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Unitary algorithm for non-separable linear canonical
transforms applied to iterative phase retrieval

Liang Zhao, John T. Sheridan, Fellow, OSA, and John J. Healy, Member, IEEE,

Abstract—Phase retrieval is an important tool with broad
applications in optics. The Gerchberg-Saxton algorithm has been
a workhorse in this area for many years. The algorithm extracts
phase information from intensities captured in two planes related
by a Fourier transform. The ability to capture the two intensities
in domains other than the image and Fourier plains adds
flexibility; various authors have extended the algorithm to extract
phase from intensities captured in two planes related by other
optical transforms, e.g. by free space propagation or a fractional
Fourier transform. These generalisation are relatively simple once
a unitary discrete transform is available to propagate back and
forth between the two measurement planes. In the absence of such
a unitary transform, errors accumulate quickly as the algorithm
propagates back and forth between the two planes. Unitary
transforms are available for many separable systems, but there
has been limited work reported on non-separable systems other
than the gyrator transform. In this paper, we simulate a non-
separable system in a unitary way by choosing an advantageous
sampling rate related to the system parameters. We demonstrate
a simulation of phase retrieval from intensities in the image
domain and a second domain related to the image domain by a
non-separable linear canonical transform. This work may permit
the use of non-separable systems in many design problems.

Index Terms—Linear canonical transforms, Phase retrieval,
Fourier optics and signal processing, Image reconstruction tech-
niques.

I. INTRODUCTION

PHASE retrieval is the subject of continuing attention in
the literature, and has widespread use in astronomy, elec-

tron microscopy, holographic imaging, optical design, wave-
front sensing, and other areas [1], [2], [3]. The Gerchberg-
Saxton algorithm is a classic iterative phase retrieval algorithm
that has been studied extensively [4]. In its original form,
it takes an input of the intensity of a wave field in two
planes related by an optical Fourier transform. It has been
extended to allow other transforms take the place of the
optical Fourier transform, such as the Fresnel transform [5]
(including by means of a chirp placed in the Fourier plane [6]),
fractional Fourier transform [5], [7], and the 1-dimensional
linear canonical transform (1D-LCT) [8]. Phase retrieval based
on intensities captured in planes related by one specific non-
separable transform, the gyrator transform, have also been
reported [9], [10], [11], [12], [13], [14], [15]. The advantage of
using these alternative systems is that increased flexibility for
the system designer. There can be practical constraints on this
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Fig. 1. Flowchart for the GS algorithm.

choice, or the motivation can be to maximise the information
captured by the camera and hence the resolution, window size,
or even precision of the image [16]. It has been shown that
the unitarity of the transform used is critical to the success of
the algorithm [8], [17], [18], [19]. Details of the algorithm are
given in Fig. 1. Many variations which differ on the known
information and/or stopping criterion are also widely used.

A. Definitions

We now introduce the optical transforms used in the algo-
rithm. First, recall that the ABCD matrix characterises a first
order optical system in both ray-tracing [20] and wave optics
[21].

M =

(
A B
C D

)
. (1)

For a 2-dimensional system, M is a block matrix with 2×2
submatrices A, B, C and D. M must be a symplectic matrix.
For a separable system, the ijth element of M is zero if i and j
have different parities. Systems with circular symmetry have
this property, which conveniently allows us to simulate the
system using a one-dimensional transform, e.g. we can use the
row-column algorithm to simulate a 2D Fourier transforming
system using a 1D discrete Fourier transform algorithm.

Non-separable systems are not as common, but can arise in
many situations. For example, the following kinds of systems
are non-separable:
• Are non-orthogonal, non-axially symmetric, or contain

anamorphic lenses [22], [20];
• Involve coupling and/or shearing operations between

components along the different dimensions, e.g., a co-
ordinate transform, see Table II in [23]; and
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• Involve rotations between any arbitrary planes in phase
space, e.g., the gyrator transform [24], [25], [26], [27],
[28];

Non-separable systems can be modelled using the two dimen-
sional non-separable linear canonical transform (2D-NS-LCT).
When det(B) 6= 0, the continuous 2D-NS-LCT, G(x, y), of a
wave field g(x, y) can be given by

G(x, y) = LM{g(x′, y′)}(x, y)

=

∫ ∫ ∞
−∞

g(x′, y′)K(x, x′, y, y′,M)dxdy
(2)

where K(x, x′, y, y′,M) is the kernel of the transform,

K(x, x′, y, y′,M) =
1√

j det(B)
exp

[
jπ
k1x

2 + k2xy + k3y
2

2 det(B)

]
× exp

j2π

det(B)

[
(−b22x+ b12y)x

′

+ (b21x+ b12y)y
′

+
1

2
(p1x

′2 + p2x
′y′

+ p3y
′2)

]
(3)

where

k1 = d11b22 − d12b21, p1 = a11b22 − a21b12 (4)
k2 = 2(−d11b12 + d12b11), p2 = 2(a12b22 − a22b12)
k3 = −d21b12 + d22b11, p3 = −a12b21 + a22b11

For a full definition including the various special cases when
det(B) = 0, the reader is referred to the references [29],
[30], [23], [31]. The inverse 2D-NS-LCT recovers g(x, y) from
G(x′, y′) by,

g(x, y) = LM−1{G(x′, y′)}(x, y) (5)

The continuous NS-LCT is additive [30], [23], meaning

LM2
{LM1

{g}} = LM3
{g} (6)

where M3 = M2M1. When M2 = M−11 , we obtain a
statement that the transform is unitary

LM−1{LM{g}} = LM−1M{g} = LI{g} = g. (7)

The difficulty is that the properties described in Eqs 6
and 7 are not easily preserved in discrete linear canonical
transforms [8], [32], especially in the non-separable case [33],
[23]. For phase retrieval, we require a discrete transform that
approximates the 2D-NS-LCT [30], [34] and furthermore that
is unitary.

II. A UNITARY ALGORITHM TO CALCULATE THE 2D
NON-SEPARABLE LCT

For non-separable transforms, the output sampling points
generally lie on a skewed grid, which may require interpolation
to render [23]. This is evident in the decomposition given in
Eq. 8, which is valid if B has an inverse. The decomposition
shows that we can compute most non-separable transforms as
a series of operations. A discrete input, e.g. simulated data or
the output of a digital camera, is defined on a rectilinear grid
of sample locations. The first three operations in the decompo-
sition of Eq. 8, multiplication by a chirp, a Fourier transform
and a second chirp multiplication, do not affect the locations of
these points (note that we read the sequence of matrices right
to left). Furthermore, they are unitary operations. The final
operation, the affine transformation, can affect the locations
of the samples. Interpolation operations are computationally
intensive and a source of error, leading Ding et al. to develop
algorithms that require fewer interpolations [34]. Our algo-
rithm is based on the observation that for certain combinations
of sampling rates and system parameters, the output sampling
points lie on a Cartesian grid, see Fig. 2. This allows us to
dispense with any interpolation, yielding a discrete, unitary
transformation suitable for iterative calculations.

M =

(
A B
C D

)
=

(
B 0

0
(
BT
)−1)( I 0

BTD I

)
×
(

0 I
−I 0

)(
I 0

B−1A I

)
. (8)

Fig. 2. (a1) The magnitude of an example input to system described by
an LCT. (b1) The output if the system is separable. (c1) The output if the
system is a typical non-separable system. (d1) The output of a non-separable
system with appropriate sampling rates per [23]. Note how the samples lie
on a Cartesian grid. (a2-d2) The corresponding sampling grids.

The conditions for which the output samples lie on a
Cartesian grid are given in Tab. I; it is assumed that the
same number of samples are used in both directions, and that
uniform sampling is used - hence the constraints are on the
width of the input image in x and y. These conditions can
be derived using straightforward geometrical considerations,
which we now outline.

We now sketch a proof of this property. While this may
seem a little opaque, the geometrical interpretation is very
simple. We are simply making sure that the co-ordinate
transform lines up the samples on simple locations, as in Fig.
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TABLE I
Constraints for samples lying on Cartesian grid

B Constraints
Diagonal None

Antidiagonal None
Lower triangular Ly = l b22

b21
Lx, l ∈ N

Upper triangular Ly = 1
l
b12
b11

Lx, l ∈ N

Anti lower triangular Ly =
∣∣∣ b22b21

∣∣∣Lx

Anti upper triangular Ly = l b12
b11

Lx, l ∈ N
bij 6= 0 ∀i, j b11b22

b12b21
= 1 + 1

kl
, Ly = l b22

b21
Lx, k, l ∈ N

(2 d2). In [23], we showed that when b22 6= 0 and det (B) 6= 0,
the sub-matrix B can be decomposed as follows.

B =

(
1 b12

b22
0 1

)(
1 0

b21b22
det (B) 1

)(
det (B)

b22
0

0 1

)(
1 0
0 b22

)
(9)

Eq. 9 indicates that B can be decomposed into a pair
of 1-D magnifications followed by a pair of 1-D sheering
operations. The magnifications have no effect on whether the
output samples lie on a Cartesian grid. Hence, we only need
concern ourselves with the sheering operations.

We define p = Ty

Tx
, where Tx and Ty are the sample spacing

in x and y in the input plane.
The first operations that alter the grid spacing are the Fourier

transform (see Eq. (8)) and the two scaling operations (Eq.
(9)). After these operations, the sampling grid has spacing
L′x/N and L′y/N , where,

L′x =
det (B)

b22Tx
, (10)

and

L′y =
b22
Ty

=
b22
pTx

. (11)

At this point, we have a rectangular grid of samples with
known spacings. Basic geometry will obtain the locations
of the samples in such a grid after a sheering in x and
a second sheering in y, yielding conditions on the ratio of
the sampling input rates p in terms of the parameters of
the skewing operations. Given a sampling point (x, y), it
is mapped by the two skewing operations to the location
(x−s2y, y(1+s1s2)−s1x), where s1 is the parameter relating
to the first skewing (in y), and s2 is the parameter relating to
the second skewing (in x). We need only constrain the two
co-ordinates to be any integer multiple of the sampling period
to ensure the new sample location lies on the grid. From such
considerations, we can show that a Cartesian output grid can
be obtained providing the following conditions are met:

kp =
b12b22
det(B)

, (12)

and

p

l
=
b22
b21

, (13)

where k, l ∈ N. From these conditions, we can find the
constraints given in Tab. (I), except for the 2nd and 6th cases,
when the decomposition of B given in Eq. (9) is invalid
because b22 = 0.

We are preparing detailed proofs for publication in a more
verbose format.

III. DEMONSTRATION OF PHASE RETRIEVAL FOR A
NON-SEPARABLE SYSTEM

In this section, we demonstrate the efficacy of our method.
For the sake of a simplified calculation, we choose a system
characterised by the following matrix.

M =

(
0 B

B−1 0

)
, (14)

where B = ( 1 0.5
0.5 0.5 ). From Eq. (8), this 2D-NS-LCT system

can be evaluated by M =
(

B 0
0 (BT )−1

) (
0 I
−I 0

)
, i.e. a 2D

Fourier transform followed by a coordinate transform. As
noted previously, the omitted chirp multiplications don’t alter
the sample locations and so the example is not compromised
by this simplification. The output will appear on a Cartesian
grid for this system providing the sampling rates in x and y
are the same, per the last condition in Tab. I.

The phase retrieval results obtained by both the proposed
algorithm and the standard algorithm are shown in Fig. 3.
Both algorithms consist of a Fourier transform followed by
a co-ordinate transform. In the proposed algorithm, we use
the sampling rates specified by Tab. (I) (arbitrarily choosing
k = l = 1), which reduces the co-ordinate transform to
pixel swapping. In the standard algorithm, we perform the
co-ordinate transform by means of MATLAB R©’s imwarp
function. In Fig. 3(a), we plot the log base 10 of the mean
squared error of the recovered image against the number of
iterations, k. After the 1000st iteration, this metric is -307
dB for our proposed algorithm, which is much less than the
corresponding -1.57 dB for the reference algorithm. The image
reconstructed by our algorithm is shown in Fig. 3(b2), and is
recognisably a skewed version of the cameraman image. The
reference algorithm fails to produce a recognisable image, see
Fig. 3(c2). Hence, we have demonstrated phase retrieval for a
general non-separable LCT for the first time.

IV. CONCLUSION

The calculation of 2D non-separable LCTs is complicated
by the presence of an affine transformation which results in
a skewed sampling grid. The interpolation required to cope
with this skewed grid adds time and error to the simulation
of these optical propagation problems. Iterative calculations
are especially sensitive to this problem. We have shown that
we can choose the sampling rate to obtain a simplified affine
transformation, which conveniently maps to a Cartesian grid.

We have made use of this result to perform iterative phase
retrieval in a non-separable optical system. The complexity
of our calculation is fundamentally limited by the Fourier
transform stages. However, the required sampling rates (per
Tab. (I)) may prove onerous in some practical cases.
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Fig. 3. Simulation result: (a) 10 log10(MSE) of the recovered images; (b1)
and (b2) are the reconstructed image after the 1st and 1000th iteration by the
proposed algorithm; (c1) and (c2) are the reconstructed image after the 1st
and 1000th iteration by the standard algorithm.

While we have demonstrated convergence, we have not
proven it. In fact, it is not generally possible to mathematically
prove convergence to zero: even Feinups famous paper [17]
only proves that the error does not increase for the Gerschberg-
Saxton algorithm; that result applies no matter the propagation
algorithm used, providing it is unitary, and so it applies to the
algorithm in this paper.
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