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This paper addresses fundamental scaling issues that hinder phase retrieval (PR) in high dimen-
sions. We show that, if the measurement matrix can be put into a generalized block-diagonal form,
a large PR problem can be solved on separate blocks, at the cost of a few extra global measurements
to merge the partial results. We illustrate this principle using two distinct PR methods, and discuss
different design trade-offs. Experimental results indicate that this block-based PR framework can
reduce computational cost and memory requirements by several orders of magnitude.

INTRODUCTION

Phase retrieval (PR) is the problem of recovering a
complex-valued signal x ∈ CN from the squared magni-
tude y ∈ RM+ of its (possibly noisy) projections

y = |Hx|2 (1)

where H ∈ CM×N is a known matrix called projection (or
measurement) matrix. This problem arises in many digi-
tal signal processing situations, such as audio source sep-
aration, but also in physical sensing / imaging applica-
tions where designing an intensity-only detector (such as
most optical sensors) is easier, faster and/or cheaper than
amplitude-and-phase detectors [1]. Some of these appli-
cations include X-ray crystallography [2], X-ray diffrac-
tion imaging [3], optical imagers [4, 5] and astronomical
imaging [6]. Most PR methods have been designed for
Fourier transform or i.i.d. random complex measurement
matrices, but in some applications a generic solution to
Eqn. (1) without specific restrictions on H and/or x
may be required. Well-known PR methods include but
are not limited to convex relaxation algorithms such as
phaseLift [7] and phaseCut [8], iterative non-convex opti-
mization algorithms such as Wirtinger flow (WF) [9] and
its truncated version (TWF) [10], iterative projections
algorithms such as Gerchberg and Saxton [11], Fienup
[12] and variants [13, 14], and spectral recovery method
[15].

This study investigates scalability issues for PR algo-
rithms, as a function of the size N of the unknown signal
x. To reconstruct the complex signal x (up to a global
phase) using its intensity-only projections, the size M of
the measurement vector should be at least 2N - it has
been established recently that, in a generic case, M ≥ 4N
measurements are required [16] to recover a unique x.
Therefore, the amount of data that a PR algorithm has to
handle, for the H matrix, is at least of the order O(N2).
Besides these memory requirements, the computational
complexity of generic PR algorithms scales at least with
the same order O(N2), and possibly worse. This can be

a bottleneck for many of the above applications, such as
real-time imaging.

There are fundamentally two ways to alleviate these
scaling issues : either by making a sparsity assumption
on the unknown vector x, or by imposing some extra
constraints on the measurement matrix H. In the first
case, a sparsity assumption on x allows a reconstruction
with less than 4N measurements, and consequently can
speed-up the reconstruction. This class of algorithms are
mainly referred to as compressive (or compressed) phase
retrieval methods in the literature, and are mostly based
on a Bayesian framework. Examples of algorithms in this
category include Moravec et al. l1-norm algorithm [17],
Mukherjee and Seelamantula PR method [18], GESPAR
algorithm by Shechtman et al. [19] and Schniter and
Rangan prGAMP algorithm [20]. In the second case,
some specific classes of measurements matrices allow PR
with reduced complexity, for instance Iwen et al. method
based on local correlation measurements [21] and Zhang
and Kner phase retrieval using special binary structured
matrices [22]. However, in most of the physical scenarios
presented above, the entries of the measurement matrix
cannot be designed at will, as they correspond to the
physical sensing process.

In this paper, we propose a conceptually simple but re-
markably effective block-based PR framework, that can
be used in combination with any PR algorithm, and that
not only scales up easily to high dimensions but does
not impose any predefined constraint, such as sparsity,
on the input signal. The constraint on the measurement
matrix is that it can be put in a generalized block diago-
nal form, but each block may have arbitrary entries. This
block-based phase retrieval method starts by splitting the
M × N input problem into K, mi × ni sub-problems,
where

∑K−1
i=0 ni = N , mi = dαnie and α = M/N . The

K sub-problems are then solved in parallel using any
PR method. Finally, all the partial results are merged
with a few extra global measurements, by applying a low-
dimension global phase tuning step.
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Since, as discussed above, the memory requirements
and computational complexity of PR algorithms scale at
least as O(N2), breaking down the PR problem into K
sub-problems of size N/K results in a reduction of mem-
ory/complexity requirements by at least a factor K (ne-
glecting here the cost of the low-dimensional final phase
tuning step), even in single-thread mode. Furthermore,
the K sub-problems can here be solved in an ”embarrass-
ingly parallel” way, opening the way for further gains if
multiple computing threads are available. It has to be
emphasized that the requirement for the measurement
matrix to be put into a block diagonal form is often a
mild constraint - much milder than, for instance, impos-
ing constraints on the non-zero entries of the measure-
ment matrix -. In fact, this approach is compatible with
many of the physicals systems above ; designing the mea-
surement matrix as block diagonal can be interpreted as
the ability to probe a large object by parts, which can
be controlled by the source of illumination. Our origi-
nal motivation for this study arises from such a physical
imaging system [23]. More generally, there are a number
of optical imaging setups that may benefit from this ap-
proach, such as the LED array microscope [24], multiple
coherent diffractive imagers (CDI) [25], and single-shot
phase imaging with randomized light (SPIRaL) [26].

In summary, the main contributions of this paper are
:

• the presentation of a new framework for block-
based PR, working with any PR algorithm, and
making no assumption on the input signal.

• experimental results with two distinct PR algo-
rithms, showing the computational gains for dif-
ferent signal sizes and choice of parameters.

BLOCK-BASED PR ALGORITHM

For ease of notation, let us consider a noiseless square
root version of (1) as

y = |Hx| (2)

All the equations are convertible to the general case in
a straightforward way. Assume H follows a block struc-
ture according to the following definition which is simply
an extension of block diagonal matrices to rectangular
blocks.

Definition 1. A M × N block matrix is called K-
rectangular block diagonal (K-RBD) matrix iff it can
be partitioned into non-overlapping m × n blocks with
non-zero entries only in blocks containing (im, in); i =
0, 1, ...,K − 1 entries.

Here, for the sake of simplicity, we assume equal-length
blocks with m = M

K and n = N
K as positive integers.

Therefore, a K-RBD matrix H has a structure of the
form

H =


H0 0 ... 0
0 H1 ... 0

0 0
. . . 0

0 0 ... HK−1


M×N

. (3)

Note that there is no restriction on the inner structure of
the Hi submatrices. Correspondingly, we split the input
vector x into K equal subvectors of length n

x = [x0,x1, ...,xK−1]
t

(4)

Using the above definitions, our block-based PR starts
by solving K sub-problems of

yi = |Hixi|; i = 0 . . .K − 1, (5)

independently. This can be done by any generic PR
method. Let us call the first step as the blocking step
and the resulting estimations as x̂i. PR methods can
only recover the xi variables up to a global phase, which
means that even under a perfect recovery assumption we
have

x̂i = xie
jφi ; i = 0 . . .K − 1 (6)

where φi phase shifts are not necessarily identical. There-
fore, to preserve a unique global phase all over the input
signal space, the block-based PR goes through a phase
tuning step. In phase tuning, we employ an extra set of
L = βK measurements, ỹ = |Ax|, where A is a L × N
projection matrix, and β is the measurement oversam-
pling factor, typically larger or equal to 4. Note that,
as opposed to the first stage, A now has to get as many
non-zero entries as possible, providing global information
on the signal x. By substituting x from (6) and splitting
measurement matrix column-wise into K equal L × n
submatrices, A = [A0,A1, . . . ,AK−1], we have

ỹ = | [A0x̂0,A1x̂1, . . . ,AK−1x̂K−1]


d0
d1
...

dK−1

 | (7)

where di = e−jφi . This is a quick low dimension PR
problem which can be solved by the same algorithm
as first step, or a different one, possibly tking into ac-
count the fact that the unknown entries di are of mod-
ulus one. Eventually, from the phase tuning output
d̂ = (d̂0, d̂1, . . . , d̂K−1), the final estimate of x is

x̂ = [d0x̂0, d1x̂1, . . . , dK−1x̂K−1]t (8)

The proposed block-based PR algorithm is summarized
in Algorithm 1.
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In the next section, we test this framework using two
different PR algorithms : a non-convex minimization ap-
proach suited for gaussian entries in the measurement
matrix, and a Bayesian PR algorithm designed for bi-
nary sensing matrices. However, in general the blocking
step may be accomplished by any PR method. Since the
K sub-problems in this stage are inherently independent
(also called ”embarrassingly parallel”), in a fully par-
allel computing configuration, the block-based PR the-
oretically yields at least a K2 factor in computational
complexity, and in single-thread sequential computing
this factor is equal to K. One should notice that this
speedup comes at the cost of a phase adjustment step.
In a nutshell, assuming the computational complexity of
the base PR algorithm as O(f(N)), the parallel block-

based PR converts this order into O( f(N)
K2 + f(K)). This

means that, for state of the art PR algorithms with
f(N) ∼ N2, and by assuming significantly large N ,

O( f(N)
K2 + f(K)) < f(N) : ∀N > K. In addition to

the computational complexity of the underlying PR al-
gorithm, the optimal value of K also depends on the
number of available processing units in the blocking step.
We discuss this more in the next section.

EXPERIMENTAL RESULTS

Block-based PR with truncated Wirtinger flow

To investigate the performance of the proposed block-
based phase retrieval approach, we first employ a recent
algorithm based on truncated Wirtinger flow (TWF) [10]
to solve the PR sub-problems in the blocking step. The
TWF method, currently considered amongst the state-
of-the-art for generic PR, has been reported to follow
O(MN) computational complexity. Since the number
of required measurements, M , grows linearly with the
number of input samples, N , this order actually resem-
bles O(N2). Figure 1 represents the effect of employing
the block-based approach to improved TWF algorithm
using only K = 4 blocks. Here, the input signal, x, and
the partitions of K-RBD projection matrix, H0, . . . ,H3,
have i.i.d. zero-mean complex random Gaussian entries.

FIG. 1. Comparison of estimation error (in red, left scale)
and execution time (in blue, right scale) between TWF (plain
lines) and Block-based TWF with K = 4 blocks (BTWF -
dashed lines), as a function of the input size N .

Gaussian i.i.d. noise is added to the squared magni-
tude measurements, with SNR=30 dB. In this experi-
ment, α = 6 and β = 20. The blocking step is executed
in parallel and a simple PR with alternating projections
[27] is employed in the final K = 4 dimensional phase
tuning step. Each value is the average result over 100
random test inputs, using a 4 cores 3.2 GHz processor
with 32 GB of RAM. The performance is measured using
the normalized mean square error (NMSE) between orig-
inal and estimated signals after compensating the global
phase shift. The results show up to 20 times speedup
with the block-based approach. It has to be noted that
this comes at the price of a small loss in precision: lo-
cal measurements carry information on a smaller number
of input coefficients, and are therefore more sensitive to
numerical / experimental noise.

As mentioned in the previous section, the optimum
number of blocks, K, depends on the computational com-
plexity of the employed PR algorithms in the blocking
and phase tuning steps, in addition to the achievable de-
gree of parallelism. Clearly, by increasing K and hence
decreasing the block size, we have a faster algorithm in
the first step - at the cost of a more complex phase tuning
step with K variables.

Beside execution time, another important factor is the
estimation error. By increasing the number of blocks
in the phase tuning step, the estimation error increases.
Suppose we tolerate a 10−3 error in terms of NMSE
for both the original TWF and its block-based variant.
Then, Table I shows the optimal K and the best speedup
factor one can achieve using the block-based approach for
various input size N . Empirically, the optimal K roughy
scales as N0.4, which is close to the theoretical prediction
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TABLE I. Speedup factor in computation time provided by
the block-based PR method, for various input variable size,
N . For each N , the best number K of blocks is chosen based
on computation time, keeping the relative NMSE below 10−3.

N 28 29 210 211 212 213 214

K 4 4 8 16 32 64 64

Speed-up 1.2 27 103 343 558 3398 9295

K∗ = argminKc1
N2

K2 + c2K
2 = c3N

1
2 , with c1, c2 and c3

as constants.

Block-based Bayesian PR

As a second experiment, we examine the proposed
block-based approach on a PR algorithm using binary
{0, 1} measurement matrices. In some physical situa-
tions, employing binary projections instead of random
complex values makes the measurement setup simpler.
However, the corresponding ill-conditioned measurement
matrices make PR more challenging, as for instance
the TWF typically fails. In [23], the authors suggest
a Bayesian-based PR algorithm called prSAMP - for
phase retrieval swept approximate message passing. The
method which originates from SwAMP [28] and prGAMP
[20] algorithms, solves y = |Hx + w|2 problem where
H ∈ {0, 1}M×N is the known binary measurement ma-
trix, x ∈ CN is the unknown complex signal and w ∈ CN
is the (unknown) noise, assumed i.i.d. complex Gaussian.
Even though the algorithm performs well for a real op-
tical imager and strong noise conditions [23], its O(N3)
computational complexity makes it impractical at high
dimensions.

Figure 2 compares the execution time of the original
prSAMP algorithm and its blocked version at different
input sizes N = 64 to 65536 = 214, for a compara-
ble NMSE. The optimal number of blocks is set using
the same approach as in the previous section. As ex-
pected, the block-based variant brings very significant
speedups to this O(N3) algorithm. In this experiment,
for instance, the block-based prSAMP approach is more
than 7000 times faster than the original algorithm at
N = 8192. Beside the computational complexity, the
memory requirement grows as O(N2) to store the mea-
surement matrix, which in practice is also an important
bottleneck. For instance, at N = 214 more than 20 GB of
RAM is required to store this matrix in double precision.
Due to other temporary variables for AMP messages, the
original prSAMP stopped executing at N = 214 on a
computer with 32 GB RAM. In reverse, the block-based
version could still be run at N = 216 and higher.

FIG. 2. Computing time (on a log scale) with the prSAMP
algorithm, comparing the standard (red) and the block-based
approach (blue) using the optimal number of blocks.

CONCLUSION

We have introduced a framework for block-based PR,
allowing substantial speed and memory savings for large
signals. This comes of course at a price : first, it can only
work if one is able to design the measurement matrix in
a general block-diagonal manner - this is the case in any
physical systems where one can probe the whole object
by parts. Then, for a given number of measurements
the approximation error is slightly increased. Finally, a
small number of extra measurements is needed, but this
number scales as the number of blocks, K, and does not
depend on the signal dimension, N .

Although, depending on the application, these may be
seen as strong limitations, one should be reminded that,
due to the fundamentally harsh O(N2) scaling laws of
generic PR, using these block-based PR might not just
be a matter of mere computing time : in practice, it may
be the only way to achieve PR on very large signals.
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borová, arXiv preprint arXiv:1406.4311 (2014).


	Fast phase retrieval for high dimensions: A block-based approach
	Abstract
	 Introduction
	 Block-based PR algorithm
	 Experimental Results
	 Block-based PR with truncated Wirtinger flow
	 Block-based Bayesian PR

	 Conclusion
	 Acknowledgment
	 References


