
A Block Minorization–Maximization Algorithm

for Heteroscedastic Regression

Hien D. Nguyen12, Luke R. Lloyd-Jones3, and Geoffrey J. McLachlan1⇤

May 30, 2016

Abstract

The computation of the maximum likelihood (ML) estimator for het-

eroscedastic regression models is considered. The traditional Newton al-

gorithms for the problem require matrix multiplications and inversions,

which are bottlenecks in modern Big Data contexts. A new Big Data-

appropriate minorization–maximization (MM) algorithm is considered for

the computation of the ML estimator. The MM algorithm is proved to

generate monotonically increasing sequences of likelihood values and to

be convergent to a stationary point of the log-likelihood function. A dis-

tributed and parallel implementation of the MM algorithm is presented

and the MM algorithm is shown to have differing time complexity to the

Newton algorithm. Simulation studies demonstrate that the MM algo-

rithm improves upon the computation time of the Newton algorithm in

some practical scenarios where the number of observations is large.
⇤1School of Mathematics and Physics, University of Queensland (Email:

h.nguyen7@uq.edu.au; g.mclachlan@uq.edu.au). 2Centre for Advanced Imaging, Uni-
versity of Queensland. 3Queensland Brain Institute, University of Queensland (Email:
l.lloydjones@uq.edu.au).

1

ar
X

iv
:1

60
3.

04
61

3v
2

 [
st

at
.C

O
]

 3
0

M
ay

 2
01

6

1 Introduction

One of the major challenges of the analysis of Big Data is the requirement to

make fundamental and standard statistical processes applicable in the presence

of the various computational challenges; see [1, 2] for details. One major theme

of Big Data research is to construct algorithms for standard statistical processes

that allow for parallelization and distributed computing.

Let Y1, ..., Yn be an independent and identically distributed sample such

that Yi is normal with mean µi (xi) and variance �2
i (xi) for i = 1, ..., n, where

xT
i = (xi1, ..., xid) 2 Rd is a vector of covariates. The superscript T indicates

matrix transposition. Suppose that we observe the realizations y1, ..., yn and

wish to estimate the parametric mean and variance functions µi (xi) = �T xi

and �2
i (xi) = �2, respectively, where �T = (�1, ...,�d) 2 Rd and �2 > 0.

The characterization describes the standard linear regression model, and the

parameter vector of the model, ✓T =
�
�,�2

�
, can be estimated via the maximum

likelihood (ML) estimator

✓̂ = arg max
(�,�2)

nY

i=1

�
�
yi;�

T xi,�
2
�
, (1)

where

�
�
y, µ,�2

�
=

�
2⇡�2

��1/2
exp

⇣
� [y � µ]

2
/
⇥
2�2

⇤⌘

is the normal density function in y, with mean µ and variance �2. Based on

the minorization–maximization framework (MM; see [3] for details), [4] con-

structed a simple algorithm for computing (1) that allows for parallelization

and distributed computing.

In this letter, we consider the case where the parametric mean and variance

functions are characterized by µi (xi) = �T xi and �2
i (xi) = exp

�
↵T xi

�
, where

↵T = (↵1, ...,↵d) 2 Rd. The characterization describes the multiplicative het-

2

eroscedasticity regression model of [5]; see also [6] and [7, Sec. 11.7]. Recent

applications of such model include modeling of loans in empirical finance [8],

econometric time-series analysis [9], and whole-genome prediction [10]. The pa-

rameter vector of the model, T =
�
↵T ,�T

�
, can be estimated via the ML

estimator

 ̂ = arg max
(↵,�)

nY

i=1

�
�
yi;�

T xi, exp
⇥
↵T xi

⇤�
. (2)

The ML estimator (2) can be computed via a Newton algorithm [7, Sec.

11.7], which is not appropriate for parallelization and distributed computing.

This is due to the need for the repeated inversion of d ⇥ d matrices, which

can both be large or numerically singular. In a recent review of Big Data al-

gorithms, [11] presented no specialized algorithms or software for regression

under heteroscedasticity. We extend upon the work of [4] to produce a Big

Data-appropriate MM algorithm for the computation of (2), using the recent

developments in geometric and signomial programming of [12]. Although it

is possible to parallelize the Newton algorithm via matrix parallelization tech-

niques such as those that are discussed in [13, 14, 15], our algorithm permits a

more intuitive and simpler implementation.

We use recent results from optimization in signals processing [16, 17] to

establish global convergence results for the derived algorithm. We also briefly

study the time complexity of the MM algorithm, and outline a framework for

a parallel and distributed implementation of the algorithm. Simulation studies

are conducted to demonstrate the computational performance of the algorithm

in both serial and parallel implementations. Comparisons between the MM

algorithm and the Newton algorithm are made.

3

2 The MM Algorithm

The ML estimator (2) can be rewritten as

 ̂ = arg max
(↵,�)

` (↵,�) , (3)

where

` (↵,�) =

nX

i=1

log �
�
yi;�

T xi, exp
⇥
↵T xi

⇤�
(4)

= �n log (2⇡)

2
�

nX

i=1

↵T xi

2
�

nX

i=1

�
yi � xT

i �
�2

2 exp
�
xT

i ↵
�

is the log-likelihood function. Define the blockwise minorizer of ` (↵,�) at the

point ̃T =
⇣
↵̃T , �̃T

⌘
, in the ↵ block, as a function Q↵

⇣
↵; ̃

⌘
for ↵ 2 Rd, with

the properties that (i) `
⇣
↵̃, �̃

⌘
= Q↵

⇣
↵̃; ̃

⌘
and (ii) `

⇣
↵, �̃

⌘
� Q↵

⇣
↵; ̃

⌘
;

the blockwise minorizer in the � block is defined as Q�

⇣
�; ̃

⌘
for � 2 Rd, with

(i) and (ii) replaced by `
⇣
↵̃, �̃

⌘
= Q�

⇣
�̃; ̃

⌘
and ` (↵̃,�) � Q�

⇣
�; ̃

⌘
for

� 2 Rd, respectively.

Let (0) be an initial value; a blockwise MM algorithm for computing (3) is

defined via the update scheme

 (r+1)T =

8
>><
>>:

⇣
arg max

↵
Q↵

�
↵; (r)

�
,�(r)

⌘
if r is odd,

✓
↵(r), arg max

�
Q�

�
�; (r)

�◆
if r is even,

where (r)T =
�
↵(r)T ,�(r)T

�
is the rth iterate of the algorithm. The following

propositions provides ↵- and �-blockwise minorizers for `.

Proposition 1. Given (r), the log-likelihood (4) can be ↵-blockwise minorized

4

by the minorizer

Q↵

⇣
↵; (r)

⌘

= �n log (2⇡)

2
� 1

2

nX

i=1

dX

j=1

↵jxij

� 1

2d

nX

i=1

dX

j=1

�
yi � xT

i �
(r)

�2

exp
⇣
dxij

⇣
↵j � ↵

(r)
j

⌘
+ xT

i ↵
(r)

⌘ . (5)

Proposition 2. Given (r), the log-likelihood (4) can be �-blockwise minorized

by the minorizer

Q�

⇣
�; (r)

⌘

= �n log (2⇡)

2
� 1

2

nX

i=1

dX

j=1

↵
(r)
j xij

� 1

2d

nX

i=1

dX

j=1

⇣
yi � dxij

⇣
�i � �

(r)
i

⌘
� xT

i �
(r)

⌘2

exp
�
xT

i ↵
(r)

� . (6)

Propositions 1 and 2 are adapted from [12, Eqn. 7] and [4, Eqn. 4.5]. We

observe that (6) is linearly separable in �j for j = 1, ..., d, and that each �j

occurs within a concave quadratic expression. Thus, (6) is concave in � and we

solve the first-order condition equation rQ�

�
�; (r)

�
= 0 to obtain

�⇤ = arg max
�

Q�

⇣
�; (r)

⌘
,

where r is the gradient operator, 0 is a vector of zeros, �⇤T = (�⇤
1 , ...,�⇤

d), and

�⇤
j = �

(r)
j +

Pn
i=1 xij

�
yi � xT

i �
(r)

�
exp

�
�xT

i ↵
(r)

�

d
Pn

i=1 x2
ij exp

�
�xT

i ↵
(r)

� .

Next, we observe that (5) is linearly separable in ↵j for j = 1, ..., d. Fur-

ther, each ↵j occurs within a linear composition inside of a negative exponential

5

function, which implies that (5) is concave in ↵ (cf. [18, Exam. 3.13]). Unfor-

tunately there is no closed-form solution for the first-order condition equation

rQ↵

�
↵; (r)

�
= 0. However, we can compute

↵⇤ = arg max
↵

Q↵

⇣
↵; (r)

⌘

by considering the partial derivative equations (@/@↵j) Q↵

�
↵; (r)

�
= 0 for

each j = 1, ..., d instead, where↵⇤T = (↵⇤
1, ...,↵

⇤
d). The solution to (@/@↵j) Q↵

�
↵; (r)

�
=

0 can be obtained via a Newton algorithm using the first and second partial

derivatives

@Q↵

@↵j
= �1

2

nX

i=1

xij

+
1

2

nX

i=1

xij

�
yi � xT

i �
(r)

�2

exp
⇣
dxij

⇣
↵j � ↵

(r)
j

⌘
+ xT

i ↵
(r)

⌘

and
@2Q↵

@↵2
j

= �1

2

nX

i=1

x2
ij

�
yi � xT

i �
(r)

�2

exp
⇣
dxij

⇣
↵j � ↵

(r)
j

⌘
+ xT

i ↵
(r)

⌘ .

Alternatively, a bisection algorithm can be used to obtain the root of each partial

derivative equation; see for example [19, Sec. 9.1.1].

Using Propositions 1 and 2, the MM algorithm for computing (3) can be

defined via the update scheme

 (r+1)T =

8
>><
>>:

�
↵⇤,�(r)

�
if r is odd,

�
↵(r),�⇤� if r is even,

(7)

where ↵⇤ and �⇤ are obtained via the descriptions above.

6

2.1 Convergence Analysis

Starting from some initial value (0), update scheme (7) is repeated until some

numerical convergence criterion is reached; for example, the algorithm can be

terminated once `
�
↵(r+1),�(r+1)

�
� `

�
↵(r),�(r)

�
< ✏ for some small ✏ > 0.

Upon termination, the final iterate of the algorithm is declared the ML estimator

 ̂. See [20, Sec. 11.5] regarding the relative merits of various convergence

criteria.

Let (1) = limr!1 (r) (or alternatively, ̂ ! (1) as ✏ < 0) be a limit

point of the blockwise MM algorithm. We have, from Propositions 1 and 2,

that (5) and (6) are ↵- and �-blockwise minorizers of (4), respectively. Further,

both (5) and (6) are strictly concave and smooth in the respective parameter

components. Thus, the MM algorithm satisfies the assumptions of [16, Thm.

2], which yields the following result.

Proposition 3. Let (r) be a sequence of blockwise MM algorithm iterates

(as defined by (7)) with limit (1), for some initial value (0). The following

statements are true.

(a) The sequence of log-likelihood values `
�
↵(r),�(r)

�
is monotonically increas-

ing in r.

(b) The limit point (1) is a stationary point of the log-likelihood func-

tion ` (↵,�).

A further result can be obtained by noting that (4) is biconcave in ↵ and �.

That is, for fixed ↵, (4) is concave since it consists of a concave quadratic

function in �. Similarly, for fixed �, (4) is the sum of a linear function and the

negative exponential composition of a linear function, which implies concavity

in ↵ (cf. [18, Exam. 3.13]). Since (4) is also differentiable in , biconcavity

implies the following result via [21, Thm. 4.2].

7

Proposition 4. Every limit point (1) of the blockwise MM algorithm [as

defined by (7)] is a coordinate-wise maximizer of ` (↵,�) in both ↵- and �-blocks

(with the other block fixed).

The monotonicity result from Proposition 3 guarantees that the blockwise

MM algorithm is stable and will not take a step that decreases the objective log-

likelihood value. We note that although Proposition 4 guarantees that the limit

point is a coordinate-wise maximum of the log-likelihood, there is no theoretical

guarantee that the limit point is a maximum and not a saddlepoint of (4).

3 A Parallel and Distributed Implementation

Suppose that we have a master processing element (PE) M and up to d slave

PEs S1–Sd. Store y1, ..., yn in each slave PE, and partition store the vector

x1j , ..., xnj on Sj for j = 1, ..., d. Store an instance of the parameter vector (0)

on the master PE and each of the slave PEs.

To initialize the algorithm, have each Sj send M the quantities xij↵
(0)
j and

xij�
(0)
j for each i. The master PE M then computes xT

i ↵
(0) and xT

i �
(0) for

each i, and sends the quantities to each of the slaves Sj .

At each odd iteration r + 1, M sends ↵(r)
j , xT

i ↵
(r), and xT

i �
(r) for each i, to

each of the respective slave PEs Sj . Each Sj then computes ↵⇤
j and sends ↵⇤

j

and xij↵
⇤
j for each i to M. The master PE M then combines the quantities ↵⇤

j

and xij↵
⇤
j to produce ↵(r+1) and xT

i ↵
(r+1) for each i, respectively.

At each even iteration r + 1, M sends �
(r)
j , xT

i ↵
(r), and xT

i �
(r) for each i,

to each of the respective slave PEs Sj . Each Sj then computes �⇤
j and sends

�⇤
j and xij�

⇤
j for each i to M. M then combines the quantities �⇤

j and xij�
⇤
j to

produce �(r+1) and xT
i �

(r+1) for each i, respectively.

After initialization, the implementation requires the storage of only 2d + 2n

real-valued quantities on M, and the storage of only 2 + 4n quantities on Sj for

8

each j, at any iteration r > 0. Furthermore, at each iteration 1 + 2n quantities

are sent from M to each of the slaves Sj and each slave sends 1 + n quantities

back to M.

The algorithm that is described requires no matrix computations and allows

for the data to be distributed between up to d slave PEs. The role of each

of the d PEs can be partitioned over a smaller number of PEs if less than d

PEs are available. In [12], it is noted that such distributed algorithm are best

implemented in parallel via graphics processing units; see also [22].

4 Time Complexity

Let NNewton
n,✏ be the average number of iterations required for the Newton algo-

rithm for the computation of (2) [7, Sec. 11.7] to converge for n observations and

some criterion threshold ✏. Starting from some initial value (0), the (r + 1) th

iteration of the Newton algorithm, (r+1), requires the computation of the two

steps

�(r+1) =

"
nX

i=1

xix
T
i

exp
�
xT

i ↵
(r)

�
#�1 nX

i=1

xiyi

exp
�
xT

i ↵
(r)

�

and

↵(r+1) = ↵(r) �
"

nX

i=1

xix
T
i

#�1 nX

i=1

xi

+

"
nX

i=1

xix
T
i

#�1 Pn
i=1 xi

�
yi � xT

i �
(r+1)

�2

exp
�
xT

i ↵
(r)

� .

The Newton algorithm is derived by following the Fisher scoring formulation

(cf. [20, Sec. 10.6]). We observe that both steps are dominated by the sums

of n outer produces of d dimensional vectors, and d ⇥ d matrix inversions. The

sum of products has order O
�
nd2

�
and the inversion has order O

�
d3
�
; see [19,

Secs. 2.1–2.3]. The overall order is thus O
⇣
NNewton

n,✏

⇥
nd2 + d3

⇤⌘
. Finally, like

9

the blockwise MM algorithm, there is no theoretical guarantee that the Newton

algorithm converges to a maximum of (4).

Let NMM
n,✏ be the average number of cycles (an odd and an even step) re-

quired for the blockwise MM algorithm to converge, for n observations and some

critical threshold ✏. From (7), we observe that when r is even, the computation

of �⇤ requires the computation of xT
i �

(r) and xT
i ↵

(r) once, for each i = 1, ..., n,

which requires O (nd) operations. Given xT
i �

(r) and xT
i ↵

(r), the computation

of each �⇤
j requires O (n) operations, for each j = 1, ..., d, thus the overall com-

plexity is O (nd) when r is even. In each odd step, either a Newton algorithm or

bisection algorithm is required to evaluate the roots of each of the d equations

(@/@↵j) Q↵

�
↵; (r)

�
= 0. To solve these equations, xT

i �
(r) and xT

i ↵
(r) are

required to be computed once, for each i. Let NRoot
n,✏ be the number of iter-

ations required by the root-finding algorithm. Given xT
i �

(r) and xT
i ↵

(r), the

dominant term in each root-finding algorithm iteration is dominated by n times

a constant number of operations, for each of the d components of ↵⇤. Therefore,

each odd step has complexity order O
⇣
nd + NRoot

n,✏ nd
⌘
. The overall order is

thus O
⇣
NMM

n,✏

h
nd + NRoot

n,✏ nd
i⌘

.

5 Simulation Studies

We now report on a set of simulation studies. In our simulation studies, we gen-

erate a sample of n = 100, 1000, 10000 observations from the model �
�
y;�T x, exp

⇥
↵T x

⇤�
,

where d 2 {5, 10, 20, 50} in all cases of n. Here 10↵j , �j , and xij are each ran-

domly generated from a standard normal distribution. Using each sample, we

compute ̂ via the MM algorithm and the Newton algorithm of [7, Sec. 11.7].

The process is repeated 100 time; the computation time and convergence status

of the algorithm is recorded from each repetition. The average and standard

deviation of computation times, are reported in Table I. Also reported in Table I

10

Table 1: Average computation times (over 100 replications) are presented in in
boldface. Standard deviations are presented in italics. ⇤No replication of the
Newton algorithm converged.

d =

5 10 20 50

n = 100 Newton 0.0007 0.0025 0.0804 —⇤

0.0005 0.0009 0.3682 —⇤

MM (Serial) 0.0028 0.0227 0.6155 4.7669

0.0009 0.0068 0.3528 1.4667

MM (Parallel) 0.0003 0.0021 0.0546 0.4246

0.0002 0.0018 0.0487 0.0003

1000 Newton 0.0280 0.0550 0.1222 0.4846

0.0022 0.0061 0.0090 0.0326

MM (Serial) 0.0153 0.0908 0.5052 7.0412

0.0023 0.0099 0.0447 0.4897

MM (Parallel) 0.0014 0.0084 0.0468 0.6527

0.0011 0.0064 0.0348 0.4812

10000 Newton 3.9243 5.5251 10.7438 30.0419

0.3181 0.1901 1.0519 3.3048

MM (Serial) 0.1665 0.8654 4.7978 64.5258

0.0172 0.0574 0.2067 4.9660

MM (Parallel) 0.0154 0.0806 0.4460 5.9394

0.0116 0.0607 0.3356 4.3808

is the theoretical computation time of the MM algorithm under parallelization,

which is the computation time divided by d, where d is the maximum possible

number of slave PEs that can be used. The theoretical computation time under

parallelization assumes negligible communication times between PEs.

The algorithms were applied via implementations in the R programming

environment ([23]; version 3.2.2) on an Intel Core i7 CPU running at 2.40 GHz

with 16 GB internal RAM, and the timing was conducted using the proc.time

function. Furthermore, all mathematical functions are programmed in C and

integrated via Rcpp and Rcpparmadillo [24]. The MM algorithm is thresholded

using the convergence criterion described in Section II.A and the constant ✏ =

10�3. An absolute convergence criterion is used for all Newton algorithms with

a threshold ✏ = 10�3; see [20, Sec. 11.5].

11

5.1 Results

There are a number of notable features from Table I. Firstly, we note that the

Newton algorithm could not be implemented on the relatively small data case

of d = 50 and n = 100. Upon inspection, the Newton algorithm suffers from

problems of rank deficiencies in matrix inversions, causing the log-likelihood

values to diverge.

Secondly, for all d in the n = 100 case (where comparable), the parallel

MM algorithm is faster than the Newton algorithm, which is faster than the

serial MM algorithm. This trend changes in the n = 1000 case where the serial

MM algorithm is faster than the Newton algorithm when d = 5. In the n =

10000 case, we observe that the serial MM algorithm is faster than the Newton

algorithm when d = 5, 10, 20. We conclude that the serial implementation of

the MM algorithm is faster than the Newton algorithm when d is small and n is

large. Furthermore, the MM algorithm is more stable and can be applied where

the Newton algorithm may fail.

In Figure 1, we plot the average log-ratios of computation times between

the serial MM and Newton algorithms, and the theoretical parallel MM and

Newton algorithms. We observe that the serial implementation of the MM

algorithm can have computation time as fast as < 1/23 times that of the Newton

algorithm (d = 5, n = 10000) or as slow as > 15 times that of the Newton

algorithm (d = 50, n = 1000), on average. The parallel implementation can

have computation time as fast as < 1/254 times that of the Newton algorithm

(d = 5, n = 10000) or as slow as > 1.4 times that of the Newton algorithm

(d = 50, n = 1000) on average.

We further observe that the computation time ratios of the MM algorithm

to the Newton Algorithm, in both serial and parallel, are decreasing in n and

increasing in d. Thus, we suggest that the MM algorithm is preferable to the

12

10 20 30 40 50

−8
−6

−4
−2

0
2

4

Log−Ratios of Computation Times

d

Lo
g−

R
at

io
 (B

as
e

2)

Figure 1: Average log-ratios (base 2) are plotted. Ratios between the serial MM
and Newton algorithms are presented as solid lines. Ratios between the parallel
MM and Newton algorithms are presented as dashed lines. Circles, triangles,
and pluses indicate n = 100, 1000, 10000, respectively.

Newton algorithm in cases where n is large and d is relatively small.

6 Conclusions

In this letter, we introduce an MM algorithm for the computation of (2) that

requires no matrix operations. The algorithm is shown to be globally convergent

and to generate monotonic sequences of log-likelihood values. Furthermore,

a distributed and parallel implementation of the MM algorithm is described

and it is shown that the MM algorithm has a different order of computational

complexity to the Newton algorithm.

Via simulation studies, the serial implementation is demonstrated to have

computation time as fast as < 1/23 and the parallel implementation is hypoth-

esized to have computation time < 1/254 times that of the Newton algorithm,

when n is large and d is relatively small. We thus recommend the use of the

MM algorithm in such scenarios.

13

References

[1] J. Fan, F. Han, and H. Liu, “Challenges of big data analysis,” National

Science Review, vol. 1, pp. 293–314, 2014.

[2] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”

IEEE Transactions on Knowledge and Data Engineering, vol. 26, pp. 97–

107, 2014.

[3] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The American

Statistician, vol. 58, pp. 30–37, 2004.

[4] M. P. Becker, I. Yang, and K. Lange, “EM algorithms without missing

data,” Statistical Methods in Medical Research, vol. 6, pp. 38–54, 1997.

[5] G. E. P. Box and R. D. Meyer, “Dispersion effects from fractional designs,”

Technometrics, vol. 28, pp. 19–27, 1986.

[6] M. Davidian and R. J. Carroll, “Variance function estimation,” Journal of

the American Statistical Association, vol. 82, pp. 1079–1091, 1987.

[7] W. H. Greene, Econometric Analysis. New Jersey: Prentice Hall, 2003.

[8] G. Cerqueiro, H. Desgryse, and S. Ongena, Handbook of Research Methods

and Applications in Empirical Finance, ch. Using heteroskedastic models to

analyze the use of rulse versus discretion in lending decisions, pp. 216–237.

Cheltenham: Edward Elgar, 2013.

[9] M. Strosslein, J. J. Kanet, M. Gorman, and S. Minner, “Time-phase safety

stocks planning and its financial impact: empirical evidence based on Euro-

pean econometrics data,” International Journal of Production Economics,

vol. 149, pp. 47–55, 2014.

14

[10] Z. Ou, R. J. Tempelman, J. P. Steibel, C. W. Ernst, R. O. Bates, and N. M.

Bello, “Genomic prediction accounting for residual heteroskedasticity,” Ge-

nomic Selection, vol. 6, pp. 1–13, 2016.

[11] C. Wang, M.-H. Chen, E. Schifano, J. Wu, and J. Yan, “Statistical methods

and computing for big data,” ArXiv, vol. 1502.07989v2, 2015.

[12] K. Lange and H. Zhou, “MM algorithms for geometric and signomial pro-

gramming,” Mathematical Programming Series A, vol. 143, pp. 339–356,

2014.

[13] L. Csanky, “Fast parallel matrix inversion algorithms,” SIAM Journal of

Computing, vol. 5, pp. 618–623, 1976.

[14] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and graph algorithms,”

SIAM Journal of Computing, vol. 10, pp. 657–675, 1981.

[15] E. S. Quintana, G. Quintana, X. Sun, and R. Van de Geijn, “A note on

parallel matrix inversion,” SIAM Journal of Scientific Computing, vol. 22,

pp. 1762–1771, 2001.

[16] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis

of block successive minimization methods for nonsmooth optimization,”

SIAM Journal of Optimization, vol. 23, pp. 1126–1153, 2013.

[17] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified algorithmic

framework for block-structured optimization involving big data: with ap-

plications in machine learning and signal process,” IEEE Signal Processing

Magazine, vol. 33, pp. 57–77, 2016.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cam-

bridge University Press, 2004.

15

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipes: The Art of Scientific Computing. Cambridge: Cambridge

University Press, 2007.

[20] K. Lange, Optimization. New York: Springer, 2013.

[21] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization

with biconvex functions: a survey and extensions,” Mathematical Methods

of Operations Research, vol. 66, pp. 373–407, 2007.

[22] H. Zhou, K. Lange, and M. A. Suchard, “Graphical process units and high-

dimensional optimization,” Statistical Science, vol. 25, pp. 311–324, 2010.

[23] R Core Team, R: a language and environment for statistical computing. R

Foundation for Statistical Computing, 2013.

[24] D. Eddelbuettel, Seamless R and C++ Integration with Rcpp. New York:

Springer, 2013.

16

