposed transceiver

design and the conventional SVD-based one. ForN = 64, we find that the average number

of Nex≈5.8 and (N̄−Nd)≈5.4 over 10, 000 random channel realizations. As showed in Table.

III, more than 99% of {Σ̃i} are actually either single elements or vectors. This observation

confirms the remark that the proposed SRBP transceiver design has much lower computational

complexity than that of the conventional SVD-based one.

V. CONCLUSION

A low-complexity transceiver design has been proposed and analyzed for sparse multipath

massive MIMO channels. Compared to the optimal SVD-based approach over the full-dimension
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channel matrix, the proposed SRBP method can capture nearlythe same DoF and capacity of

MIMO systems while significantly reducing the computation complexity.
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