
1

Face Alignment Using K-cluster Regression Forests
With Weighted Splitting

Marek Kowalski and Jacek Naruniec

Abstract—In this work we present a face alignment pipeline
based on two novel methods: weighted splitting for K-cluster
Regression Forests and 3D Affine Pose Regression for face shape
initialization. Our face alignment method is based on the Local
Binary Feature framework, where instead of standard regression
forests and pixel difference features used in the original method,
we use our K-cluster Regression Forests with Weighted Splitting
(KRFWS) and Pyramid HOG features. We also use KRFWS
to perform Affine Pose Regression (APR) and 3D-Affine Pose
Regression (3D-APR), which intend to improve the face shape
initialization. APR applies a rigid 2D transform to the initial face
shape that compensates for inaccuracy in the initial face location,
size and in-plane rotation. 3D-APR estimates the parameters of
a 3D transform that additionally compensates for out-of-plane
rotation. The resulting pipeline, consisting of APR and 3D-APR
followed by face alignment, shows an improvement of 20% over
standard LBF on the challenging IBUG dataset, and state-of-the-
art accuracy on the entire 300-W dataset.

Index Terms—face alignment, pose estimation, random forest,
computer vision

I. INTRODUCTION

FACE alignment, also known as facial landmark localiza-
tion, is an essential step in many computer vision methods

such as face verification [1] and facial motion capture [2]. The
majority of face alignment methods proposed in the last several
years are based on Cascaded Shape Regression (CSR), which
was first proposed in [3].

CSR is usually initialized by placing the average face shape
in the location provided by the face detector. Starting from
this initialization, the face shape is refined in a fixed number
of iterations. In each iteration features are extracted from the
regions around each landmark of the face shape. The extracted
features are then used in a regression method to estimate a
correction to the current positions of the landmarks.

In [4] Ren et al. proposed Local Binary Features (LBF)
where binary descriptors are created based on regression
forests [5] built on simple pixel difference features. The
proposed features were incorporated into the CSR framework,
which lead to a very fast method, running at the speed of 3000
frames per second on standard desktop hardware.

Our face alignment method is based on LBF, but instead of
standard regression forests with pixel features, we use novel K-
cluster Regression Forests with Weighted Splitting (KRFWS)
and Pyramid HOG (PHOG) features. PHOG features consist
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of HOG [6] taken over the same area with progressively larger
cell sizes, more details can be found in [7].

K-cluster Regressions Forests (KRF) were originally pro-
posed in [7] for head pose estimation and car orientation
estimation. In KRF, at each split, the target space is divided
into K clusters, which locally minimize the loss function of the
tree. Each K-fold split is performed using a separate k-class
linear SVM classifier. The advantage of this type of splitting
is that it allows to split on multidimensional features such as
HOG, whereas standard regression forest splitting uses only
scalar, one dimensional features.

In this work we propose K-cluster Regression Forests with
Weighted Splitting (KRFWS) by introducing weights on indi-
vidual samples for classification at each split. We test KRFWS
on the Pointing’04 dataset [8], for which KRF was originally
designed, and show improved accuracy.

Recently Li et al. proposed Affine-Transformation Parame-
ter Regression for Face Alignment (APR) [9], which estimates
a 2D affine transform that refines the current face shape
estimate. As opposed to the standard regression step in CSR,
which refines the positions of the individual landmarks, APR
applies a rigid transform. In [9] it was shown that embedding
such alignment before and between standard cascaded shape
regression iterations improves face alignment accuracy.

In this work we propose two major extensions to the APR
method. First, we show that using KRFWS instead of linear
regression improves the accuracy of the estimated transform.
Second, we propose 3D-APR, where, we estimate a 3D
transform of the current face shape estimate. The use of a 3D
transform allows for the compensation of out-of-plane rotation
of the head, which is not possible with standard APR.

II. METHODS

A. K-cluster Regression Forests with Weighted Splitting

In this chapter we describe K-cluster Regression Forests
with Weighted Splitting (KRFWS) which are an extension of
K-cluster regression forests (KRF). Regression forests, like all
other regression methods, map a point in the input space XXX
onto a point in the target space YYY . KRF differ from other
similar methods in the way splitting is performed and in the
fact that in KRF each node has K ≥ 2 child nodes, whereas
in most methods each node has 2 children.

The aim of splitting is to find a rule that once applied to
the input space XXX , partitions the target space YYY in a way that
minimizes the loss function of the tree. KRF use the most
common loss function, which is the sum of squared errors
(SSE) of the child nodes. As explained in [7], the SSE of
the child nodes of any given node is locally minimized by a

ar
X

iv
:1

70
6.

01
82

0v
1 

 [
cs

.C
V

] 
 6

 J
un

 2
01

7



2

(a) (b)

(c) (d)

Fig. 1. An illustration of the weighting scheme used in KRFWS and its
influence on classification results. Figures (a) and (c) show a set of samples
in a 2 dimensional target space y, divided into two clusters using k-means
clustering. The size of each point corresponds to its weight, (a) uses uniform
weighting, while (c) uses the weighting scheme proposed in KRFWS. Figures
(b) and (d) show classification results obtained from data in (a) and (c). The
misclassified samples in (d) are more likely to be located close to the border
between the two clusters and in consequence their influence on SSE is limited.

partition defined by the result of k-means clustering on the
target space of samples in that node.

In KRF, the problem of splitting is defined as a classification
problem. To preserve the partition defined by the k-means
clustering, a classifier is trained at each split. This is achieved
by applying a K class one-versus-rest linear SVM classifier
on the input space of samples in each node. The advantage
of this approach is that the splits can be performed on
multidimensional features. This in turn facilitates the use of
image features, for example PHOG, as the input space.

In most cases the separating hyperplane produced by the
SVM does not partition the input set perfectly. In practice
this means that some of the samples will not be forwarded
to the correct child node. The misclassified samples increase
the value of the loss function and make the splitting problem
more difficult in the child nodes.

We propose to reduce the impact of this problem by
giving more importance to the samples that, should they be
misclassified, would have the largest impact on SSE. This is
achieved by assigning each sample i in the current node Tj

a weight wi ∈ [0, 1], where 0 would signify that the sample
is of no importance. The weights are then used as an input
to a weighted SVM classifier included in the LIBLINEAR
[10] package. Below we describe our method for generating
the sample weights for splits with K = 2 clusters. While
the method does generalize to any number of clusters, the
description of the generalized procedure is beyond the scope
of this short article.

Given a node Tj divided into two clusters C1 and C2 with
their respective centroids c1 and c2, the weights are defined
as follows:

vi =

(
yi −

c2 + c1

2

)T

· c2 − c1

‖c2 − c1‖
, (1)

wi =
|vi|

maxi∈Tj [|vi|]
, (2)

where i ∈ Tj = C1 ∪C2 and yi ∈ YYY . Equation (1) transforms
each point yi of the target space into a distance vi of that point
from the hyperplane separating the two clusters. The distances
are then normalized in equation (2) so that wi ∈ [0, 1].

Effectively each weight is the normalized distance of a
given sample from the hyperplane separating C1 and C2. The
samples close to the boundary between the two clusters have
a small weight as even if they are incorrectly classified, the
SSE will not increase greatly. The samples that are far from
the boundary on the other hand, have large weights as, should
they be misclassified, the SSE would be heavily affected. The
weighting scheme and its influence are illustrated in Figure 1.

KRFWS is not the only decision forest method that utilizes
sample weights, one other method is boosting with decision
trees [11]. There are however several key differences between
the two methods. In boosting with decision trees, the learning
of each tree is dependent upon its predecessors. The samples
are weighted based on their error in previously trained trees.
In KRFWS each tree is trained independently using a different
subset of the training data (bagging). The sample weights are
calculated independently at each split, and reflect the influence
a given samples would have on the loss if it was misclassified.

B. Affine Pose Regression

Affine Pose Regression (APR) was recently proposed in [9]
as a method for improving the performance of face alignment
methods. In contrast to Cascaded Shape Regression (CSR),
APR estimates a rigid transforms of the entire face shape:

S′ =

[
a b
c d

]
S +

[
tx . . . tx
ty . . . ty

]
, (3)

where S, a 2 × n matrix, is the current estimate of the
face shape, n is the number of landmarks in the face shape
and a, b, c, d, tx, ty are the parameters of the transform. The
parameters are estimated by linear regression based on HOG
features extracted at the facial landmarks. APR can be applied
before CSR or in between CSR iterations to efficiently com-
pensate for inaccurate initialization of the face shape in scale,
translation and in-plane rotation.

In this work we propose to improve the original APR
framework by using KRFWS instead of linear regression. We
estimate all the transform parameters by creating separate
KRFWS models for a, b, c, d and a joint model for tx, ty .
Instead of extracting features at individual landmarks we
extract a single feature that covers the entire face. We show
the effectiveness of our approach in experiments on the 300-W
dataset [12] in section III.

C. 3D Affine Pose Regression

As mentioned in the previous section, APR can be applied
before CSR to compensate for inaccuracy in scale, translation
and in-plane rotation of the face shape estimate. In this section
we propose a method to extend APR by taking into account
out-of-plane rotation of the head, namely: yaw and pitch. Our
method, which we call 3D-APR, fits an average 3D face shape
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to the face in the image and uses the 2D projection of that
shape as an initialization for face alignment.

3D Affine Pose Regression (3D-APR) consists of two steps:
first we fit an average 3D face shape S̄ to the initial face
shape estimate S. The fitting is accomplished using a scaled
orthographic projection:

s̄ = k · P · S̄ +

[
tx . . . tx
ty . . . ty

]
, (4)

where s̄ is the projected shape, k is a scaling factor, P are the
first two rows of a rotation matrix and tx, ty are translation
parameters. The values of the parameters Γ = {k, P, tx, ty} for
any shape are obtained by solving the following optimization
problem:

Γ = arg min
Γ
‖s̄− S‖2. (5)

The optimization is performed using the Gauss-Newton
method as in [13].

In the second step we estimate an update ∆ to Γ that refines
the projected 3D shape s̄ so that it is closer to the true shape of
the face in the image. As in APR the estimation is performed
using KRFWS based on a PHOG descriptor extracted at the
face region. Separate KRFWS models are trained to estimate
k and P , a joint model is used for tx and ty . The projection
matrix P is parametrized using euler rotations. In practice, the
estimation of P is equivalent to head pose estimation.

Learning is performed similarly to learning in APR and
CSR. The training set consists of a set of images with corre-
sponding ground truth landmark locations. For each image a
number of initial shapes are generated from the ground truth
shape. For each initial shape, the initial parameters Γ and the
ground truth parameters Γ′ are obtained using equation (5) and
the ground truth annotations. KRFWS learning is then applied
to map the PHOG descriptor to the update ∆ = Γ′ − Γ.

III. EXPERIMENTS

In this section we test the effectiveness of the proposed
methods in affine pose regression, face alignment and head
pose estimation. The parameters we use for our methods in
APR and face alignment have been established through cross-
validation, with the exception of the number of children K. K
was set following [7], where the authors have found K = 2
to be optimal for a target space similar to ours. We plan to
investigate different values of K in future experiments..

A. Affine pose regression

We test the effectiveness of APR and 3D-APR on the 300-W
dataset [12], which consists of face images with correspond-
ing ground truth annotations of 68 characteristic points and
bounding boxes generated by a face detector. The images in
300-W are gathered from several other datasets: AFW [14],
HELEN [15], IBUG [12] and LFPW [16]. For learning we use
the AFW dataset and the training subsets of the HELEN and
LFPW datasets, which together consist of 3148 face images.
Our test dataset consists of two subsets: the challenging IBUG
dataset (135 images) and the less challenging test subsets of
the LFPW and HELEN datasets (554 images). Together the

two datasets form what we refer to as the full set. This division
of the 300-W dataset is a standard in face alignment testing,
employed in many recent articles [4], [17], [18].

Each method is initialized with the face detector bounding
box provided in the 300-W dataset. Similarly to [4],[17] we
use the inter-pupil distance normalized landmark error, all
errors are expressed as the % of the inter-pupil distance.
The pupil locations are assumed to be the centroids of the
landmarks located around each of the eyes.

Five different configurations of APR and 3D-APR are
tested: (1) Linear APR with feature extraction at landmarks,
(2) Linear APR with a single feature extracted at the face
center, (3) KRF APR with a single feature extracted at the
face center, (4) KRFWS APR with a single feature extracted
at the face center, (5) KRFWS APR followed by 3D-APR with
a single feature extracted at the face center (Combined APR,
CAPR). In all of the configurations the images are rescaled
so that the face size is approximately 64 × 64 pixels. In all
experiments APR is performed for two iterations, while 3D-
APR is performed once.

In the first configuration Pyramid HOG [7] features covering
32 × 32 pixels are extracted at each landmark. The input
descriptor for APR is formed by concatenating the descriptors
from each of the landmarks.

In configurations (2), (3), (4) and (5) a single PHOG is
extracted at the face center. As the feature size is not a concern
in this scenario (only one feature is extracted instead of 68)
we use the extended version of the HOG feature described in
[19]. The descriptor covers an area of 64× 64 pixels.

The results of the experiments are shown in Table I.
KRFWS APR outperforms Linear APR on the challenging
subset by 6%. CAPR shows the best accuracy of all tested
methods, reducing the error of Linear APR by 35% on the
full set.

TABLE I
ERROR OF APR METHODS ON THE 300-W DATASET.

Methods Common
subset

Challenging
subset Full set

Linear APR 12.70 26.00 15.29
Linear APR single feature 12.77 25.85 15.32

KRF APR 11.48 24.80 14.08
KRFWS APR 11.37 24.28 13.88

KRFWS APR + 3D-APR
(CAPR)

8.61 15.26 9.90

B. Face alignment

In face alignment we use the same training and evaluation
data as in the APR experiments. In order to facilitate com-
parison with other methods we report the results of our full
pipeline for both inter-pupil normalisation [4],[17] and inter-
ocular normalisation [20]. Our face alignment method uses
the Local Binary Feature framework [4], where instead of
standard regression forests we use KRFWS, and instead of
pixel difference features we use PHOG. The forest generated
for each landmark consists of 5 trees with a maximum depth of
7, the PHOG extracted at landmarks cover an area of 32× 32
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Fig. 2. A diagram showing the proposed face alignment pipeline. The images
above, taken from the IBUG dataset, show the results at the consecutive stages
of the pipeline.

pixels each, with a single block per pyramid level. Similarly
to [4], our method is performed for 5 iterations.

We test the accuracy of our face alignment method with four
different initialization configurations: (1) face detector bound-
ing boxes provided in the 300-W dataset, (2) Linear APR, (3)
KRFWS APR, (4) KRFWS APR + 3D-APR (CAPR).

The results of the experiments are shown in Table II along
with the results of several state-of-the-art methods, all trained
on the same datasets and all initialized as in configuration (1).
The methods we compare to perform face alignment using a
variety of machine learning tools, including: linear regression
[21], decision trees [4] and deep learning [18], [20].

The experiments we have performed show the effectiveness
of our face alignment combined with KRFWS APR and 3D-
APR. In configuration (1) the proposed face alignment method
outperforms the original LBF in all cases by between 2% and
8%. The addition of KRFWS APR and CAPR for initialization
leads to an improvement of 18% and 20% over the original
LBF on the challenging IBUG dataset.

Our face alignment combined with CAPR initialization
shows state-of-the-art results on all datasets. The addition of
CAPR resulted in an error reduction of over 13% on the
challenging subset in comparison to face detector initialization.

Figure 2 shows a diagram of our face alignment pipeline
along with images at its consecutive stages.

C. Head pose estimation

In order to compare KRFWS to the original KRF we
test our method on the head pose estimation task. We use
the Pointing’04 [8] dataset, which was also used to test the
original KRF. The Pointing’04 dataset consists of images
of 15 subjects, each photographed in two separate sessions.
During both sessions each subject had 93 photographs taken
with pitch and yaw of the head both varying from -90◦

to +90◦. Each image in the dataset is accompanied by a
manually annotated bounding box containing the head.

For fair comparison we use experimental settings identical
to those proposed in [7]. From each image we extract a single
Pyramid HOG feature, set K in KRFWS to 2 and have each

TABLE II
ERROR OF FACE ALIGNMENT METHODS ON THE 300-W DATASET.

Methods Common
subset

Challenging
subset Full set

inter-pupil normalisation
ESR [3] 5.28 17.00 7.58

SDM [21] 5.60 15.40 7.52
LBF [4] 4.95 11.98 6.32

Transferred DCNN [18] 4.73 12.37 6.23
CFSS [17] 4.73 9.98 5.76

KRFWS LBF 4.84 10.96 6.03
Linear APR + KRFWS LBF 4.76 10.57 5.89

KRFWS APR + KRFWS LBF 4.65 9.82 5.66
CAPR + KRFWS LBF 4.62 9.48 5.57

inter-ocular normalisation
MDM [20] - - 4.05

CAPR + KRFWS LBF 3.34 6.56 3.97

forest consist of 20 trees. The splitting stops when a node has
less than 5 samples.

We compare our method to the baseline KRF in two
experiments, in both we use the Mean Absolute Error (MAE)
measure. In the first experiment we perform 2-fold cross
validation, where each fold consists only of images from a
single session. In the second experiment we perform 5-fold
cross validation, where the images in each fold are chosen at
random. Our method shows an improvement of 4% over the
baseline KRF in the first test and a 3.7% improvement in the
second test. The results of both tests can be found in Table III
along with the results for KRF and Adaptive KRF (AKRF) [7].

In MATLAB the training time for a single tree in the 5-
fold cross validation test is 6.65 sec for KRF and 6.45 sec for
KRFWS. This shows that the training of KRFWS is actually
faster than training of KRF, despite the additional weight
calculation step. We believe that this is because in KRFWS
less splits are required to reach the stopping criterion.

TABLE III
MEAN ABSOLUTE ERROR VALUES FOR 2-FOLD AND 5-FOLD CROSS

VALIDATION ON THE POINTING’04 DATASET.

Method yaw pitch average
2-fold cross validation

KRFWS 4.95 3.35 4.15 ± 0.041
KRF (baseline) 5.06 3.59 4.32 ± 0.138

AKRF 5.45 3.92 4.68 ± 0.072
5-fold cross validation

KRFWS 5.07 2.65 3.86 ± 0.177
KRF (baseline) 5.13 2.88 4.01 ± 0.171

AKRF 5.57 3.39 4.48 ± 0.267

IV. CONCLUSION

In this article we have proposed a face alignment pipeline
based on novel K-cluster Regression Forests with Weighted
Splitting. Our pipeline consists of two separate stages: face
shape initialization and face alignment. The first step performs
APR and novel 3D-APR to improve the initial shape, provided
by the face detector, in terms of translation, scale and in and
out of plane rotation. The second step performs face alignment
using an adapted version of the LBF framework. The proposed
face alignment pipeline shows state-of-the-art results on the
entire 300-W dataset.
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