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Abstract—We tackle distributed detection of a non-cooperative
target with a Wireless Sensor Network (WSN). When the target
is present, sensors observe an (unknown) deterministic signal
with attenuation depending on the distance between the sensor
and the (unknown) target positions, embedded in symmetric
and unimodal noise. The Fusion Center (FC) receives quan-
tized sensor observations through error-prone Binary Symmetric
Channels (BSCs) and is in charge of performing a more-accurate
global decision. The resulting problem is a two-sided parameter
testing with nuisance parameters (i.e. the target position) present
only under the alternative hypothesis. After introducing the
Generalized Likelihood Ratio Test (GLRT) for the problem,
we develop a novel fusion rule corresponding to a Generalized
Rao (G-Rao) test, based on Davies’ framework, to reduce
the computational complexity. Also, a rationale for threshold-
optimization is proposed and confirmed by simulations. Finally,
the aforementioned rules are compared in terms of performance
and computational complexity.

Index Terms—Decentralized detection, threshold optimization,
WSN, GLRT, Rao test.

I. INTRODUCTION

W
IRELESS Sensor Networks (WSNs) have attracted

significant interest due to their applicability to recon-

naissance, surveillance, security and environmental monitoring

[1]. Distributed detection is one of the main tasks for a WSN

and it has been heavily investigated in the last decades [2].

Due to stringent bandwidth and energy constraints, it is

often assumed that each sensor sends one bit of information

about the estimated hypothesis to the Fusion Center (FC).

In this context the optimal test (under Bayesian/Neyman-

Pearson frameworks) at each sensor is known to be a one-

bit quantization of the local Likelihood-Ratio (LR); that is to

perform a LR Test (LRT). Unfortunately in most cases, due

to a lack of knowledge of the parameters of the target to be

detected, it is not possible to compute the LRT at each sensor.

Also, even when the sensors can compute their local LRT,

the search for local quantization thresholds is exponentially

complex [3], [4]. Thus the bit of information being sent

is usually the result of a “dumb” quantization [5], [6] or

represents the estimated binary event, according to a sub-

optimal rule [7], [8]. In both cases, the bits from the sensors are

collected by the FC and combined via a specifically-designed

fusion rule aiming at improved detection rate.
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The optimum strategy to fuse the sensors’ bits at the FC,

under conditional independence assumption, is a weighted

sum, with weights depending on unknown target parameters

[2]. Some simple fusion approaches, based on the counting

rule or channel-aware statistics, have been proposed in the

literature to overcome such unavailability [9]–[12]. On the

other hand, in some particular scenarios the uniformly most

powerful test is independent of the unknown parameters

under the alternative hypothesis, so they do not need to be

estimated [13]. Nonetheless, in the general case the FC is

usually in charge of solving a composite hypothesis test and

the Generalized LRT (GLRT) is commonly employed [14].

Indeed, GLRT-based fusion of quantized data was studied

in [6], [15], [16] for: (i) detecting a known source with

unknown location, (ii) detecting an unknown source with

known observation coefficients, and (iii) fusing conditionally

dependent decisions, respectively. As a simpler alternative, a

Rao test was developed in a more general context for problem

(ii) in [5]. However, in the case of an uncooperative target, it

is reasonable to assume that both the target emitted signal and

location are not available at the FC. To the best of authors’

knowledge, only a few works have dealt with the latter case

[17], [18]. In [17], a GLRT was derived for revealing a target

with unknown position and emitted power and compared to the

so-called counting rule, the optimum rule and a GLRT based

on the awareness of target emitted power, showing a marginal

loss of the latter rule with respect to the “power-clairvoyant”

GLRT. Unfortunately, the considered GLRT requires a grid

search on both the target location and emitted power domains.

Therefore, as a computationally simpler solution, generalized

forms of locally-optimum detectors have been proposed for

non-cooperative detection of a fluctuating target emission [18].

In this letter, we focus on decentralized detection of a

non-cooperative target with a spatially-dependent emission

(signature), with emitted signal modelled as unknown and de-

terministic (as opposed to [18]). More specifically, the received

signal at each individual sensor is embedded in unimodal

zero-mean additive noise, with a deterministic Amplitude

Attenuation Function (AAF) depending on the sensor-target

distance. Each sensor observes a local measurement on the

absence/presence of the target and forwards a single bit version

to a FC, over noisy imperfect (modelled as Binary Symmetric

Channels, BSCs) reporting channels, which is in charge of

providing an accurate global decision. The problem considered

is a two-sided parameter test with nuisance parameters present

only under the alternative hypothesis, which thus precludes the

application of conventional score-based tests, such as the Rao

test. In order to reduce the computational complexity required

by the GLRT, we develop a (simpler) sub-optimal fusion rule

http://arxiv.org/abs/1703.03946v1
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based on a generalization of the Rao test [14]. The aforemen-

tioned detector is also compared in terms of computational

complexity. Finally, simulation results are provided to compare

these rules in some practical scenarios.

The letter is organized as follows: Sec. II describes the sys-

tem model; Sec. III develops the generalized form of Rao test

and tackles the quantizer optimization problem, with results

validated in Sec. IV. Finally, conclusions are in Sec. VI1.

II. SYSTEM MODEL

We consider a binary hypothesis test where a collection of

sensors k ∈ K , {1, . . . ,K} are deployed in a surveillance

area to monitor the absence (H0) or presence (H1) of a target

of interest having a partially-specified spatial signature. The

problem can be summarized as follows:
{
H0 : yk = wk,

H1 : yk = θ g(xT ,xk) + wk, k ∈ K;
(1)

In other terms, when the target is present (i.e. H1), we

assume that its radiated (amplitude) signal θ, modelled as

unknown deterministic, is isotropic and experiences (distance-

dependent) path-loss and additive noise, before reaching in-

dividual sensors. In Eq. (1), yk ∈ R denotes the kth sensor

measurement and wk ∈ R denotes the noise Random Variable

(RV) with E{wk} = 0 and unimodal symmetric pdf2, denoted

with pwk
(·) (the RVs wk are assumed mutually independent).

Additionally, xT ∈ R
d denotes the unknown position of the

target, while xk ∈ R
d denotes the known kth sensor position.

Both xT and xk uniquely determine the value of g(xT ,xk),
generically denoting the AAF3.

For example, the measurement yk is distributed under

H0 (resp. H1) as yk | H0 ∼ N (0, σ2
w,k) (resp. yk | H1 ∼

N (θ g(xT ,xk), σ
2
w,k)) when the noise is modelled as wk ∼

N (0, σ2
w). Then, to meet stringent bandwidth and energy

budgets in WSNs, the kth sensor quantizes4 yk into one bit of

information, i.e. bk , u (yk−τk), k ∈ K, where τk denotes the

quantizer threshold. The bit bk is sent over a BSC and the FC

observes an error-prone version due to non-ideal transmission,

i.e. b̂k = bk (resp. b̂k = (1− bk)) with probability (1− Pe,k)

(resp. Pe,k), which we collect as b̂ ,
[
b̂1 · · · b̂K

]T
. Here

Pe,k denotes the (known) BEP of kth link.

We underline that the unknown target position xT is observ-

able (i.e. can be estimated) at the FC only when the signal

1Notation - Lower-case bold letters denote vectors, with an being the nth
element of a; upper-case calligraphic letters, e.g. A, denote finite sets; E{·},
var{·} and (·)T denote expectation, variance and transpose, respectively;
u(·) denotes the Heaviside (unit) step function; P (·) and p(·) are used to
denote probability mass functions (pmf) and probability density functions
(pdf), respectively, while P (·|·) and p(·|·) their corresponding conditional
counterparts; N (µ, σ2) denotes a Gaussian pdf with mean µ and variance

σ2; χ2

k
(resp. χ

′
2

k
(ξ)) denotes a chi-square (resp. a non-central chi-square)

pdf with k degrees of freedom (resp. and non-centrality parameter ξ); the

symbols ∼ and
a∼ mean “distributed as” and “asymptotically distributed as”.

2Noteworthy examples of such pdfs are the Gaussian, Laplace, Cauchy and
generalized Gaussian distributions with zero mean [14].

3We remark that the results presented in this letter apply to any suitably
defined AAF modelling the spatial signature of the target/event to be detected.

4We restrict our attention to deterministic quantizers for simplicity; an
alternative is the use of stochastic quantizers, however their analysis falls
beyond the scope of this letter.

is present, i.e. θ 6= θ0 (θ0 = 0). Therefore, the problem in

Eq. (1) refers to a two-sided parameter test (that is {H0,H1}
corresponds to {θ = θ0, θ 6= θ0}) with nuisance parameters

(xT ) present only under the alternative hypothesis H1 [19].

The aim of this study is the derivation of a (computationally)

simple test deciding in favour of H1 (resp. H0) when the

statistic Λ(b̂) is above (resp. below) the threshold γ, and the

quantizer design for each sensor (i.e. an optimized τk, k ∈ K).

III. FUSION RULES

A. Test derivation

A common approach for composite hypothesis testing is

given by the GLRT [17], whose expression is:

ΛG , 2 ln[P (b̂; θ̂1, x̂T ) / P (b̂; θ0)] (2)

where P (b̂; θ,xT ) denotes the likelihood as a func-

tion of (θ,xT ), whereas θ̂1 and x̂T are the Maximum

Likelihood (ML) estimates under H1 (i.e. (θ̂1, x̂T ) ,

argmax(θ,xT ) P (b̂; θ,xT )). It is clear from Eq. (2) that ΛG re-

quires the solution to an optimization problem. Unfortunately

a closed form for the pair (θ̂1, x̂T ) is not available even for

Gaussian noise. This increases the computational complexity

of its implementation, which typically involves a grid approach

on (θ,xT ), see e.g. [17].

A different path for exploiting the two-sided nature of the

problem consists in adopting the rationale in [19]. This allows

to extend score-based tests to the case of nuisance parameters

present solely under H1. Indeed, score-based tests require the

ML estimates of nuisances under H0 [14], which thus cannot

be obtained, as they are not observable. The cornerstone of

Davies’ work is summarized as follows. If xT were known

in (1), it would be easy to find a simple test for a two-

sided testing: indeed, in the latter case, the Rao test seems

a reasonable decision procedure [14]. However, since xT is

unknown in our setup, a family of statistics is instead obtained

by varying xT . Thus, to overcome this technical difficulty,

Davies proposed the use of the maximum of the resulting

family of the statistics, following a “GLRT-like” approach.

In what follows, we will refer to the employed decision test

as Generalized Rao (G-Rao), to underline the use of Rao as

the inner statistic employed in Davies approach, that is:

ΛR , max
xT

(
∂ lnP (b̂; θ,xT )

∂θ

)2
∣∣∣∣∣∣
θ=θ0

/ I(θ0,xT ), (3)

where I(θ,xT ) , E{

(
∂ ln[P (b̂;θ,xT )]

∂θ

)2

} is the Fisher Infor-

mation (FI) obtained assuming xT is known, evaluated at θ0
in (3). Our choice is motivated by reduced complexity of test

implementation (since θ̂1 is not required, cf. Eq. (3), and thus

a grid implementation w.r.t. the sole xT is required).
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In order to obtain ΛR explicitly, exploiting the independence

of sensors’ measurements and reporting channels, we expand

ln
[
P (b̂; θ,xT )

]
as:

ln
[
P (b̂; θ,xT )

]
=

K∑

k=1

ln
[
P (b̂k; θ,xT )

]
=

K∑

k=1

{b̂k ln [αk(θ,xT )] + (1− b̂k) ln [1− αk(θ,xT )]} (4)

where αk(θ,xT ) , (1−Pe,k)βk(θ,xT )+Pe,k(1−βk(θ,xT ))
and βk(θ,xT ) , Fwk

(τk − θg(xT ,xk)), Fwk
(·) being the

complementary cumulative distribution function of wk. On the

other hand, the closed form of I(θ,xT ) is [5], [6]:

I(θ,xT ) =

K∑

k=1

ψk(θ,xT ) g(xT ,xk)
2 , (5)

where

ψk(θ,xT ) ,
(1 − 2Pe,k)

2 p2wk
(τk − θg(xT ,xk))

αk(θ,xT ) (1− αk(θ,xT ))
. (6)

Plugging Eqs. (4-5) into (3), we obtain ΛR explicitly as:

ΛR = max
xT

[∑K

k=1 νk(b̂k) g(xT ,xk)
]2

∑K

k=1 ψk,0 g(xT ,xk)2
, (7)

where we have defined νk(b̂k) ,
(1−2Pe,k) pwk

(τk) [b̂k−αk,0]
αk,0(1−αk,0)

,

αk,0 , αk(θ0,xT ) and ψk,0 , ψk(θ0,xT ). It is apparent that

ΛR (as well as ΛG) is a function of τk (as ν̂k(b̂k) and ψk,0 both

depend on τk), k ∈ K, (collected as τ ,
[
τ1 · · · τK

]T
)

which can be optimized to achieve improved performance.

B. Quantizer Design

It is worth noticing that (asymptotically-) optimal determin-

istic quantizers cannot be obtained as in [5], [6], because no

performance expressions are known in the literature for tests

based on the Davies approach [19]. To this end, we adopt

a modified version of the rationale in [5], [6] and then we

confirm its validity by simulations in Sec. IV. Specifically, it

is known that the (position xT ) clairvoyant Rao statistic Λ̄R (as

well as the corresponding clairvoyant GLR), is asymptotically

(and assuming a weak signal5) distributed as [14]

Λ̄R
a
∼

{
χ2
1 under H0

χ
′2
1 (λQ(xT )) under H1

, (8)

where the non-centrality parameter λQ(xT ) , (θ1 −
θ0)

2 I(θ0,xT ) (underlining dependence on xT ) is given as:

λQ(xT ) = θ21

K∑

k=1

ψk,0 g(xT ,xk)
2 , (9)

with θ1 being the true value under H1. Clearly the larger

λQ(xT ), the better the xT−clairvoyant GLRT and Rao tests

will perform when the target to be detected is located at xT .

5 That is |θ1 − θ0| = c/
√
K for some constant c > 0 [14].

Also, it is apparent that λQ(xT ) is a function of τk , k ∈ K
(because of the ψk,0’s). For this reason, with a slight abuse of

notation we will use λQ(xT , τ ) and we choose the thresholds

τ to maximize λQ(xT , τ ), that is τ ⋆ , argmaxτ λQ(xT , τ ).
In general, such optimization would lead to an optimized

threshold that will be dependent on xT (and thus not practical).

However, for this specific problem the optimization can be

decoupled into the following set of K independent threshold

design problems, which are independent of xT (cf. Eq. (9)):

argmax
τk

{
ψk,0(τk) =

p2wk
(τk)

∆k + Fwk
(τk) [1− Fwk

(τk)]

}
(10)

where ∆k , [Pe,k (1 − Pe,k)]/(1 − 2Pe,k)
2. It is known

from the quantized estimation literature [20], [21] that many

unimodal and symmetric pwk
(·)’s with E{wk} = 0 lead

to τ⋆k , argmaxτk ψk,0(τk) = 0 (independent of ∆k);

such examples are the Gaussian, Laplace, Cauchy and the

widely used generalized normal distribution (only in the case

0 ≤ ǫ ≤ 2). Also, it has been shown in [5] that τk = 0 is

still a good (sub-optimal) choice even when not corresponding

to the optimizer for a specific noise pdf, especially in the

case of noisy (Pe,k 6= 0) reporting channels. Therefore, we

employ τk = 0, k ∈ K, in Eq. (7), leading to the following

further simplified expression for threshold-optimized G-Rao

test (denoted with Λ⋆
R):

Λ⋆
R , max

xT

4
[∑K

k=1(1− 2Pe,k) pwk
(0) g(xT ,xk) (b̂k −

1
2 )
]2

∑K

k=1(1 − 2Pe,k)2 p2wk
(0) g(xT ,xk)2

(11)

which is considerably simpler than the GLRT, as it obviates

solution of a joint optimization problem w.r.t. (xT , θ) (which

depends on pwk
(·)). Furthermore, the corresponding optimized

non-centrality parameter, denoted with λ⋆Q(xT ), is given by:

λ⋆Q(xT ) , 4θ21

K∑

k=1

[
(1 − 2Pe,k)

2 p2wk
(0) g(xT ,xk)

2
]
. (12)

C. Computational Complexity

As detailed in [15], [17], [18], the GLRT is usually imple-

mented by means of a grid discretization. More specifically,

assuming that xT and θ belong to limited sets SxT
⊂ R

d and

Sθ ⊂ R, respectively, the search space (xT , θ) required for (2)

is then discretized into: (a) NxT
position bins in R

d, each one

associated to a center bin position, say xT [i], i ∈ {1, . . .NxT
};

(b) Nθ amplitude bins in R, each one to associated to a center

bin amplitude, say θ[j], j ∈ {1, . . .Nθ}. Similarly, the G-Rao

statistic is implemented by discretizing the sole search space

of xT , leading to:

ΛR ≈ max
i=1,...NxT

[∑K

k=1 νk(b̂k) g(xT [i],xk)
]2

∑K

k=1 ψk,0 g(xT [i],xk)2
. (13)

Thus, its complexity is O (KNxT
), thus providing a signifi-

cant complexity reduction w.r.t. the GLR, as reported in Tab. I.
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Table I
COMPLEXITY COMPARISON OF DECISION STATISTICS.

Fusion Rule Computational Complexity

GLR O (KNxT
Nθ) (Grid search)

G-Rao O (KNxT
) (Grid search)

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

τ
k

P
D

0

 

 

G−Rao θ (+)  SNR = 10
G−Rao θ (−)  SNR = 10
GLR θ (+)  SNR = 10
GLR θ (−)  SNR = 10
G−Rao θ (+)  SNR = 0
G−Rao θ (−)  SNR = 0
GLR θ (+)  SNR = 0
GLR θ (−)  SNR = 0

Figure 1. PD0
vs τk = τ , PF0

= 0.01; WSN with K = 49 sensors,
Pe,k = 0, SNR ∈ {0, 10} (amplitude signal with positive/negative polarity).

IV. GAUSSIAN NOISE ANALYSIS

In this section we compare G-Rao and GLR tests, by

evaluating their performance in terms of system false alarm

and detection probabilities, defined as PF0
, Pr{Λ > γ|H0}

and PD0
, Pr{Λ > γ|H1}, respectively, where Λ is the

statistic employed at the FC. Additionally, we will validate

the zero-threshold choice obtained in Sec. III-B.

To this end, we consider a 2-D scenario (xT ∈ R
2) where a

WSN composed of K = 49 sensors is employed to detect the

presence of a target within the (square) region A , [0, 1]2,

being the surveillance area. For simplicity the sensors are

arranged according to a regular square grid covering A. With

reference to the sensing model6, we assume wk ∼ N (0, σ2
w),

k ∈ K (also w.l.o.g. we set σ2
w = 1). Also, the AAF chosen is

g(xT ,xk) , 1 /
√
1 + (‖xT − xk‖ / η)

α
(i.e. a power-law),

where we have set η = 0.2 (viz. approximate target extent)

and α = 4 (viz. decay exponent). Finally, we define the target

Signal-To-Noise Ratio (SNR) as SNR , 10 log10(θ
2/σ2

w).
Initially, we assume ideal BSCs, i.e. Pe,k = 0, k ∈ K.

As explained before, ΛG and ΛR are implemented by means

of grids for θ and xT . Specifically, the search space of the

target signal θ is assumed to be Sθ ,
[
−θ̄, θ̄

]
, where θ̄ >

0 is such that the SNR = 20 dB. The grid points are then

chosen as
[
−gT

θ 0 gT
θ

]T
, where gθ collects target strengths

corresponding to the SNR dB values −10 : 1 : 20 (thus Nθ =
63). Differently, the search space of the target position xT is

(naturally) assumed to coincide with the surveillance area, i.e.

SxT
= A. The 2-D grid points are then obtained by regularly

sampling A with NxT
= N2

c points, where Nc = 100.

First, in Fig. 1 we show PD0
(under PF0

= 0.01) versus a

common threshold choice for all the sensors τk = τ , k ∈ K,

for a target whose location is randomly drawn according to a

uniform distribution within A. It is apparent that in the low-

SNR limit τ = 0 represents a nearly-optimal solution, since the

optimal value of τ found numerically depends on the polarity

6To complement our analysis, this letter provides corresponding results for
Laplace noise in next section.
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[y] coordinate[x] coordinate
 

P
D

0

GLRT
G−Rao Test

Figure 2. PD0
vs xT , PF0

= 0.01; WSN with K = 49 sensors, τk = 0,
Pe,k = 0, SNR = 5dB.
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0
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Figure 3. PD0
vs. SNR (dB), PF0

∈ {0.05, 0.01}; WSN with K = 49
sensors, τk = 0, Pe,k = Pe ∈ {0, 0.1}.

of θ, which is unknown. This both applies to GLR and G-Rao

as well. Secondly, in Fig. 2, we report PD0
(under PF0

= 0.01)

versus target location xT (for SNR = 5dB), in order to obtain

a clear comparison of detection performance over the entire

surveillance area A. It is apparent that the G-Rao test presents

only marginal loss over the GLRT. Additionally the PD0
(xT )

profile is qualitatively similar for both rules, and underlines

lower detection performance at the boundaries of the surveil-

lance area. This can be attributed to regular displacement of

the WSN within A. Finally, in Fig. 3 we compare the PD0

(for PF0
∈ {0.05, 0.01}) of considered rules (for a target with

randomly drawn position within A) versus SNR (dB), in order

to obtain a comparison of detection sensitivity versus the signal

strength. It is apparent that both rules perform very similarly

over the whole SNR range, as well as for a different quality

of the reporting channel (Pe,k = Pe ∈ {0, 0.1}).

V. LAPLACE NOISE ANALYSIS

In this section the focus will be on wks modelled as Laplace

noise. Similarly, we will validate the zero-threshold choice

proposed in the paper also for this case. With reference to

the sensing model, we assume wk ∼ L(0, βk), k ∈ K
(here L(µ, β) is used to denote a Laplace pdf with mean µ
and scale parameter β). Also for simplicity, we assume that

each βk is chosen such that E{w2
k} = 1. Furthermore, we

define the target Signal-To-Noise Ratio (SNR) as SNR ,

10 log10(θ
2/E{w2

k}). Initially, we assume ideal BSCs, i.e.

Pe,k = 0, k ∈ K. Finally, we remark that we use the same

grid implementation of GLRT and G-Rao test employed in the

previous section for Gaussian noise.
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τ
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Figure 4. PD0
vs τk = τ , PF0

= 0.01; WSN with K = 49 sensors,
Pe,k = 0, SNR ∈ {0, 10} (amplitude signal with positive/negative polarity).

Figure 5. PD0
vs xT , PF0

= 0.01; WSN with K = 49 sensors, τk = 0,
Pe,k = 0, SNR = 5dB.

First, in Fig. 4 we show PD0
(under PF0

= 0.01) versus a

common threshold choice for all the sensors τk = τ , k ∈ K,

for a target whose location is randomly drawn according to a

uniform distribution within A. It is apparent that in the low-

SNR limit τ = 0 represents a nearly-optimal solution, since the

optimal value of τ found numerically depends on the polarity

of θ, which is unknown (this both applies to GLR and G-Rao

as well). Similar results have been observed also in the case

of Gaussian noise in the paper itself.

Secondly, in Fig. 5, we report PD0
(under PF0

= 0.01)

versus target location xT (for SNR = 5dB), in order to

obtain a clear comparison of detection performance over the

entire surveillance area A. It is apparent that the G-Rao test

presents only marginal loss over the GLRT. By looking at the

similar qualitative behaviour between Laplace and Gaussian

noise (reported in the paper), we conclude that such trend is

quite general for unimodal zero-mean noise pdfs.

Finally, in Fig. 6 we compare the PD0
(for PF0

∈
{0.05, 0.01}) of considered rules (for a target with randomly

drawn position within A) versus SNR (dB), in order to obtain

a comparison of detection sensitivity versus the signal strength.

It is apparent that both rules perform very similarly over the
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Figure 6. PD0
vs. SNR (dB), PF0

∈ {0.05, 0.01}; WSN with K = 49
sensors, τk = 0, Pe,k = Pe ∈ {0, 0.1}.

whole SNR range, as well as for a different quality of the

reporting channel (Pe,k = Pe ∈ {0, 0.1}), with G-Rao slightly

outperforming the GLRT at low SNR.

VI. CONCLUSIONS

We developed a generalized version of the Rao test (G-

Rao, based on [19]) for decentralized detection of a non-

cooperative target emitting an unknown deterministic sig-

nal (θ) at unknown location (xT ), as an attractive (low-

complexity) alternative to GLRT (the latter requiring a grid

search on the whole space (θ,xT )) for a general model with

quantized measurements, zero-mean, unimodal and symmetric

noise (pdf), non-ideal and non-identical BSCs. Since xT is a

nuisance parameter present only under H1 (i.e. when θ 6= 0),

the G-Rao statistic arises from maximization (w.r.t. xT ) of

a family of Rao decision statistics, obtained by assuming xT

known. We also developed a reasonable criterion for optimized

sensor thresholds: the zero choice was shown to be appealing

for many pdfs of interest. This result was exploited to optimize

the performance of G-Rao and GLR tests. Also, it was shown

through simulations that the G-Rao test, achieves practically

the same performance as the GLRT in the cases considered.
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