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Abstract—We propose a filter for piecewise affine state-space
(PWASS) models. In each filtering recursion, the true filtering
posterior distribution is a mixture of truncated normal dis tri-
butions. The proposed filter approximates the mixture with a
single normal distribution via moment matching. The proposed
algorithm is compared with the extended Kalman filter (EKF) in
a numerical simulation where the proposed method obtains, on
average, better root mean square error (RMSE) than the EKF.

Index Terms—Piecewise affine, state-space models, nonlinear
filtering, Kalman filtering.

I. I NTRODUCTION

We consider a class of stochastic hybrid models in which
the switch between submodels is not a jump Markov process,
but it is state dependent. In hybrid models, the state domain
can be divided into a number of regions, and within each
region, the state dynamics are described by a set of differential
equations. Here we will deal with piecewise affine state-
space (PWASS) models. PWASS models are a particular case
of stochastic hybrid models, which are used to approximate
nonlinear dynamical systems and have been considered in
several fields, such as automatic control [1], signal processing
[2], system biology [3], and computer vision [4].

Most of studies in the literature on Bayesian filtering of
stochastic hybrid systems are limited to jump Markov systems
[5]–[10] or the so called semi-Markov jump linear systems
[1], [11]–[13]. However, in practice, there are systems where
the jump Markov model for transitions between submodels is
an approximation of the reality. For example, in the JAS 39
Gripen aircraft, the dynamic of the pitch rate in the model for
the flight dynamic in the longitudinal direction has a nonlinear
dependence on the angle of attack [14]. Further, this nonlinear
dependence is modeled by a piecewise affine function.
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Fig. 1. A piecewise affine functionf(ηt) is locally approximated by a single
line in EKF, while the proposed filter computes the first two moments of the
posterior over the entire support.

The exact Bayesian filtering solution for such systems is a
mixture of truncated normal distributions, where the number
of mixture components grows exponentially with time. When
the extended Kalman filter (EKF) is used in PWASS models,
the piecewise affine function is approximated by a single
line, as showed in Fig. 1. This is problematic when the state
uncertainty is large compared to the sizes of the regions. Inthis
letter, we propose a Bayesian filtering algorithm for PWASS
models that uses the exact time and measurement Kalman filter
updates for each submodel avoiding linearization errors. In
the proposed filter the cumulative distribution function (CDF)
is used to compute the posterior distribution of the state as
well as the probability of each region (shaded area in Fig. 1).
The mixture explosion is avoided through approximating each
posterior mixture of truncated normal distributions by a single
normal distribution with matched moments.

II. PROBLEM FORMULATION

Consider the PWASS model [15]

xt+1 = F(xt) +But + ωt, (1a)

yt = Cxt + νt, (1b)

whereyt ∈ R
ny is the measurement;C ∈ R

ny×nx is the
measurement matrix;ut ∈ R

nu is the deterministic input;B ∈
R

nx×nu is the input matrix;ωt ∈ R
nx andνt ∈ R

ny are the
process and measurement noise terms respectively;xt ∈ R

nx

is the state vector partitioned by two scalar variablesηt and
ζt as well as a vectorχt ∈ R

(nx−2) as inxt ,
[
ηt, ζt,χ

T
t

]T
.
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The nonlinear functionF(·) is the state transition function
with the following structure

F(xt) ,




ΦTxt

f(ηt) + φTzt
Fxt


 , (2)

where zt ,
[
ζt,χ

T
t

]T
, φ ∈ R

(nx−1), Φ ∈ R
nx , F ∈

R
(nx−2)×nx ; and the piecewise affine functionf(ηt) is given

by

f(ηt) =





f1 = a1ηt + b1 if l1 < ηt ≤ l2
...

fNr
= aNr

ηt + bNr
if lNr

< ηt < lNr+1,

(3)

with l1 = −∞ and lNr+1 = +∞. For a given regionRi ,

{xt : li < ηt ≤ li+1} it is possible to rewrite (2) using (3) as

F(xt) =




ΦTxt

aiηt + bi + φTzt
Fxt


 (4)

=

Ai︷ ︸︸ ︷


ΦT

[ai φ
T]

F


xt +

bi︷ ︸︸ ︷

0

bi
0


 (5)

= Aixt + bi. (6)

Hence, for a given regionRi, the model (1) can be written as
the conditionally affine state-space model

xt+1 = Aixt +But + bi + ωt, (7a)

yt = Cxt + νt, (7b)

whereAi andbi are defined in (5). The indexi ∈ {1, · · · , Nr}
determines in which piecewise affine dynamics the system
is at time t, i.e., which submodel is active at timet. The
initial state has a prior distributionx1 ∼ N (x̂1|0, P1|0),
where N (µ,Σ) denotes a Gaussian distribution with mean
µ and covarianceΣ, and the subscript “t1|t2” is read “at
time t1 using measurements up to timet2”. Also, we assume
{ωt ∈ R

nx |1 ≤ t ≤ T } and {νt ∈ R
ny |1 ≤ t ≤ T } are

mutually independent white Gaussian noise sequences with
covarianceQ andR respectively. In this letter, we propose a
filter to estimatep(xt|y1:t).

III. PROPOSEDSOLUTION

Assume that at timet the following filtering posterior
distribution forxt is available

p(xt|y1:t) = N (xt; x̂t|t, Pt|t). (8)

This distribution can be rewritten using the indicator function
as in

p(xt|y1:t) =

Nr∑

i=1

1Ri
(xt)N (xt; x̂t|t, Pt|t), (9)

where

1A(x) ,

{
1 if x ∈ A,

0 if x /∈ A.
(10)

Using (7), the state transition densityp(xt+1|xt) and the
likelihood functionp(yt+1|xt+1) can be written as

p(xt+1|xt) = N (xt+1;Aixt +But + bi, Q), (11)

p(yt+1|xt+1) = N (yt+1;Cxt+1, R). (12)

Therefore, the joint posteriorp(xt,xt+1,yt+1|y1:t) can be
written as

p(xt,xt+1,yt+1|y1:t) =

Nr∑

i=1

1Ri
(xt)N (xt; x̂t|t, Pt|t)

×N (xt+1;Aixt +But + bi, Q)N (yt+1;Cxt+1, R), (13)

which can be rewritten in matrix form as

p(xt,xt+1,yt+1|y1:t)

=

Nr∑

i=1

1Ri
(xt)N ([xT

t ,x
T
t+1,y

T
t+1]

T;µt,i,Σt,i), (14)

where

µt,i
∆
=


 µ1i

µ2i


 =




x̂t|t

Aix̂t|t +But + bi

CAix̂t|t + C(But + bi)


 (15)

and

Σt,i ,

[

Σ11i Σ12i

Σ21i Σ22i

]

= (16)




Pt|t Pt|tA
T
i (Pt|tA

T
i )C

T

AiPt|t AiPt|tA
T
i +Q (AiPt|tA

T
i +Q)TCT

C(AiPt|t) C(AiPt|tA
T
i +Q) C(AiPt|tA

T
i +Q)CT +R



 .

(17)

The conditional distribution ofxt andxt+1 givenyt+1 is

p(xt,xt+1|y1:t+1) =
1

Zt

p(xt,xt+1,yt+1|y1:t) (18)

=
1

Zt

Nr∑

i=1

1Ri
(xt)N ([xT

t ,x
T
t+1,y

T
t+1]

T;µt,i,Σt,i) (19)

=
1

Zt

Nr∑

i=1

1Ri
(xt)N (yt+1;µ2i,Σ22i)

×N ([xT
t ,x

T
t+1]

T; µ̃i, Σ̃i), (20)

where

µ̃i

∆
=

[
µ̃1i

µ̃2i

]
= µ1i +ΣT

21iΣ
−1
22i(yt+1 − µ2i), (21)

Σ̃i
∆
=

[
Σ̃11i Σ̃12i

Σ̃21i Σ̃22i

]
= Σ11i − ΣT

21iΣ
−1
22iΣ21i, (22)

Zt is a normalizing constant, and the partitions in (21) and (22)
have equal dimensions. The quantitiesPr(xt ∈ Ri|y1:t+1) for
i = 1 · · ·Nr as well as the normalizing constantZt can be
computed via integration ofp(xt,xt+1|y1:t+1) as in

Pr(xt ∈ Ri|y1:t+1)

=
1

Zt

N (yt+1;µ2i,Σ22i)

∫

Ri

N (xt; µ̃1i, Σ̃11i) dxt (23)

=
1

Zt

N (yt+1;µ2i,Σ22i) Γi, (24)
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where

Γi
∆
=

∫

li<ηt≤li+1

N (ηt; [µ̃1i](1,1), [Σ̃11i](1,1)) dηt (25)

=
1

2
erf


 li+1 − [µ̃1i](1,1)√

2[Σ̃11i](1,1)


−

1

2
erf


 li − [µ̃1i](1,1)√

2[Σ̃11i](1,1)


 ,

(26)

where the erf(·) is the error function,[Σ](i,j) is the element
in row i and columnj of Σ, and

Zt =

Nr∑

i=1

N(yt+1;µ2i,Σ22i) Γi. (27)

The probabilityPr(xt ∈ Ri|y1:t+1) represents the probability
that the state be in the regionRi at time t given all infor-
mation up to timet + 1. The filtering posterior distribution
p(xt+1|y1:t+1) can be computed via the integration

p(xt+1|y1:t+1) =
1

Zt

∫
p(xt,xt+1,yt+1|y1:t) dxt (28)

=
1

Zt

Nr∑

i=1

N (yt+1;µ2i,Σ22i)

×

∫

Ri

1Ri
(xt)N ([xT

t ,x
T
t+1]

T; µ̃i, Σ̃i) dxt. (29)

The joint posterior distribution on the right-hand side
of (29) is a mixture of doubly truncated multivariate normal
distributions (DTMND) [16]. In order to have a recursive
algorithm, the posterior will be approximated by a normal
distribution. To this end, the mean and the covariance of
the posterior distributionp(xt+1|y1:t+1) is needed. The mean
and covariance of a mixture distribution can be computed
using the mean and the covariance of the components of the
mixture density via standard moment matching formulas [17].
Hence, the problem boils down to computing the mean and the
covariance of the DTMND which is presented in the Apendix
A.

The proposed filter for PWASS models will be referred
to by PAKF (Piecewise Affine Kalman Filter). The filtering
recursion is given in TABLE I. The expressions for computing
the mean and the covariance of a DTMND for a given region
Ri are given in the lines18 and 19 of TABLE I. The
probabilitiesPr(xt ∈ Ri|y1:t+1) as well as the normalizing
constantZt are calculated in the lines 21 and 22 and are used
within the moment matching whose formulas are given in the
lines 23 and24 of TABLE I.

IV. N UMERICAL SIMULATIONS

Numerical simulations are performed to evaluate the perfor-
mance of PAKF. In these simulations, PAKF is compared to
the extended Kalman filter (EKF) and the marginalized particle
filter (MPF) [18], [19]. The EKF expressions for PWASS
models are those in the lines3-9 of TABLE I. In EKF, they
are evaluated only for the region wherêxt|t is located at
time t. The MPF is used to compute the optimal Bayesian
solution. This optimal solution will be used as a reference in

TABLE I
FILTERING RECURSION FORPWASSMODELS USING THEPIECEWISE

AFFINE KALMAN FILTER (PAKF)

1: Inputs: Ai,bi, li, i = 1 . . . , Nr , B, C, Q, R, ut, yt+1, x̂t|t, Pt|t
2: for i = 1 to Nr do

Kalman filter prediction step

3: µ1i ←

[
x̂t|t

Aix̂t|t+But+bi

]

4: µ2i ← CAix̂t|t + C(But + bi)

5: Σ11i ←

[
Pt|t Pt|tA

T
i

AiPt|t AiPt|tA
T
i +Q

]

6: Σ22i ← C(AiPt|tAT
i +Q)CT +R

7: Σ21i ← [C(AiPt|t) C(AiPt|tA
T
i +Q) ]

Kalman filter update step
8: µ̃i ← µ1i + ΣT

21iΣ
−1
22i(yt+1 − µ2i)

9: Σ̃i ← Σ11i −ΣT
21iΣ

−1
22iΣ21i

Computing integral(24)

10: wi ←
1
2

erf

(
li+1−[µ̃1i](1,1)√

2[Σ̃11i ](1,1)

)

− 1
2

erf

(
li−[µ̃1i](1,1)√
2[Σ̃11i ](1,1)

)

11: wi ← N (yt+1;µ2i,Σ22i) ×wi

Computing mean and covariance of the DTMND
12: Λ← chol(Σ̃i,

′ lower′) ⊲ (Cholesky decomposition)

13: λ1 ←
li−[µ̃i](1,1)

[Λ](1,1)

14: λ2 ←
li+1−[µ̃i](1,1)

[Λ](1,1)

15: Z ← 1
2

erf
(

λ2√
2

)
− 1

2
erf
(

λ1√
2

)

16: mi1 ←
N (λ1;0,1)−N (λ2;0,1)

Z
17: si1 ← 1 + λ1N (λ1;0,1)−λ2N (λ2;0,1)

Z − (mi1)2

18: mi ← Λ
[

mi1
02nx−1

]
+ µ̃i

19: Si ← Λ

[
si1 0

T
2nx−1

02nx−1 I2nx−1

]
ΛT

20: end for
Normalizing constant(27)

21: Zt ←
∑Nr

i=1 wi

22: wi ←
wi

Zt

Moment matching
23: m̂t ←

∑Nr

i=1 wi mi

24: Pt ←
∑Nr

i=1 wi

(
Si + (mi − m̂t)(mi − m̂t)T

)

25: x̂t+1|t+1 ← [m̂t]nx+1:2nx

26: Pt+1|t+1 ← [Pt]nx+1:2nx,nx+1:2nx

27: Outputs: x̂t+1|t+1 and Pt+1|t+1

TABLE II
PARAMETERS OF THESDOFSMODEL

Param. ∆t (s) D (N·s/mm) M (t) a (N/mm) l1, l2 (mm)
Value 0.01 1 1 [50 5 50] 1

the evaluation of PAKF. All numerical computations are done
using MATLAB.

Nonlinear vibrations caused by clearance can be modeled as
a single-degree-of-freedom system (SDOFS) with piecewise
affine spring characteristics [20]. Fig. 2 shows the physical
model of SDOFS and Fig. 3 presents its piecewise affine spring
characteristic. The discretized PWASS model for the SDOFS
can be written as

xt+1
∆
=

[
ηt+1

ζt+1

]
=

[
1 ∆t

−∆tai

M
1− ∆tD

M

]
xt

+

[
0
∆t
M

]
ut +

[
0

−∆tbi
M

]
+ ωt, (30a)

yt =
[
1 0

]
xt + νt, (30b)

whereηt andζt are the position in [mm] and the velocity in
[mm/s] of the massM , respectively,∆t is the sampling time,
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TABLE III
FILTER COMPARISON RESULTS.

Filter ARMSE STD min. RMSE max. RMSE
EKF 0.88327 0.30612 0.25792 2.09761

PAKF 0.83600 0.27931 0.27256 2.05709
MPF 0.83505 0.27994 0.26467 2.04196

D is the damping coefficient, andai andbi are the piecewise
affine spring coefficients such that

f(ηt) =





f1 = a1ηt + b1 if −∞ < ηt ≤ l1

f2 = a2ηt + b2 if l1 < ηt ≤ l2

f3 = a3ηt + b3 if l2 < ηt < +∞

(31)

with a3 = a1, b1 = l1(a2 − a1), b2 = 0 andb3 = l2(a2 − a3).
Monte Carlo (MC) simulations are performed, where the
model (30) is simulated forT = 400 time steps. The param-
eters values are given in TABLE II. Further,x1 is sampled
from standard bivariate normal distribution,νt ∼ N (0, 1),
ωt ∼ N ([0 0]T , diag[0.01 0.01]) andut ∼ N (0, 52). For the
MPF, we use 10 000 particles.

We compare the three filters in terms of the root mean
square error (RMSE) between the true state and the predicted
state

RMSE(x(j)) =

√

√

√

√

1

2T

T
∑

t=1

(

(η
(j)
t − η̂

(j)
t|t )

2 + (ζ
(j)
t − ζ̂

(j)
t|t )

2
)

, (32)

where x̂
(j)
t|t =

[
η̂
(j)
t|t ζ̂

(j)
t|t

]T
and x

(j)
t =

[
η
(j)
t ζ

(j)
t

]T
denote

the estimated mean of the statext and its true value in the
jth MC run, respectively. Columns two and three of Table
III show the average over 5 000 MC simulations of RMSE
(ARMSE) for each filter as well as the standard deviation of
the RMSE (STD). We noticed that the ARMSE for PAKF is
5.35% smaller than that of the EKF. The ARMSE for MPF
is 0.12% smaller than that of the PAKF. We also noticed
that EKF has the highest STD of all the filters. The Fig. 4
presents the cumulative distribution of the RMSE for each
filter. The minimum and maximum RMSE values for each
filter are presented in the last two columns of TABLE III.

Fig. 5 shows the ARMSE between the simulated state
and the estimated state as a function of time for the PAKF,
MPF, and EKF. We noticed that the ARMSE for EKF is
always above the ARMSE of PAKF and MPF. That is, PAKF
and the MPF outperform EKF both for initial parts of the
path and in the stabilized state. The MPF and PAKF have
similar performance, but MPF is computationally expensive.
For 10 000 particles, MPF takes six times more time to
complete one MC run than PAKF.

V. CONCLUSION

The proposed filter (PAKF) obtains estimation error close to
that of the optimal filter (MPF) for a particular class of PWASS
models which are discussed in this letter. The filter’s perfor-
mance is tested in an example where the measurement noise
variance is greater than the process noise variances and the
comparison filters are EKF and MPF. The filtering recursion
of PAKF involves approximation of the posterior distribution.

M

a1 − a2 a1 − a2

D

a2/2 a2/2

ηt

ut

l2l1

Fig. 2. SDOFS physical model with piecewise affine spring characteristics.

l1

l2a2

a2

a1

a3

ηt

f(ηt)

Fig. 3. Piecewise affine spring characteristics of model in Fig. 2 .

Despite the approximations, PAKF obtains estimation error
close to MPF and5.35% better than EKF. Furthermore, the
computation time is roughly six times less than a MPF with
comparable performance.
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Fig. 4. Cumulative distribution of the RMSE for EKF, MPF and PAKF.
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5

REFERENCES

[1] C. E. Seah and I. Hwang, “State estimation for stochasticlinear hybrid
systems with continuous-state-dependent transitions: Animm approach,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 1,
pp. 376–392, 2009.

[2] A. Doucet, N. Gordon, and V. Kroshnamurthy, “Particle filters for state
estimation of jump markov linear systems,”IEEE Transactions on Signal
Processing, vol. 49, no. 3, pp. 613–624, mar 2001.

[3] R. Porreca, S. Drulhe, H. de Jong, and G. Ferrari-Trecate, “Identification
of parameters and structure of piecewise affine models of genetic
networks,” IFAC Proceedings Volumes, vol. 42, no. 10, pp. 587–592,
2009.

[4] R. Vidal and Y. Ma, “A unified algebraic approach to 2-d and3-d motion
segmentation and estimation,”Journal of Mathematical Imaging and
Vision, vol. 25, no. 3, pp. 403–421, oct 2006.

[5] K. P. Murphy, “Learning switching kalman filter models,”Compaq
Cambridge Research Lab, Tech. Rep. August, 1998.

[6] Z. Ghahramani and G. E. Hinton, “Variational learning for switching
state-space models,”Neural Computation, vol. 12, no. 4, pp. 831–864,
apr 2000.

[7] D. Barber, “Expectation correction for smoothed inference in switching
linear dynamical systems,”Journal of Machine Learning Research,
vol. 7, pp. 2515–2540, 2006.

[8] D. Barber and B. Mesot, “A novel gaussian sum smoother forapproxi-
mate inference in switching linear dynamical systems,” inAdvances in
Neural Information Processing Systems 18, 2007, pp. 4–11.

[9] B. Mesot, “Inference in switching linear dynamical systems applied to
noise robust speech recognition of isolated digits,” Ph.D.dissertation,
Ecole Polytechnique Fédérale de Lausanne, 2008.
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APPENDIX A
MEAN AND COVARIANCE MATRIX OF DTMND

A doubly-truncated multivariate normal distribution
(DTMND) is a multivariate normal distribution, where one
component is truncated from both below and above. Without
loss of generality, we assume that the double truncation
is applied to the first component of the random vector.
For numerical methods, evaluating the presented formulas
requires evaluation of the Cholesky decomposition [21, Ch.
2.2.2] as well as the probability density function (PDF) and
cumulative density function (CDF) of the univariate standard
normal distribution.

A. Formulas for mean and covariance matrix

Let x ∈ R
n be a random variable of the DTMND with the

PDF

p(x) ∝ N (x;µ,Σ) · 1[l1,l2]([x]1), (33)

whereµ ∈ R
n is the location parameter vector,Σ ∈ R

n×n is
the positive definite squared-scale matrix, andl1, l2 ∈ R are
the truncation limits. Further, letΛ be the lower triangular
matrix for which Σ = ΛΛT and whose diagonal entries
are strictly positive. This type of square-root matrix can be
obtained using the Cholesky decomposition [21, Ch. 2.2.2].

Then, the expectation value and covariance matrix ofx are

E[x] = Λ

[
m∗

0n−1

]
+ µ (34)

V[x] = Λ

[
s∗ 0T

n−1

0n−1 In−1

]
ΛT (35)

where

m∗ =
φ(λ1)− φ(λ2)

Z
, (36)

s∗ = 1 +
λ1φ(λ1)− λ2φ(λ2)

Z
− (m∗)2, (37)

with

λ1 =
l1 − [µ]1
[Λ](1,1)

, λ2 =
l2 − [µ]1
[Λ](1,1)

, Z = Φ(λ2)− Φ(λ1).

B. Derivation

Let y ∈ R
n be a DTMND with the PDF

py(y) ∝ N (y;0, In) · 1[λ1,λ2]([y]1).

The components ofy are independent, so the moments ofy are
obtained using the formula for the doubly-truncated univariate
normal random variable [22, Ch. 10.1]. The mean and the
covariance matrix are thus

E[y] =

[
m∗

0n−1

]
, (38)

V[y] =

[
s∗ 0T

n−1

0n−1 In−1

]
, (39)

wherem∗ ands∗ are those in (36) and (37).
Let now z = Λy + µ. The PDF ofz is then

pz(z) = py(Λ
−1(z− µ)) · det

(
dy
dz

)
. (40)

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130089
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As Λ is a lower triangular matrix, [Λ−1](1,1:n) =[
1

[Λ](1,1)
0T
n−1

]
, so

[y]1 = ([z]1 − [µ]1)/[Λ](1,1). Thus, (40) becomes

pz(z) ∝ N (Λ−1(z − µ);0, I) · det(Λ)−1

· 1[λ1,λ2]

(
[z]1 − [µ]1
[Λ](1,1)

)
(41)

= N (z;µ,Σ) · 1[l1,l2] ([z]1) , (42)

becauseΛΛT = Σ, li = [Λ](1,1)λi + [µ]1 for i ∈ {1, 2} and
[Λ](1,1) is positive. That is,z has the same distribution asx,
so the expected value and covariance matrix ofx are

E[x] = E[z] = ΛE[y] + µ (43)

V[x] = V[z] = ΛV[y]ΛT. (44)

By substituting (38) and (39) to (43) and (44), respectively,
we get the formulas (34) and (35).
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