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A fast and effective method for a Poisson denoising
model with total variation

Wei Wang and Chuanjiang He

Abstract—In this paper, we present a fast and effective method
for solving the Poisson-modified total variation model proposed
in [9]. The existence and uniqueness of the model are again
proved using different method. A semi-implicit differencescheme
is designed to discretize the derived gradient descent flow with
a large time step and can guarantee the restored image to be
strictly positive in the image domain. Experimental results show
the efficiency and effectiveness of our method.

Index Terms—Poisson denoising, semi-implicit shceme, total
variation, gradient-descent flow.

I. I NTRODUCTION

POISSON noise, also known as photon noise, is a basic
form of uncertainty associated with the measurement of

light. An image sensor measures scene irradiance by counting
the number of photons incident on the sensor over a given time
interval. The photon counting is a classic Poisson process that
follows Poisson distribution [1]. Poisson noise removal isa
fundamental task for many imaging applications where images
are generated by photon-counting devices such as computed
tomography (CT), magnetic resonance imaging (MRI) and
astronomical imaging. Many methods and algorithms have
been proposed for Poisson denoising [2-21]. In this paper,
we focus on solving the variational Poisson denoising model
proposed in [9].

In [9], along the lines of the famous ROF model [22], Le,
Chartrand and Asaki proposed the following Poisson denoising
model with total variation regularization (called LCA model in
this paper). In detail, iff = f(x, y) ( (x, y) ∈ Ω, a bounded,
open subset ofR2) is an original image with Poisson noise,
then the reconstructed imageu∗ is obtained by

u∗ = arg inf
u

E(u) =

∫

Ω

|∇u|+ β

∫

Ω

(u− f log u), (1)

where the functionalE is defined on the set ofu ∈ BV (Ω)
such thatlog u ∈ L1(Ω); in particular,u must be positive
almost everywhere (a.e.) inΩ.

The authors used gradient descent with the forward-time
central-space finite difference scheme to solve problem (1).
They implemented a straightforward, discretized version of
the following PDE:

∂u

∂t
= div

(

∇u

|∇u|

)

+ β

(

f

u
− 1

)

with
∂u

∂~n
= 0 on ∂Ω. (2)
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Spatial derivatives are computed with standard centered dif-
ference approximations. The quantity|∇u| is replaced with
√

|∇u|
2
+ ε for a small, positiveε. The time evolution is done

with fixed time stepτ , until the change inu is sufficiently
small. However, this numerical scheme has two main draw-
backs: 1) The reconstructed imageũ obtained by this scheme
cannot be guaranteed to be positive a.e. inΩ mathematically;
in fact, our experiments show that the reconstructed image
ũ is sign-changing inΩ. The functionalE is singular in the
non-positive orthant of the sign-changing solutionũ due to
the presence oflog u in the functionalE. Therefore,̃u is not
the best approximation tou∗ defined by (1). 2) The time step
τ must be chosen small enough to ensure the stability of the
used explicit numerical scheme due to the CFL condition.

After the LCA model, many algorithms were proposed to
solve the LCA model. In [10], Chan and Chen proposed a
multilevel algorithm for efficiently solving the LCA model.
However, this method also confronts the problem that the
reconstructed image is sign-changing inΩ and it spends a
little long time. In [13], Figueiredo and Bioucas-Dias usedan
alternating direction method of multipliers to solve the LCA
model. To address the problem that the reconstructed image
is sign-changing inΩ, they replacedu with the projection
max(u, 0) during iteration. However,E is still meaningless
because ofmax(u, 0) = 0 for u ≤ 0.

In this letter, we first prove the existence and uniqueness
of the solution for the LCA model by a different method.
Then a semi-implicit difference scheme is designed to solve
numerically the derived gradient descent flow of the LCA
model. The proposed scheme can guarantee the restored image
to be strictly positive in the image domain and is stable for a
large time step.

II. T HE PROPOSED ALGORITHM

In this paper, we propose a new method to solve the Poisson
denoising model [9]:

inf
u∈G(Ω)

E(u) =

∫

Ω

|∇u|+ β

∫

Ω

(u− f log u), (3)

whereG(Ω) = {u ∈ BV (Ω) : u > 0, a.e. in Ω} is a subset
of BV (Ω) andf is an original image with Poisson noise.

Inspired by the proof of Theorem 4.1 in [23], in the
following we give a new proof of the existence and uniqueness
of solution for problem (3), which differs from the proof in
[9].

Theorem 1:If f ∈ G(Ω), then problem (1) has exactly one
solution.
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Proof: Let M = sup f andm = inf f . SinceH(u) = u−
f log u decreases ifu ∈ (0, f) and increases ifu ∈ (f,+∞),
we have
∫

Ω

min(u,M)− f log(min(u,M))

=

(

∫

Ω(u≤M)

+

∫

Ω(u>M)

)

min(u,M)− f log(min(u,M))

≤

∫

Ω

u− f log u

and similarly,
∫

Ω

max(u,m)− f log(max(u,m)) ≤

∫

Ω

u− f log u.

Since
∫

Ω

|∇min(u,M)| =

(

∫

Ω(u≤M)

+

∫

Ω(u>M)

)

|∇min(u,M)|

=

∫

Ω(u≤M)

|∇u|

≤

∫

Ω

|∇u|

and ∫

Ω

|∇max(u,m)| ≤

∫

Ω

|∇u|,

we have
E(min(u,M)) ≤ E(u)

and
E(max(u,m)) ≤ E(u).

Thus we can assume0 ≤ m ≤ u ≤ M a.e. inΩ.
Since f ∈ G(Ω), we havelog f ∈ L1(Ω) and E(u) ≥

β
∫

Ω
(u− f log u) ≥ β

∫

Ω
(f − f log f), which implies that

E is bounded below inG(Ω). Let {un} be the minimization
sequence of problem (3) such that

lim
n→∞

E(un) = inf
u∈G(Ω)

E(u) := E0.

Then, there is anN such that, for everyn > N ,
∫

Ω

|∇un|+ β

∫

Ω

(un − f log un) ≤ E0 + 1,

which implies
∫

Ω

|∇un| ≤ E0 + 1− β

∫

Ω

(un − f log un)

≤ E0 + 1− β

∫

Ω

f(1− log f)

Recalling thatM ≤ un ≤ m, thus{un} is bounded inBV (Ω)
which implies there exists au∗ ∈ BV (Ω) such that, up to a
subsequnce,un → u∗ weakly inL2(Ω) and strongly inL1(Ω).
Sinceun ≥ 0 a.e. inΩ, we haveu∗ ≥ 0 a.e. inΩ. We further
haveu∗ > 0 a.e. inΩ; otherwise, up to a sequence,

lim
n→∞

∫

Ω

−f log(un) =

∫

Ω

−f log(u∗) = +∞

which contradicts with the fact thatlim
n→∞

E(un) = E0. Thus

u∗ ∈ G(Ω). Thanks to the lower semi-continuity of the total

variation and Fatous lemma, we get thatu∗ is a solution of
problem (3). The uniqueness of the solution is guaranteed by
the strict convexity of problem (3).

In what follows, we design a semi-implicit difference
scheme for the discretization of the gradient descent flow for
problem (3).

The gradient descend flow of problem (3) is

∂u

∂t
= div(

∇u

|∇u|
)− β(1 −

f

u
) (4)

To guarantee that the restored image is positive, we design
the following semi-implicit difference scheme to discretize
equation (4):

un+1 − un

τ
= div

(

∇un

|∇un|

)

− β

(

1−
f

un+1

)

. (5)

Equation (5) can be rewritten as

(un+1)2−

(

un + τ(div(
∇un

|∇un|
)− β)

)

un+1−βτf = 0. (6)

The restored image is given as the positive solution of equation
(6):

un+1 =
−an +

√

a2n − 4b

2
(7)

wherean = −un − τ(div( ∇u
n

|∇un|)− β), b = −βτf .

III. E XPERIMENTS

In this section, we present some experimental results to
show the performance and the effectiveness of the proposed
numerical scheme, in comparison to other relevant numerical
schemes in [9], [10] and [13] in terms of quality and time. Ten
images are chosen as test images, which are shown in Figure 1.
The corresponding Poisson noisy images were generated from
the test images by using the Matlab command ‘imnoise‘ with
noise type parameter ‘poisson‘. Since Poisson noise depends
only on the intensity of the image, there is no extra parameter
in the Matlab command. The stop criteria for our method is
set as

∣

∣(E(un+1)− E(un))/E(un+1)
∣

∣ ≤ tolerance.
The parameters for the proposed numerical scheme are

set asβ = 10, τ = 0.7 and tolerance = 3.0e − 4 .
The parameters for the numerical scheme in [9] are set as
β = 10, τ = 0.01 and iteration numbers are all set 30 for
all experiments. The parameters for the multilevel algorithm
[10] are set asα = 0.05, tol = 1.0e− 3; by our experiments,
α = 0.05 is averagely the best value for the ten test images.
The parameters for the method [13] are set as the same values
as in [13]:τ= 0.1, µ= 60τ/M , whereM is the maximal value
of the Poisson image. The inner and outer iteration numbers
of the method [13] are 10 and 6, respectively, which can
averagely achieve the highest signal-to-noise ratio (PSNR) and
the structural similarity index (SSIM).

In Figure 2, an example of the denoised results for the
compared algorithms are given. From Figure 2, we can see
that our algorithm and the algorithms [10, 13] have similar
visual effects, while the image restored by the algorithm [9]
is somewhat blur.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1: original images.

To evaluate the performance of the compared algorithms
quantitatively, the indexes PSNR and SSIM are used to mea-
sure the similarity between the denoised image and the original
noisy-free image. The resulting values are displayed in Table
1. Since the code provided by the authors of [10] can only
process the images of same width and height, some of the
PSNR and SSIM of the algorithm [10] can not be listed in
Table 1. From Table 1, we can see that our algorithm and
the algorithm [13] have almost same PSNR and SSIM values
averagely, which outperform ones of the algorithms in [9] and
[10]. But the runtime for our algorithm is almost one-fifth of
the runtime for the algorithm [13].

IV. CONCLUSION

In this paper, we proved the existence and uniqueness of the
LCA model by a new method. The semi-implicit scheme was
designed to discretize the gradient flow, which can guarabtee
the restored image to be positive in the image domain and
allows for a lage time step. Experiments show that our method
can numerically solve the LCA model quickly and effectively.
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