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Abstract—We propose a filter for piecewise affine state-space

—e— Piecewise Function

(PWASS) models. In each filtering recursion, the true filterng | ... Approximation by EKF
posterior distribution is a mixture of truncated normal dis tri- e Posterior Mean .
butions. The proposed filter approximates the mixture with a — Thue Posterior :

. oposed Tite . Region Probability
single normal distribution via moment matching. The proposd cgron TobabIIy

algorithm is compared with the extended Kalman filter (EKF) in

a numerical simulation where the proposed method obtains, o E §
average, better root mean square error (RMSE) than the EKF. - =
Index Terms—Piecewise affine, state-space models, nonlinear | 1

filtering, Kalman filtering.
L
I. INTRODUCTION - —

Uz

We consider a class of stochastic hybrid models in which o _ _ _ _
the Switch between subrmodels is not a jump Markov proceEg; & A\Peise Sine Lo ol sepoiites b sl
but it is state dependent. In hybrid models, the state domawterior over the entire support.
can be divided into a number of regions, and within each
region, the state dynamics are described by a set of ditieten
equations. Here we will deal with piecewise affine state- The exact Bayesian filtering solution for such systems is a
space (PWASS) models. PWASS models are a particular cas@ture of truncated normal distributions, where the numbe
of stochastic hybrid models, which are used to approximaté mixture components grows exponentially with time. When
nonlinear dynamical systems and have been consideredthin extended Kalman filter (EKF) is used in PWASS models,
several fields, such as automatic control [1], signal preiogs the piecewise affine function is approximated by a single
[2], system biologyl[B], and computer visionl [4]. line, as showed in Fid.]1. This is problematic when the state

Most of studies in the literature on Bayesian filtering ofincertainty is large compared to the sizes of the regiorthisn
stochastic hybrid systems are limited to jump Markov systentetter, we propose a Bayesian filtering algorithm for PWASS
[B]-[10] or the so called semi-Markov jump linear systemgiodels that uses the exact time and measurement Kalman filter
[1], [T1]-[13]. However, in practice, there are systems wheupdates for each submodel avoiding linearization errars. |
the jump Markov model for transitions between submodels tise proposed filter the cumulative distribution functiorDfe)
an approximation of the reality. For example, in the JAS 38 used to compute the posterior distribution of the state as
Gripen aircraft, the dynamic of the pitch rate in the model fovell as the probability of each region (shaded area in[Hig. 1)
the flight dynamic in the longitudinal direction has a noslin The mixture explosion is avoided through approximatingeac
dependence on the angle of attalckl [14]. Further, this neatin posterior mixture of truncated normal distributions by ragée
dependence is modeled by a piecewise affine function.  normal distribution with matched moments.
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The nonlinear functionF(-) is the state transition functionUsing [1), the state transition densip(x;ii|x:) and the

with the following structure likelihood functionp(y:+1|x:+1) can be written as
T
- N O xy . ) P(x¢1|x¢) = N (X¢415 Aixe + Buy + by, Q), (11)
() = f(nt)F-i}-(qb Ze | ) p(ye1[xe41) = N(yes1; Cxey1, R). (12)
t

Therefore, the joint posteriop(x, Xt+1,y++1|y1:¢) can be
where Zy = [Q,X;F]Ty ¢ S R(nzil), b € an F € written as

R(==2)xns: and the piecewise affine functiof(n;) is given

b ~
Y P(Xt, X41, Yet1]y1:e) ZlRZ x¢ )N (x¢5 X1, Pryi)
Ji=am+ b if i < <lo N
. X N (xp11; Aixy + Bu —|—bi7 :Cxii1, R), (13
Fln) = : 3) (X¢41 t t QN (¥i41; Cxey1, R), (13)
fn, = anm+by, i In, <m <lnp,os which can be rewritten in matrix form as
with [} = —oco andly, 1 = +oo. For a given regiorR; = p(xtvxt+1v3’t+1|3’1 )
{xt :l; <m <liy1} itis possible to rewrite[{2) usingl(3) as
- »Tx = Z L, (xe )N ([x; 7Xt+17Yt+1] SHeis Sea),  (14)
t
_ | , T
‘F(Xt) = |a;n + bz + d) Zt (4) where
L FXt N
A; b ) Xt|t
o= | M| =] ARy +Bu+ b, (15)
oT 0 i L
T Ho; CAZ'X“t + C’(But + bz)
= |la; @7 ]| %t + |bs (5)
F 0 and
= A;x; + b;. 6 o | X | Yaoi |
| A | 6 »., { S| = (16)
I—r|1ence, ;or a glllvenﬁr.egmﬁi, the modeI[Idll)I can be written as Py, Py AT (Pt\t er
the conditionally affine state-space mode APy, AP AT +Q (AP, AT + Q)TcT
xp41 = Aixy + Buy + b; + wy, (7a) C(AiPy) C(AiP AT + Q) | C(AiPy AT +Q)CT + ?_’17)
yi = Ox¢ + vy, (7b)

The conditional distribution ok; andx;,1 giveny;; is
whereA; andb; are defined in[{5). The indexe {1,--- , N,.}

_deterrr_lines ir_1 Which piecewise aff_ine dynamics_ the systemp(x;, x;41|y1:441) = Zip(xtaxt+17}’t+1|YI:t) (18)
is at timet, i.e,, which submodel is active at time The N t
initial state has a prior distributionx; ~ N (%0, Pijo), 1 T T T 1T
where A'(i1,%) denotes a Gaussian distribution with mean ~ 7, Zlni(xt)N([xt Xepn Yol s b Bei) - (19)
p and covariance, and the subscripttf|ty” is read “at 1;1
time ¢; using measurements up to timg. Also, we assume _ i - 1n (x N S
{wt c Rnxu <t < T} and {Vt c Rny|1 <t< T} are Zt ; Rl( t) (yt+17/'l’27,7 221)
mutually independent white Gaussian noise sequences with - T T 1T.~ ¥
covariance) and R respectively. In this letter, we propose a XN (B Xl s i 20), (20)
filter to estimatep(x¢|y1.t). where
I1l. PROPOSEDSOLUTION ji; 2 [g—;l} = py; + 231,500 (Vi1 — Hay), (21)
Assume that at timet the following filtering posterior 5 l_ o
distribution forx; is available 5, 2 e L 212 ) =y — 25,55 500, (22)
R Yo1i | Ya2i
p(Xt|Y1:t) = N(Xt§xt|t7 Pt|t)- (8)

Z, is a normalizing constant, and the partitiondinl (21) &ndl (22
This distribution can be rewritten using the indicator fiioe  have equal dimensions. The quantitidgx; € R;|y1.;+1) for
as in i =1---N, as well as the normalizing constafit can be
computed via integration Qf(x¢, X¢+1|y1:4+1) @s in
p(xe|y1:e) = ) 1w, (Xe)N (Xe5 Xepe, Prje ), )
Z | | Pr(x; € Rily1:t41)

1 o
where = 7N(yt+1; s E221')/ N (%t; 1y, X114) dx; - (23)
t Ri

s )1 ifxed 1
1a(x) = {0 if x¢ A (10) - ZN(YH—I; P, Y22:) T, (24)



where TABLE |
FILTERING RECURSION FORPWASSMODELS USING THEPIECEWISE

A - ~
r; = / N(nt; [Nu](l,l)a [Elli](l,l)) dn, (25) AFFINE KALMAN FILTER (PAKF)
Li<me<lit1
I T 1 Inputs: A;, by, l;, i=1...,Nr, B, C, Q, R, ut, Yt+1,Xy)s, Py
:l f M _lerf M , 2: for ¢ =1 to N, do
2 = & Kalman filter prediction step
2[X11i) (1,1 2[X11i) (1,1 . . e
(26) : gt A%y, +Bugt+b;
4: Ho; < CAigt\t + C(But + bi)
where the eif) is the error function[X]; ;) is the element . o { Py PyAT
. . . ’ . i
in row 7 and columnj of ¥, and AiPyj Ai Py AT +Q
6: Yogi C(Aipt‘tA’ir +Q)C" +R
N, 7 2211’ — [C(Aipt\t) C(Aipt\tA’ir‘FQ)}

) - N e S0 ) T 27 Kalm~an filter update step
K z_; (Yt+1, Haio 221) ‘ ( ) 8: By = py; + EzTuzzzli (Yt+1 — ;)
1= 9: X < S — %2;211-2211
The probabilityPr(x; € R;|y1.+1) represents the probability ~ Computing integralied) - ~
that the state be in the regicR; at timet given all infor- 10:  w; « Lerf w) - %erf(m>

: : - : : e : 2[E114)(1,1) 2[2114](1,1)
mation up to timet + 1. The filtering posterior distribution ,,. Wi N (Ve phos, Sam) X w;

p(x¢+1]y1:441) can be computed via the integration Computing mean and covariance of the DTMND
17 12: A+~ cholﬁEi,’ lower’) > (Cholesky decomposition)
. =[],
P(Xeq1lyries1) = A / P(Xe, Xeq1, Yegalyne) dxe  (28) 130 A —pee
N t 14: Ao li+1[[:][/~"i](1,1)
1 < 1 Y 1 A
=7 ZN(YIS-H; oy X22;) 15:  Z«+ 5erf<72§) - Eerf(Tlg)
t i 16 my o VOB -N:0.1)

Z
AN (A1;0,1) = AN (A2;0,1) (mi1)2

></ 1w, (xe)N ([, x ] 1, ) dxee (29) 170 s 1+ =
Ri 18: mi<—A[ i1 ]+ﬁi

O2n,—1

The joint posterior distribution on the right-hand sideo:  Si« A | = ?QZT:I:} AT
of 29) is a mixture of doubly truncated multivariate normato: end for ’ ’
distributions (DTMND) [16]. In order to have a recursive Normalizing constan(27)
algorithm, the posterior will be approximated by a norm%; i’f :;J 1w
distribution. To this end, the mean and the covariance of M;men%tmamhmg
the posterior distributiom(x;¢1|y1.:+1) is needed. The mean23: i <+ Y7, w; m;
and covariance of a mixture distribution can be comput@d: P: < ;7 wi (Si + (m; — fy)(m; — f)T)
using the mean and the covariance of the components of ﬁié’f;“““ :: Fl?’j}”m“ﬂnm

. . . . 1+ ting+1:2ng,np+1:2n,
mixture density via standard moment matching formulas.[177: outputs: %;1/¢41 and P,y 141
Hence, the problem boils down to computing the mean and the
covariance of the DTMND which is presented in the Apendix
Al TABLE I

The proposed filter for PWASS models will be referred PARAMETERS OF THESDOFSMODEL
to by PAKF (Piecewise Affine Kalman Filter). The filtering_Param. At (s) D (N-simm) M (Y a (Nmm) 04,12 (mm)
recursion is given in TABLE]I. The expressions for computing Yaue 001 1 1 [50550 !
the mean and the covariance of a DTMND for a given regiche evaluation of PAKF. All numerical computations are done
R; are given in the linesl8 and 19 of TABLE [ The using MATLAB.
probabilitiesPr(x; € R;|y1:++1) as well as the normalizing Nonlinear vibrations caused by clearance can be modeled as
constantZ; are calculated in the lines 21 and 22 and are usedsingle-degree-of-freedom system (SDOFS) with piecewise

within the moment matching whose formulas are given in theffine spring characteristics [20]. Figl 2 shows the physica

lines 23 and 24 of TABLE [ model of SDOFS and Figl 3 presents its piecewise affine spring

characteristic. The discretized PWASS model for the SDOFS
IV. NUMERICAL SIMULATIONS can be written as
; ; i 1 At
Numerical simulations are perfo_rmed to eva!uate the perfor Xi1 A {Wtﬂ] — [ Ata, 1 Am] X,

mance of PAKF. In these simulations, PAKF is compared to Cet1 Y M

the extended Kalman filter (EKF) and the marginalized plrtic 0 0 30

filter (MPF) [18], [19]. The EKF expressions for PWASS Flag vt | am | Fen (308)

models are those in the lings9 of TABLE [l In EKF, they yi = [1 0] x; + v, (30b)

are evaluated only for the region whefg; is located at
time ¢. The MPF is used to compute the optimal Bayesiamherer, and(, are the position in [mm] and the velocity in
solution. This optimal solution will be used as a reference [mm/s] of the mass\/, respectivelyAt is the sampling time,



1
TABLE I It

FILTER COMPARISON RESULTS ! ! !
1 2 ‘.

Filter | ARMSE  STD | min. RMSE _ max. RMSE 1 AR
EKF 0.88327 0.30612] 0.25792 2.09761 D
PAKF | 0.83600 0.27931] 0.27256 2.05709 1 M u
MPF | 0.83505 0.27994{ 0.26467 2.04196 ; az/2 az/2 ;
,,,,,,,,,,,,,,,,,, oo
D is the damping coefficient, ang andb; are the piecewise
affine spring coefficients such that Fig. 2. SDOFS physical model with piecewise affine springratteristics.
flialﬁt+b1 if 7OO<T]t§ll o)
. AU
fow) =9 fo=am+by it 1h<n <lo (31)
. a
f3 = asn: + b3 if lo <My < +0 y
. I a2
with az = al,bl = ll(ag — al),bg =0 andb3 = lg(ag — ag). ; = 1‘2 "

Monte Carlo (MC) simulations are performed, where the
model [30) is simulated fof’ = 400 time steps. The param-
eters values are given in TABLE]ll. Furthet; is sampled
from standard bivariate normal distributiomr, ~ AN(0,1),

wy ~ N([0 0], diag0.01 0.01]) andu; ~ N(0,52%). For the
MPF, we use 10 000 particles. Fig. 3. Piecewise affine spring characteristics of modelim [B .

We compare the three filters in terms of the root mean

square error (RMSE) between the true state and the predicted o ) o
state Despite the approximations, PAKF obtains estimation error

p. close to MPF and.35% better than EKF. Furthermore, the
j 1 NG h 2 computation time is roughly six times less than a MPF with
RMSExWY) = . | — @) _ 50)y2 @) _ FU)y2 32
E(x") \j 5T > ((m e )? + ( Cije ) )7 (32) comparable performance.

. N a1 T . . 1T
Whereﬁgft) = [ﬁt(ft) t(Jt)J andx!” = [n ¢9|" denote
the estimated mean of the statg and its true value in the
jth MC run, respectively. Columns two and three of Table

[ show the average over 5000 MC simulations of RMSE

ay

t=1

1 T T T
0.9} _EKF
sl ——MPF
—PAKF

0.7

0.6

(ARMSE) for each filter as well as the standard deviation of B sl

the RMSE (STD). We noticed that the ARMSE for PAKF is S

5.35% smaller than that of the EKF. The ARMSE for MPF 0al

is 0.12% smaller than that of the PAKF. We also noticed 02l

that EKF has the highest STD of all the filters. The K. 4 oaf

presents the cumulative distribution of the RMSE for each ]
filter. The minimum and maximum RMSE values for each RMSE %,

filter are presented in the last two columns of TABLE IIl.
Fig_ [§ shows the ARMSE between the simulated stakég. 4. Cumulative distribution of the RMSE for EKF, MPF andlKF.

and the estimated state as a function of time for the PAKF,

MPF, and EKF. We noticed that the ARMSE for EKF is

always above the ARMSE of PAKF and MPF. That is, PAKF

and the MPF outperform EKF both for initial parts of the

path and in the stabilized state. The MPF and PAKF have 105

similar performance, but MPF is computationally expensive

For 10000 particles, MPF takes six times more time to 1

complete one MC run than PAKF.

o
©
&

V. CONCLUSION

=4
©

ARMSE x;

The proposed filter (PAKF) obtains estimation error close to
that of the optimal filter (MPF) for a particular class of PWAS 08
models which are discussed in this letter. The filter’'s perfo
mance is tested in an example where the measurement noise 08 ‘ ‘ ‘ ‘
variance is greater than the process noise variances and the Coor lstimé (s)
comparison filters are EKF and MPF. The filtering recursion
of PAKF involves approximation of the posterior distritarti  Fig. 5. ARMSE for EKF, MPF and PAKF as a function of time.

L L L
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Bbd =4 {OTZ*J +p (34)
" :A[ g 02_1} A (35)
Onfl In—l
"= M’ (36)
s =14 A1o(M) 2—3 Aag(X2) ("), a7
with
bl bl o g,
M= Aan 7 ANay Z=®(A2) — 2(\1).

B. Derivation
Lety € R" be a DTMND with the PDF

py(y) X N(y;0, 1) - 1pa, a1 ([y]1)-

The components gf are independent, so the momentsafre
obtained using the formula for the doubly-truncated unatar
normal random variable_[22, Ch. 10.1]. The mean and the
covariance matrix are thus

m*
Bl = o |- 38)
_| s 0,
wherem* ands* are those in[{36) and (B7).
Let nowz = Ay + p. The PDF ofz is then
Pa(#) = py(A Nz — ) det(%) . (40)


http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130089

As A is a lower triangular matrix, [A"!]( 1.

[m 03—1}, SO
vl = ([z]1 — [p]1)/[A]1,1)- Thus, [@D) becomes

pu(z) x N(A™(z — p);0,1) - det(A) "
(2], — [H]l)

-1 —_— 41
[A1,A2] < [A](l,l) ( )
= N(z; 1, %) - 1y, 15 ([2)1) (42)
becauseAA™ = %, I; = [A]1,1)Ai + [p]1 for i € {1,2} and
[A](1,1) is positive. That isz has the same distribution as

so the expected value and covariance matrix @fre

Elx| = E[z] = AE[y| + p (43)
V[x] = V[z] = AV[y]AT. (44)

By substituting [(3B) and(39) td_(43) and {44), respectively
we get the formulad_(34) an@ (35).
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