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SkeletonNet: Mining Deep Part Features for 3D
Action Recognition

Qiuhong Ke, Senjian An, Mohammed Bennamoun, Ferdous Sohel, and Farid Boussaid

Abstract—This letter presents SkeletonNet, a deep learning
framework for skeleton-based 3D action recognition. Given a
skeleton sequence, the spatial structure of the skeleton joints
in each frame and the temporal information between multiple
frames are two important factors for action recognition. We
firstly extract body-part based features from each frame of the
skeleton sequence. Compared to the original coordinates of the
skeleton joints, the proposed features are translation, rotation and
scale invariant. To learn robust temporal information, instead of
treating the features of all frames as a time series, we transform
the features into images and feed them to the proposed deep
learning network which contains two parts, one to extract general
features from the input images, while the other to generate a
discriminative and compact representation for action recognition.
The proposed method is tested on SBU kinect interaction dataset,
CMU dataset and the large scale NTU RGB+D dataset and
achieves state-of-the-art performance.

Index Terms—convolutional neural networks (CNNs), 3D ac-
tion recognition, robust features

I. INTRODUCTION

HUMAN action recognition has received increasing atten-
tion [1]–[7] due to its wide range of applications such

as video surveillance, human-machine interaction and robot
control [8]. The 3D representations of human actions provide
more comprehensive information than 2D RGB videos [9]–
[13]. Recently, many works have investigated skeleton-based
3D action recognition due to the availability of highly-accurate
data acquisition devices and real-time skeleton estimation
algorithms [14], [15]. A human skeleton can be grouped into
five sets of joints corresponding to five body parts, i.e., the
trunk, the left arm, the right arm, the left leg and the right
leg. Different body parts have their own specific features
and importance for various actions. Certain actions may only
involve the motion of one limb. For example, the action of
waving can be recognised merely from the motion of the
hands. Other actions may involve the movements of several or
all of the body parts (e.g., picking up an object). In this paper,
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we propose a body-part based feature learning framework for
skeleton-based action recognition.

Given a skeleton sequence, only the 3D coordinates of
the skeleton joints are provided in each frame. There are
two important factors to recognize the action class from the
skeleton sequence. One is to design robust features to describe
the spatial structure of the skeleton joints in each frame.
Another is to extract temporal information among multiple
frames of the sequence [9].

To extract robust spatial structural information, an origin
(e.g., the hip joint) and a reference skeleton are usually used to
normalize the skeleton data to the same center and scale due to
the lack of invariance properties of the absolute positions of the
joints [16]. While scale and translation invariance can easily be
achieved, rotation invariance is more difficult to handle. In this
paper, a vector-based representation, which is scale, translation
and rotation invariant, is introduced for the five body parts
in each frame of a skeleton sequence. The vectors of each
body part are generated from the pairwise relative positions
of a selected starting joint to the other joints. For different
actions, the cosine distance (CD) between two vectors and the
normalized magnitude (NM) of each vector capture the spatial
structure of a body part, and its relationships to the other parts.
CD and NM are thus used to represent the spatial structural
information of the skeleton sequence in each frame.

Previous works model the temporal structure of a skeleton
sequence as a time series based on Long Short Term Memory
(LSTM) [17], Fourier Temporal Pyramid (FTP) [16], [18],
[19], or Hidden Markov Models (HMMs) [20]–[22]. In this
paper, a deep learning method, which is based on CNN, is
proposed to learn the high-level temporal representations from
the low-level features. CNN is used in this paper as it is
capable of exploiting more salient and robust features than
hand-crafted features. Moreover, it has shown great success
for various visual recognition tasks [23], [24]. In addition,
the massive image databases such as ImageNet [25] can
be leveraged to pre-train CNN models. To learn high-level
temporal representations, the CD and NM features of all
frames of each body part are concatenated and scaled into gray
images with values between 0 to 255. They are further resized
into the same dimension and fed to the deep network, which
includes two parts. The first part extracts generic CNN features
from the CD and NM images, and the second aggregates the
extracted features and learns a compact and discriminative
representation for action recognition.

The contributions of this paper include: 1) well-designed
vector-based features for each body part of human skeleton
sequences, which are translation, scale and rotation invariant,



SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS, 2016 2

...

...

...

...

...

CNN

(a) (b) (c) (e)(d) (f) (g)

CD
NM

CD
NM

CD
NM

CD
NM

CD
NM

(h)

FC
BN
ReLU

FC
BN
ReLU

FC
SM

(i) (j)

Fig. 1. Overall pipeline of the proposed SkeletonNet. (a) Vector generation
of a skeleton sequence for the five body parts. From the top to the bottom are
the sequences of the trunk, right arm, left arm, right leg and left leg. (b) Ten
feature arrays, including five cosine distance (CD) arrays and five normalized
magnitude (NM) arrays calculated from the sequences of the five body parts.
They are transformed to a set of images and fed to a deep CNN (c) for
feature learning. (d) Outputs of the CNN network, including five high-level CD
features and five high-level NM features. (e) Concatenation of the five high-
level CD features and the five high-level NM features. They are separately
fed to a two-stream network (f) where each contains a fully connected (FC)
layer, a batch normalization (BN) layer and a rectified linear unit (ReLU). (g)
Outputs of the two steams of networks. (h) Concatenation of the outputs of
the two-stream network, which is fed to another network (i) including a FC
layer and a Softmax (SM) layer for classification. (j) Classification scores.

2) a deep learning method based on CNN to learn high-
level and discriminative representations from the low-level
features and 3) the state-of-the-art performance for skeleton-
based action recognition on challenging databases.

II. APPROACH

This section presents the pipelines (Fig.1) of the proposed
SkeletonNet for 3D skeleton-based action recognition. The
spatial information is encapsulated in the proposed CD and
NM features which capture the spatial structure of a body
part, and its relationships to the other parts. CNN is used to
process the CD and NM arrays and learn the high-level spatial
information. CNN is capable to learn hierarchical features. In
contrast, LSTM provides good temporal modelling but has
more difficulty to learn high-level features. The novelty of the
proposed method is to learn high-level robust and discrimina-
tive representations from low-level features. The well designed
low-level features are translation, rotation and scale invariant.
For a skeleton, if it is rotated or scaled, the cosine distance and
the normalized magnitude are still the same. Thus, the features
are rotation and scale invariant. Similar to temporal sampling,
the temporal invariance with respect to camera speed can be
achieved through image resizing in the procedure of generating
images from the CD and NM arrays.

A. Robust Features of Body Parts

This paper aims to extract robust features from the skeleton
sequences. We propose to compute a set of vectors between
two joints to capture the relationship between joint pairs. Sub-
sequently, instead of using the coordinates (x,y,z) to represent
each vector, we compute CD and NM to provide scale and
rotation invariance. The CD between two vectors can capture
the spatial structure of a body part, and its relationships to the

Fig. 2. Vector generation. A human skeleton can be grouped into five parts
(from the left to the right are the trunk, the left arm, the right arm, the left leg
and the right leg). Five joints (shown in red, i.e., the head, the left shoulder,
the right shoulder, the left hip and the right hip) are selected as the starting
joints to connect with other joints to generate within-part vectors (shown in
green) and between-part vectors (shown in red) for the five parts. In each part,
a reference vector (shown in magenta) is also selected to be compared with
other vectors to calculate normalized magnitudes.

other parts, while NM reflects the magnitude variations of the
vectors. CD and NM are complementary and their combination
is shown to provide superior performance. The proposed CD
and NM are translation invariant as they reflect the relative
locations of skeleton joints. They are also not affected by the
rotation, e.g., when a human skeleton rotates for some degree,
the CD and NM between two joints remain to be same.

1) Vector Generation: Given a frame of a skeleton se-
quence, let the 3D coordinates of the skeleton joints be:

Ω = {pi ∈ R3 : i = 1, · · · , n} (1)

where n is the number of the skeleton joints, and pi =
[xi, yi, zi] is the 3D coordinate of the ith joint. All the skeleton
joints are separated into five groups corresponding to the trunk,
left arm, right arm, left leg and right leg, more precisely:

Ω =

5⋃
k=1

Ωk (2)

where Ωk is the set of joints in the kth part.
For each body part Ωk, a joint, namely p

(k)
0 , is selected as

the starting joint. For any other joint, namely p, we define the
set of within-part vectors as

V(k)
w ,

{
p− p

(k)
0 : p ∈ Ωk

}
(3)

and the set of between-part vectors as

V(k)
b ,

{
p− p

(k)
0 : p ∈ Ω\Ωk

}
. (4)

In this paper, the head, left shoulder, right shoulder, left hip
and right hip are selected as the starting joints for the trunk,
left arm, right arm, left leg and right leg, respectively. This
selection is based on the fact that these selected joints are
fixed in most actions so that the designed between-part and
with-part vectors in Equation 3 and Equation 4 can reflect the
motions of the other joints. For the trunk part, the base of the
spine seems more fixed than the head joint. However, the base
of the spine is close to the left hip and right hip, which might
result in information redundancy if it is selected as the starting
joint.
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2) CD and NM: For any v ∈ V(k)
w , and any u ∈ V(k)

w ∪
V(k)
b ,u 6= v, their cosine distance is defined by

vTu

‖v‖‖u‖
(5)

All these distances are concatenated as the CD feature for
part Ωk with dimension (nk−1)(n−2). Here nk is the number
of the human skeleton joints in part Ωk, and n is the number
of the entire human skeleton joints.

For any u ∈ V(k)
w ∪ V(k)

b , the NM is defined as

‖u‖
‖u(k)

0 ‖
(6)

where u
(k)
0 is the selected reference vector, whose length

usually remains fixed in motions, for part Ωk to normalize
other vectors. The five selected reference vectors are the neck,
the left upper arm, the right upper arm, the left upper leg and
the right upper leg, as shown in magenta in Figure 2. All the
normalized magnitudes are concatenated as the NM feature
for part Ωk with dimension n− 1.

B. High-level Feature Learning

Given a skeleton sequence of t frames, a CD array with
dimension (nk−1)(n−2)×t and a NM array with dimension
(n− 1)× t can be obtained by extracting and aggregating the
features of all frames. The CD and NM arrays of each body
part are then separately fed to a deep CNN to learn high-level
spatial features. Each column of the array represents the spatial
structural features of each frame. The temporal information
could thus also be learned from all columns of the entire arrays
with CNN.

More specifically, the CD and NM arrays of the five parts
are firstly scaled into gray images with values between 0
to 255, and further resized to 224 × 224. Image resizing is
similar to temporal sampling, which can handle sequences of
different lengths. The advantages of transforming the skeleton
features from a sequence into an image are that the sequences
of different lengths can be handled with simple image resizing
and that the CNN can be used to learn high-level features.
For the CD and NM array, the features of the neighbouring
joints and the features of the same joint in the neighbouring
frames change smoothly. Hence the pixels of the images do
not change sharply. The images generated from the ten arrays
(two for each body part) are separately fed to a deep network
to learn high-level features. The network shares the parameters
of the pre-trained VGG-M network [26]. The edges and salient
features of the original images are captured after convolution.

The layer of 4096-dimensional (4096D) fc6 is used as the
output feature vector. Thus the outputs of the network contains
five 4096D feature vectors from each of the CD and NM
arrays, respectively, each corresponding to one body part, as
shown in Figure 1(d). The five 4096D vectors of the CD or NM
arrays are concatenated as two feature vectors, respectively.
The two features are then fed in a two-stream network includ-
ing a fully connected (FC), a batch normalization (BN) [27]
and a ReLU [28] layer. Each stream outputs a 512D feature
vector, and the two vectors are then concatenated as a 1024D

Fig. 3. Sample examples of NTU RGB+D Dataset.

feature vector and sent to another FC layer, followed by a
Softmax layer for classification.

III. EXPERIMENTS

The proposed SkeletonNet is tested on NTU RGB+D dataset
[29], SBU kinect interaction dataset [30] and CMU dataset
[31]. For all datasets, the learning rate is set to 0.001 and
batch size is set to 100. The training is stopped at 25
epochs. The performance of the proposed method on each
dataset is compared with previous methods using the same
testing protocol. To show the advantages of the proposed
robust features and the proposed feature learning method, two
ablative analyses are also conducted in the experiments: 1) To
show the contribution of the robust features, the coordinates
of the skeletons were used to replace the CD and NM feature
arrays, and the remaining learning framework is the same as
that of SkeletonNet; 2) to demonstrate the contribution of the
proposed feature learning method, Fourier Temporal Pyramid
(FTP) is used to learn temporal information of skeleton
sequences based on CD and NM features, followed by SVM
for classification. FTP has widely been used to learn temporal
information of videos. FTP has been combined with SVM for
action recognition [16], [18], [19]. Therefore the combination
of FTP and SVM is used as a baseline in comparison to show
the advantages of the proposed method.

A. NTU RGB+D Dataset

This dataset contains 56880 sequences of 60 classes of
actions. Some examples are shown in Fig.3. These actions are
performed by 40 distinct subjects and captured by three cam-
eras. It is a very challenging dataset due to the large intra-class,
sequence length and view point variations. The evaluations are
performed using the two standard protocols proposed by [29]:
1) cross-subject evaluation, for which sequences associated to
half of the subjects are used for training and the remaining
are used for testing; 2) cross-view evaluation, for which the
sequences captured by two cameras are used for training and
the rest are used for testing.

The results are shown in Table I. It can be seen that
the proposed SkeletonNet performs significantly better than
others in both testing protocols. When testing with the cross-
subject protocol, the performance is about 75.94%, which is
about 6.74% better than the ST-LSTM method [17]. The accu-
racy is about 81.16% when testing with cross-view protocol.
Compared to the ST-LSTM method [17], the improvement is
about 3.46%. The good performance of the proposed method
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TABLE I
COMPARISONS ON THE NTU RGB+D DATASET.

Methods Accuracy
Cross Subject Cross View

Lie Group [16] 50.1% 52.8%
Skeletal Quads [32] 38.6% 41.4%

Dynamic Skeletons [33] 60.2% 65.2%
Hierarchical RNN [34] 59.1% 64.0%

Deep RNN [29] 59.3% 64.1%
Deep LSTM [29] 60.7% 67.3%

Part-aware LSTM [29] 62.9% 70.3%
ST-LSTM (Tree) + Trust Gate [17] 69.2% 77.7%

Joints+Network Learning 72.81% 71.61%
Robust Features+FTP+SVM 63.63% 79.09%

SkeletonNet 75.94% 81.16%

is due to the robust CD and NM features, as well as the
deep learning method. As shown in Table I, when using
joint coordinates instead of the proposed robust features (i.e.,
Joints+Network Learning), the performance is reduced on
both testing protocols. Particularly, when tested on the cross-
view protocol, the proposed method is about 10% better than
Joints+Network Learning method. This is due to the fact
that the proposed CD and NM features are rotation invariant,
thus providing invariance against view points and improving
performance. From Table I, it can also be seen that the
proposed learning method performs better than FTP and SVM
(i.e., Robust Features+FTP+SVM). For the NTU dataset of
different subjects, the skeleton sequences have variant lengths.
The temporal features learned by SkeletonNet are seen to
be more robust and powerful than FTP. This is because
for the training method of SkeletonNet, the features of all
frames in each sequence are transformed into an image. The
robust temporal features of the sequences are thus captured by
learning translation invariant features from the images with the
convolution and pooling operations of SkeletonNet.

B. SBU Kinect Interaction Dataset

The SBU kinect interaction dataset is a two-person inter-
action dataset collected by the Microsoft Kinect sensor. It
contains 283 videos of 8 types of interactions performed by
two persons (i.e., approaching, departing, kicking, punching,
pushing, hugging, shaking hands and exchanging). The evalu-
ation is done through a 5-fold cross validation, with the same
data split as proposed in [30]. For each video, there are two
separate human skeletons. For data augmentation, the images
generated from the CD and NM arrays are first resized to
250×250, and twenty sub-images with fixed size of 224×224
are then randomly cropped from the original image, with a
further random horizontal flipping. For testing, the scores of
all the augmented samples are averaged for the final decision
for action recognition.

Compared to other methods (Table II), the proposed Skele-
tonNet achieves the best performance, with an accuracy of
93.47%, which is better than the spatial temporal LSTM (ST-
LSTM) [17]. Compared to the Deep LSTM + Co-occurrence
method [9], the improvement is about 3.07%. From Table II it
can also be seen that the proposed method performs better than
the method Joints+Network Learning and the method Robust

TABLE II
COMPARISONS ON THE SBU KINECT INTERACTION DATASET.

Methods Accuracy
Raw Skeleton [30] 49.7%
Joint Feature [30] 80.3%
Raw Skeleton [35] 79.4%
Joint Feature [35] 85.9%

Hierarchical RNN [34] 80.35%
Deep LSTM [9] 86.03%

Deep LSTM + Co-occurrence [9] 90.41%
ST-LSTM (Tree) + Trust Gate [17] 93.3%

Joints+Network Learning 85.93%
Robust Features+FTP+SVM 87.95%

SkeletonNet 93.47%

Features+FTP+SVM. This clearly shows the effectiveness of
the proposed robust features and the feature learning method.

From Table I and Table II it can also be seen that for the
small SBU kinect interaction dataset, our method and the ST-
LSTM method [17] achieve comparable performance. For the
large NTU dataset (which is more challenging), our method
is more robust and achieves a much better performance than
the ST-LSTM method [17].

C. CMU Dataset

This dataset contains 2,235 sequences, which has been cate-
gorized into 45 classes [31]. As proposed in [9], the evaluation
has been performed with a subset of 664 sequences and the
entire dataset. The proposed method achieves an accuracy of
89.46% on the subset, which is slightly better than 88.40%
achieved by [9]. For the entire dataset, the performance of the
proposed method is 84.83%, which is 3.79% better than [9].

IV. CONCLUSION

In this paper, a novel feature learning framework Skeleton-
Net has been proposed for skeleton based action recognition.
Given a skeleton sequence, a set of vectors are generated with
the selected pairs of joints for each body part. Then the spatial
structure of each body part and their relationships are modelled
using geometric properties of the vectors, including the cosine
distances and the normalized magnitudes. The two feature
arrays are transformed into gray images, which are then fed to
the proposed deep learning architecture for high-level feature
learning and action recognition. The proposed feature learning
framework is based on image-format inputs, and it is not only
suitable for large datasets, but also for small datasets with the
help of pre-trained CNN models and image augmentation. It
also performs well across multi-type actions (i.e., one-person
actions or two-person interactions). Experimental results have
demonstrated state-of-the-art performance of the proposed
method on three skeleton datasets.
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