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Abstract— Discrete multiple signal classification (MUSIC) with
its low computational cost and mild condition requirement
becomes a significant non-iterative algorithm for joint sparse
recovery (JSR). However, it fails in rank defective problem caused
by coherent or limited amount of multiple measurement vectors
(MMVs). In this paper, we provide a novel sight to address
this problem by interpreting JSR as a binary classification
problem with respect to atoms. Meanwhile, MUSIC essentially
constructs a supervised classifier based on the labeled MMVs
so that its performance will heavily depend on the quality and
quantity of these training samples. From this viewpoint, we
develop a semi-supervised MUSIC (SS-MUSIC) in the spirit of
machine learning, which declares that the insufficient supervised
information in the training samples can be compensated from
those unlabeled atoms. Instead of constructing a classifier in a
fully supervised manner, we iteratively refine a semi-supervised
classifier by exploiting the labeled MMVs and some reliable
unlabeled atoms simultaneously. Through this way, the required
conditions and iterations can be greatly relaxed and reduced.
Numerical experimental results demonstrate that SS-MUSIC can
achieve much better recovery performances than other MUSIC
extended algorithms as well as some typical greedy algorithms
for JSR in terms of iterations and recovery probability. The
code is available on https://github.com/wzdammy/semi_
supervised_MUSIC.

Index Terms— MUSIC, greedy pursuit, multiple measurement
vectors, joint sparse recovery, semi-supervised classification.

I. INTRODUCTION

THE emerging theory of compressed sensing (CS) supplies
a paradigm for recovering an unknown sparse signal from

some compressed linear measurements and it has been devoted
to many applications in signal processing as well as machine
learning (ML) [1]–[3]. This theory primarily addresses the
recovery problem of a signal x ∈ Rn from its single measure-
ment vector (SMV) y ∈ Rm such that y = Ax, where A ∈
Rm×n models the linear measurement matrix with m � n.
Practically, we may encounter the problem of simultaneously
recovering a group of N sparse signals X = [x1, . . . ,xN ] ∈
Rn×N from their multiple measurement vectors (MMVs) Y
in many tasks, e.g., multivariate regression [4], classification
[5], [6], direction of arrival estimation [7], etc. When these
underlying signals share some particular sparse patterns, it will
enable to reduce the condition for successful recovery. One of
the most prevalent patterns expressed as joint sparse suggests
that these signals will share the same support so that X will
contain only a few non-zero rows. In this scenario, if the row-
sparsity, the number of non-zero rows of X is equal to K, the
problem of joint sparse recovery (JSR) from a common A can
be formulated as

min
X
‖Y −AX‖2F, s.t. ‖X‖row,0 ≤ K, (1)

where ‖ · ‖F is the Frobenius norm (F-norm) and ‖X‖row,0

counts the non-zero rows in X. Unfortunately, (1) is gener-
ally a combinatorial non-convex optimization problem due to
‖X‖row,0. To solve this problem, two strategies have been
developed in optimization field, namely convex relaxation with
a mixed norm and greedy methods [8]. Focusing on the greedy
algorithm, the central issue becomes to iteratively estimate a
certain amount of atoms according to the correlations with
the residual matrix so as to mostly decrease the value of
objective function (1). Once a support set is determined, the
recovery problem will be reduced to a standard overdetermined
linear problem solved with the least square. As a consequence,
numerous greedy JSR algorithms have been extended from
SMV to MMVs [9], yielding the orthogonal matching pursuit
(OMP) for MMVs (OMP-MMV) [10], [11] or the so-called
simultaneously OMP (SOMP) [12], [13], simultaneously com-
pressive sampling matching pursuit (SCoSaMP) [9], [14], rank
aware order recursive matching pursuit (RA-ORMP) [15] etc.

Another significant algorithm referred to as discrete multi-
ple signal classification (MUSIC) takes a different viewpoint
in the field of signal processing [16]. It reveals that each
measurement vector and the correct atoms should reside in
the same subspace if rank(Y)

.
= r = K. Under a mild

condition, those atoms can be straightforward determined by
singular value decomposition (SVD) without iterative process,
which achieves far more remarkable performance than those
greedy optimization algorithms in terms of complexity and
required conditions. When r < K caused by limited amount
of MMVs or information loss due to their correlations, MUSIC
will however yield a failing estimation in this rank defective
case. To overcome this drawback, some MUSIC extended al-
gorithms have been developed for rank defective problem, such
as iMUSIC, compressive MUSIC (CS-MUSIC) and subspace-
augmented MUSIC (SA-MUSIC) [17]–[19]. iMUSIC, an ini-
tial version of SA-MUSIC, involves an iterative atom refine-
ment procedure in MUSIC so that some falsely determined
atoms could be gradually refined during iterations. However,
some operations in atoms refinement are not optimal so that
it can only achieve a marginal improvement than MUSIC
and some conventional greedy approaches in noiseless case.
Later, two almost equivalent algorithms of SA-MUSIC and
CS-MUSIC provide a two-stages framework, which indicates
that if any K−r atoms could be correctly estimated in the first
stage with any an off the shelf algorithm, the rest r atoms will
be simply determined by applying MUSIC on an augmented
subspace [18], [19]. It follows that the required conditions and
iterations for such a combinational framework will actually
depend on the algorithm in the first stage, which is usually
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suboptimal compared to MUSIC. How to fully exploit the
advantages of MUSIC to relax the condition and reduce the
iterations become two important issues.

In recent years, the field of ML attracts much more atten-
tions because of some significant progresses in both theory
and industry. If we revisit the support estimation from the
perspective of ML, it can be regarded as a binary classification
task with respect to atoms and MUSIC actually constructs
a nearest subspace classifier (NSC) according to the positive
labeled training samples Y in a fully supervised way [20].
Therefore, its discriminative ability will be naturally affected
by the quality and quantity of these training samples. Follow-
ing this novel viewpoint, we are motivated to address the rank
defective problem by means of the strategy in ML.

In this paper, we present a novel semi-supervised MUSIC
(SS-MUSIC) for JSR, in which both the labeled MMVs and
some reliable unlabeled atoms are iteratively exploited for
classifier construction [21]. Through this way, the inadequate
supervised information in rank defective MMVs can be ad-
ditionally compensated from those unlabeled data so as to
increase the discrimination of the classifier. As a consequence,
SS-MUSIC will successfully classify all atoms within K − r
iterations as long as at least one positive atom can be newly
determined and preserved in each iteration. The simulation
results clearly demonstrate the superiorities of SS-MUSIC,
compared with the other MUSIC extended frameworks as well
as some state-of-the-art greedy algorithms.

The rest paper is organised as follows. Sec. II proposes our
algorithm in detail. Numerical experiments are conducted in
Sec. III and Sec. IV concludes this paper.

II. SEMI-SUPERVISED MUSIC
In this section, we will formally reformulate the JSR

problem and MUSIC from the viewpoint of ML in the first
place. Then a novel SS-MUSIC framework is developed and
compared with the other algorithms in order to demonstrate
its superiorities.

A. Reformulation of JSR and MUSIC
Let Y ∈ Rm×N contain N labeled noiseless training

samples drawn from the positive class. Given n unlabeled
atoms {ai}ni=1, the central task for JSR is classifying these
atoms into two classes by assigning a proper label li ∈ {0, 1}
to ai such that Y =

∑
i δ(li)aiX

i, where Xi is the i-
th row vector in X, δ stands for the indicator function as
δ(li = 0) = 0 for negative label and δ(li = 1) = 1 for positive
one. Additionally, we have a prior knowledge that the amount
of the positive atoms will be K. Since each yi will reside in
the subspace SA(l+) spanned by those positive labeled atoms,
we can measure the sum of Euclidean distance from each
yi to SA(l+) to evaluate the fitness of a label configuration
l ∈ {0, 1}n, which is defined as following.

`(l) =

N∑
i=1

dis(yi,SA(l+)) =

N∑
i=1

‖yi − PSA(l+)
(yi)‖22 (2)

where A(l+) stands for the subset of atoms with positive
labels and PS is the orthogonal projection operator onto
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Fig. 1. Framework illustrations. (a). MUSIC and (b). SS-MUSIC.

subspace S here and after. If U is the orthogonal basis
of subspace S computed from truncated SVD or principal
component analysis (PCA) [22], PS = UUT. It follows that
if the classification is correct, `(l) will reach its lower bound,
namely zero in a noiseless situation. In practical situation with
noisy MMVs, we can exploit a threshold ε related to signal-to-
noise ratio (SNR) to indicate the fitness of l, namely `(l) ≤ ε.

Considering this task, one of the most prevalent strategies in
ML is supervised classification, which focuses on constructing
a classifier based on the training samples. Following this
way, the novel MUSIC algorithm essentially constructs a NSC
with Y and each query atom will be classified by measuring
dis(ai,SY) [16]. Then K atoms with the closest distance will
be classified into the positive class. Since this classifier will be
frequently exploited in the following paper, it will be denoted
by l ← W(Q|SC ,K), where Q contains the query testing
samples, SC is the subspace spanned by samples in set C and
K controls the number of positive labels in the output of label
configuration l.

B. Algorithm Presentation

It has been indicated that when rank(Y) = K, such a
supervised classifier will produce a perfect classification result
if any K + 1 atoms are linearly independent [16]. However,
when the number of training samples is limited or they are
coherent, rank(Y) < K. In this case, supervised information
in training data will be insufficient to construct a discriminative
NSC so that the performance will be degraded. To over-
come this deficiency, we will consider the strategy of semi-
supervised classification (SSC) to develop a novel SS-MUSIC
framework [21], whose central idea is to simultaneously make
use of the labeled and some reliable unlabeled samples to
construct a semi-supervised classifier. Then the information
required for classification will be compensated from unlabeled
data. For better understanding the difference between MUSIC
and SS-MUSIC, two frameworks will be illustrated in Figs.1,
where the notation T̂ and T containing unlabeled atoms
will represent the candidate and actual training set for semi-
supervised classifier construction, respectively. we will address
the two central issues of constructing T̂ and T to explain the
framework in Fig. 1(b) as following.
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We will start from a label configuration lt obtained in t-th
iteration, t ≥ 0. If it is not fitted according to (2), it implies
that the current training set cannot provide sufficient or correct
discriminative information for classifier construction, i.e., T t

will contain some outlying atoms so as to bias the classifier or
the number of involved atoms is inadequate. To address this
issue, except for those atoms in current positive class, we will
reappraise the confidence of each atom in the negative class so
that some with high confidences will be also involved in T̂ t+1.
We suggest that if an atom is much similar to Y measured
in a feature domain, a high confidence of being involved
will be encouraged. To avoid the redundant information, the
high confident atoms should have the ability of providing
extra information compared with Alt+

. To meet these two
requirements, we will firstly project Y onto the orthogonal
complement subspace of A(lt+) as Ỹ = Φ(Y) with a feature
extractor Φ in order to eliminate the information of A(lt+).
Then NSC will be exploited to select K−r atoms Â(lt−) that is
nearest to SỸ. Finally, the candidate set will be constructed as
T̂ t+1 ← {A(lt+), Â(lt−)}. The above procedures are denoted
by purple flows in Fig. 1(b).

After we obtain T̂ t+1 containing 2K − r candidates, K −
r representative and reliable atoms will be further refined to
update T t+1 and construct the semi-supervised classifier. This
task will be simply interpreted as the following overcomplete
variables selection problem [23].

X̂∗ ← arg min
X̂
‖Y −AT̂ X̂‖

2
F (3)

whose solution is given by X̂∗ = AT̂
†Y and AT̂

† stands
for the pseudo-inverse of AT̂ . Then the atoms corresponding
to the first K − r largest ‖(X̂∗)j‖2 will be selected into
T t+1. Next, atoms in T t+1 and the labeled MMVs will be
simultaneously used to construct a semi-supervised classifier
as lt+1 ← W(A|ST t+1+Y,K). Since K − r atoms are
already devoted to classifier construction, their labels will be
consequently positive and we only need to assign the rest r
positive labels to other atoms in A. The complete SS-MUSIC
is summarised in following Algorithm 1.

C. Discussion and Comparison

To demonstrate the superiorities of SS-MUSIC to make it
more convinced, some discussions and comparisons with other
algorithms will be carried out in this subsection, in spite of
their distinct motivations. In the first place, let us focus on the

Algorithm 1 Semi-Supervised MUSIC for Noiseless JSR
1: Input: Row Sparsity: K; Measurement Matrix A; MMVs

Y; Threshold: ε; Maximum iterations: Tmax.
2: Initialization: l0 = 0, T 0 = ∅, t← 0, r = rank(Y).
3: while `(lt) > ε or t < Tmax do
4: Project Y onto a feature domain as Ỹ = Φ(Y).
5: Compute Â(lt−) and update T̂ t+1 ← {A(lt+), Â(lt−)}.
6: Update T t+1 to construct the semi-supervised classifier

as lt+1 ←W(A|ST t+1+Y,K) .
7: end while

iterations. According to the principle of SA-MUSIC or CS-
MUSIC, once T t+1 has contained the K− r atoms belonging
to the positive class, the subsequent W(A|ST t+1+Y,K) will
generate the fitted label configuration. It follows that if one
more positive atom could be newly involved and preserved
in T in each iteration, the upper bound on iterations will be
K − r. In fact, we will empirically show in the next section
that the actual iterations will be much fewer than K − r. On
the contrary, CS-MUSIC and SA-MUSIC respectively exploit
M-OMP and OSMP to determine K − r atoms iteratively in
the first stage so that their iterations will be always K − r.
Since iMUSIC also adopts M-OMP for initial K − r atoms
estimation, the lower bound on iterations will be K − r.
Accordingly, SS-MUSIC requires fewer iterations than these
MUSIC extended algorithms while its computational complex-
ity will be still comparable with that of iMUSIC. Now let
us compare the required conditions for each algorithm. For
SA-MUSIC and CS-MUSIC, their required conditions mainly
come from the first stage that should guarantee the correctness
of selecting one atom in each iteration. On the contrary, SS-
MUSIC will only require at least one correct atom to be
selected and preserved in T , which will be reasonably much
relaxed than that of SA-MUSIC and CS-MUSIC. This can be
also concluded from the proof of the generalized OMP which
selects a set of atoms in one iteration to relax the condition
of OMP in SMV problem [24]. Additionally, SS-MUSIC
involving an atom refinement process will further relax the
conditions, which is similar to iMUSIC. Nevertheless, SS-
MUSIC is different from iMUSIC in following implementa-
tions. 1). iMUSIC utilizesW(A(l−)|ST t+Y,K0) to construct
T̂ , where K0 is the number of selected atoms controlled by
the condition number of AT̂ . On the contrary, SS-MUSIC
selects K − r atoms based on W(A(l−)|SỸ,K − r) in a
different feature subspace. 2). Eq. (3) in iMUSIC is different
and the resulted K atoms will be directly served as the label
configuration in this iteration. In SS-MUSIC, those resulted
K − r atoms will be subsequently utilized to build a semi-
supervised classifier W(A|ST t+1+Y,K) to obtain the label
configuration.

Comparing SS-MUSIC with some conventional greedy opti-
mization algorithms in CS, it will be analogous to SCoSaMP
which estimates 2K atoms and makes a refinement in each
iteration. Nevertheless, SCoSaMP requires a more strict con-
dition and more iterations for exact recovery. Ambat and Hari
presented a general iterative framework for SMV problem
[25], in which they introduce a regularization procedure on
both atoms and measurement vector to remove the effect of
the previous estimated atoms. However, they aim at estimating
complete K atoms in each iteration while SS-MUSIC focuses
on K − r in the spirit of SSC.

III. EMPIRICAL PERFORMANCE

In this section, we consider the following experimental
setting to evaluate the performance for rank defective JSR
problem. X ∈ R100×N is drawn from the standard Gaus-
sian distribution and K > N rows in general position are
randomly retained with other rows setting as zeros. In this
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(a) (b) (c)

Fig. 2. (a). Phase transition maps. (b) Histograms of iterations for SS-
MUSIC. (c) Histograms of iterations for iMUSIC.

case, rank(Y) = r = N . A ∈ Rm×100 is also chosen as the
standard Gaussian random matrix with each atom normalized.
Tmax = 100.

In the first part, the phase transition of SS-MUSIC will
be evaluated in Fig. 2, where m and K will vary from 1
to 100, respectively and N = 20 and 1000 independent
recovery experiments are conducted for each pair of (m,K).
We can observe from the transition map that when m >
K, SS-MUSIC will perfectly recover the signals with high
probabilities for most pairs of (m,K). When K < 20,
it becomes the full rank JSR problem, in which case SS-
MUSIC will be the MUSIC sharing condition of m = K + 1.
When K > 20, we however observe that the required m for
recovery will not greatly increase to reach the high probability
performance, which empirically demonstrates a mild condition
for A. To evaluate the required iterations, we choose the
recovery results from pair (35, 30) and (40, 30) and count the
iterations for successfully recovery. For those failure trials,
the iterations will be denoted by 101 as Tmax = 100. We plot
the histograms of the iterations in Fig. 2(b). For comparison,
the results for iMUSIC will be also illustrated in Fig. 2(c).
It should be declared that the standard iMUSIC leverages the
condition number to control the amount of involved atoms for
refinement, but it will involve another parameter. Instead, a
fixed number is selected which is the same with SS-MUSIC,
namely K − r. We can see from the results in Fig. 2(b) that
SS-MUSIC can achieve perfect performances in both cases
and the required iterations can reach the lower bound 2 in
the most experiments among 1000 trials. On the contrary, 300
trials for iMUSIC in the case of (35, 30) are failed and the
iterations in the rest experiments are 12.

In the next experiments, SS-MUSIC will be compared with
other JSR algorithms to demonstrate its superiority in terms
of required condition. For this purpose, we will vary one pa-
rameter of m, K and N to evaluate the recovery probabilities
of each algorithm with the other two fixed, respectively. In
the first place, the noiseless situation is considered, yielding
the results shown in Figs. 3(a)-3(c) and the corresponding
settings are also illustrated in the figures. From the results
in Fig. 3(a), we can see that SS-MUSIC outperforms all
competitive algorithms when we vary m, followed by RA-
ORMP, SA-MUSIC and CS-MUSIC. It is worth noting that
when m = 31 = K + 1 reaches its lower bound, SS-MUSIC
can still achieve over 90% probability of exact recovery, which
empirically verifies a milder condition of A for SS-MUSIC.
Similar conclusions can be also derived from the performances
in Figs. 3(b) and 3(c) and we will not discuss for the sake of

(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison results of recovery probabilities in noiseless (a-c) and
noisy (d-f) JSR problem with varying (a),(d). m; (b),(e). K; (c),(f). N .

space limitation.
Finally, we will evaluate their performances in noisy situa-

tion, where the measurement noise distributed from Gaussian
will be considered for simplicity, namely Ynoise = Y + E
and E stands for the measurement noise matrix. Before
starting, since SS-MUSIC is developed for noiseless MMVs,
some operations should be modified, where the rank and the
subspace of Y should be estimated from Ynoise in the first
stage. For simplicity and fair comparison, we adopt an efficient
method proposed in SA-MUSIC to address this issue. Then
we will exploit the estimated rank and basis of subspace Y
to construct the semi-supervised classifier in SS-MUSIC. The
comparison results are illustrated in Figs. 3(d)-3(f). We can
conclude that SS-MUSIC can still preserve its remarkable
recovery performance to outperform the other algorithms in
the most cases. It can be also observed that iMUSIC will also
achieve the better performances than other algorithms due to
its refinement procedure.

IV. CONCLUSION

This paper develops a novel SS-MUSIC for rank defective
JSR, which brings the strategy of ML into the optimization
problem to shed a new light on this direction. We show
that simultaneously exploiting the labeled MMVs and some
unlabeled atoms can significantly improve the performance in
terms of required iterations and conditions. In our future work,
we will develop a robust framework to address the noisy JSR
problem straightforwardly, in which more ML strategies will
be considered and involved to avoid estimating r and subspace
of Y in the first place.
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