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Abstract—The problem of recovering a signal from its power
spectrum, called phase retrieval, arises in many scientific fields.
One of many examples is ultra-short laser pulse characterization
in which the electromagnetic field is oscillating with ∼ 1015

Hz and phase information cannot be measured directly due to
limitations of the electronic sensors. Phase retrieval is ill-posed
in most cases as there are many different signals with the same
Fourier transform magnitude. To overcome this fundamental ill-
posedness, several measurement techniques are used in practice.
One of the most popular methods for complete characterization
of ultra-short laser pulses is the Frequency-Resolved Optical
Gating (FROG). In FROG, the acquired data is the power
spectrum of the product of the unknown pulse with its delayed
replica. Therefore the measured signal is a quartic function of
the unknown pulse. A generalized version of FROG, where the
delayed replica is replaced by a second unknown pulse, is called
blind FROG. In this case, the measured signal is quadratic with
respect to both pulses. In this letter we introduce and formulate
FROG-type techniques. We then show that almost all band-
limited signals are determined uniquely, up to trivial ambiguities,
by blind FROG measurements (and thus also by FROG), if in
addition we have access to the signals power spectrum.

Index Terms—phase retrieval, quartic system of equations,
ultra-short laser pulse measurements, FROG

I. INTRODUCTION

In many measurement systems in physics and engineering
one can only acquire the power spectrum of the underlying
signal, namely, its Fourier transform magnitude. The problem
of recovering a signal from its power spectrum is called
phase retrieval and it arises in many scientific fields, such
as optics, X-ray crystallography, speech recognition, blind
channel estimation and astronomy (see for instance, [1], [2],
[3], [4], [5], [6] and references therein). Phase retrieval for one-
dimensional (1D) signals is ill-posed for almost all signals.
Two exceptions are minimum phase signals [7] and sparse
signals with structured support [8], [9]. Additional information
on the sought signal can be used to guarantee uniqueness. For
instance, the knowledge of one signal entry or the magnitude
of one entry in the Fourier domain, in addition to the the power
spectrum, determines almost all signals [10], [11].

For general signals, many algorithms and measurement
techniques were suggested to make the problem well-posed.
These methods can be classified into two categories. The first
utilizes some prior knowledge (if it exists) on the underlying
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structure of the signal, such as sparsity (e.g. [8], [12], [13])
or knowledge on a portion of the signal (e.g. [2], [10],
[11]). The second uses techniques that generate redundancy
in the acquired data by taking additional measurements. These
measurements can be obtained for instance using radom masks
[14], [15] or by multiplying the underlying signal with shifted
versions of a known reference signal, leading to short-time
Fourier measurements [16], [17], [18].

An important application for phase retrieval is ultra-short
laser pulse characterization. Since the electromagnetic field is
oscillating at ∼ 1015 Hz, phase information cannot be mea-
sured directly due to limitations of the electronic sensors. To
overcome the fundamental ill-posedness of the phase retrieval
problem, a popular approach is to use Frequency-Resolved
Optical Gating (FROG). This technique measures the power-
spectrum of the product of the signal with a shifted version
of itself or of another unknown signal. The inverse problem
of recovering a signal from its FROG measurements can be
thought of as high-order phase retrieval problem. The first goal
of this letter is to introduce and formulate such FROG-type
methods.

Our second contribution is to derive a uniqueness result
for FROG-type models. Namely, conditions such that the
underlying signal is uniquely determined from the acquired
data. A common statement in the optics community, supported
by two decades of experimental measurements, is that a laser
pulse can be determined uniquely from FROG measurements if
the power spectrum of the unknown signal is also measured. To
the best of our knowledge, the uniqueness of FROG methods
was analyzed only in [19] under the assumption that we have
access to the full continuous spectrum. In this letter we analyze
the discrete setup as it typically appears in applications.

The letter is organized as follows. Section II introduces the
FROG problem and formulates it mathematically. Section III
presents our uniqueness result, which is proved in Section IV.
Section V concludes the letter.

II. MODEL AND BACKGROUND

We consider two laser pulse characterization techniques,
called FROG and its generalized version blind FROG. These
methods are used to generate redundancy in ultra-short laser
pulse measurements. FROG is probably the most commonly
used approach for full characterization of ultra-short opti-
cal pulses due to its simplicity and good experimental per-
formance [20], [21]. A FROG apparatus produces a two-
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Figure II.1: Illustration of the SHG FROG technique.

dimensional (2D) intensity diagram of an input pulse by inter-
acting the pulse with delayed versions of itself in a nonlinear-
optical medium, usually using a second harmonic generation
(SHG) crystal [22]. This 2D signal is called a FROG trace and
is a quartic function of the unknown signal. Hereinafter, we
consider SHG FROG but other types of nonlinearities exist
for FROG measurements. A generalization of FROG in which
two different unknown pulses gate each other in a nonlinear
medium is called blind FROG. This method can be used
to characterize simultaneously two signals [21], [23]. In this
case, the measured data is referred to as a blind FROG trace
and is quadratic in both signals. We refer to the problems
of recovering a signal from its blind FROG trace and FROG
trace as bivariate phase retrieval and quartic phase retrieval,
respectively. Note that quartic phase retrieval is a special case
of bivariate phase retrieval where both signals are equal. An
illustration of the SHG FROG model is depicted in Figure II.1.

In bivariate phase retrieval we acquire, for each delay step
m, the power spectrum of

ym[n] = x1 [n]x2 [n+mL], (II.1)

where L determines the overlap factor between adjacent sec-
tions. We assume that x1,x2 ∈ CN are periodic, namely,
x[i] = x[N`+ i] for all ` ∈ Z. The acquired data is given by

Z [k,m] = |Y [k,m]|2 , (II.2)

where

Y [k,m] = (Fym) [k] =

N−1∑
n=0

ym [n] e−2πjkn/N

=

N−1∑
n=0

x1 [n]x2 [n+mL]e−2πjkn/N , (II.3)

and F is the N × N DFT matrix. Quartic phase retrieval is
the special case in which x1 = x2.

Current FROG reconstruction procedures [24], [25], [26] are
based on 2D phase retrieval algorithms [2], [27]. One popular
iterative algorithm is the principal components generalized
projections (PCGP) method [28]. In each iteration, PCGP
performs PCA (principal component analysis, see for instance
[29]) on a data matrix constructed by a previous estimation.
It is common to initialize the algorithm by a Gaussian pulse

with random phases. A recent paper suggests to adopt ptycho-
graphic techniques where every power spectrum, measured at
each delay, is treated separately as a 1D problem [30]. In
Figure II.2 we present an example for the recovery of a signal
from its noisy FROG trace using this algorithm.

Figure II.2: Experimental example of a femtosecond (fs) pulse
reconstruction by SHG-FROG. The experiment was conducted
with a delay step of 3 fs and 512 delay points. Hence, the
complete FROG trace consists of 512× 512 data points. The
laser pulse was produced by a typical ultrafast Ti-sapphire
laser system (1KHz repetition rate, 2 Watt average power).
(a) measured FROG trace (b) recovered trace by alternating
projection algorithm for ptychography (Ptych.) proposed in
[30] (c) recovered trace by the PCGPA algorithm [28] (d)
recovered amplitudes by PCGPA and Ptych. (e) recovered
phases by PCGPA and Ptych.

In the next section we present our main theoretical results.
First, in Proposition 1 we identify the trivial ambiguities of
blind FROG. Trivial ambiguities are the basic operations on
the signals x1,x2 that do not change the blind FROG trace Z.
Then, we derive a uniqueness result for the mapping between
the signals and their blind FROG trace. Particularly, suppose
we can measure the power spectra of the unknown signals in
addition to the blind FROG trace. We exploit recent advances
in the theory of phase retrieval [11] and prove that in this
case almost all band-limited signals are determined uniquely,
up to trivial ambiguities. This result holds trivially for FROG
as well. The proof is based on the observation that given
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the signal’s power spectrum, the problem can be reduced to
standard phase retrieval where both the temporal and spectral
magnitudes are known.

III. UNIQUENESS RESULT

This letter aims at examining under what conditions the
measurements Z determine x1 and x2 uniquely. In some cases,
there is no way to distinguish between two pairs of signals,
by any method, as they result in the same measurements.
The following proposition describes four trivial ambiguities
of bivariate phase retrieval. The first three are similar to
equivalent results in phase retrieval, see for instance [10]. The
proof follows from basic properties of the Fourier transform
and is given in the Appendix.

Proposition 1. Let x1,x2 ∈ CN and let ym[n] :=
x1[n]x2[n+mL] for some fixed L. Then, the following signals
have the same phaseless bivariate measurements Z[m, k] as
x1,x2:

1) multiplication by global phases x1e
jψ1 ,x2e

jψ2 for some
ψ1, ψ2 ∈ R,

2) the shifted signal

x1[n− n0]x2[n− n0 +mL] = ym[n− n0]

for some n0 ∈ Z,
3) the conjugated and reflected signal

x1[−n] · x2[−n+mL] = ym[−n],

4) modulation, x1[n]e
−2πjk0n/N , x2[n]e

2πjk0n/N for some
k0 ∈ Z.

Assume that one of the signals is band-limited and that we
have access to the power spectrum of the underlying signals
|Fx1|2, |Fx2|2 as well as the blind FROG trace Z [m, k]
of (II.2). In ultra-short pulse characterization experiments the
signals are indeed band-limited [31] and the power spectrum
of the pulse under investigation is often available, or it can be
easily measured by a spectrometer, which is already integrated
in any FROG device. Inspired by [19], we show that in this
case, the bivariate problem can be reduced to a standard
(monovariate) phase retrieval problem where both the temporal
and the spectral magnitudes are known. Consequently, we
derive the following result which is proved in the next section.

Theorem 2. Let L = 1, and let x̂1 := Fx1 and x̂2 := Fx2

be the Fourier transforms of x1 and x2, respectively. Assume
that x̂1 has at least d(N − 1)/2e consecutive zeros (e.g.
band-limited signal). Then, almost all signals1 are determined
uniquely, up to trivial ambiguities, from the measurements
Z[m, k] and the knowledge of |x̂1| and |x̂2|. By trivial ambi-
guities we mean that x1 and x2 are determined up to global
phase, time shift and conjugate reflection.

Corollary 3. The same result holds for quartic phase retrieval
in which x1 = x2. This model fits the FROG setup.

Proof. The proof follows the proof technique of Theorem 2
with x1 = x2.

1By almost all signals, we mean that there may be a set of measure zero
for which the theorem does not hold.

IV. PROOF OF THEOREM 2

The proof is based on the reduction of bivariate phase
retrieval to a series of monovariate phase retrieval problems in
which both temporal and spectral magnitudes are known [19].
The latter problem is well-posed for almost all signals.

Let

x1 [n] =
1

N

N−1∑
`=0

x̂1 [`] e
2πj`n/N ,

x2 [n] =
1

N

N−1∑
`=0

x̂2 [`] e
2πj`n/N ,

and

δ[n] :=

{
1 n = 0,

0 otherwise.

Then we have

Y [k,m] =
N−1∑
n=0

x1 [n]x2 [n+m] e−2πjkn/N

=
1

N2

N−1∑
n=0

(
N−1∑
`1=0

x̂1 [`1] e
2πj`1n/N

)
(
N−1∑
`2=0

x̂2 [`2] e
2πjm`2/Ne2πj`2n/N

)
e−2πjkn/N

=
1

N2

N−1∑
`1=0

N−1∑
`2=0

x̂1 [`1] x̂2 [`2] e
2πjm`2/N

N−1∑
n=0

e−2πj(k−`1−`2)n/N︸ ︷︷ ︸
=Nδ[k−`1−`2]

=
1

N

N−1∑
`=0

x̂1 [k − `] x̂2 [`] e
2πjm`/N .

Let us denote x̂i [`] = |x̂i [`]| ejφi[`] for i = 1, 2, I [k, `] =
1
N |x̂1 [k − `]| |x̂2 [`]| and P [k, `] = φ1[k− `] +φ2[`]. Then2,

Y [k,−m] =

N−1∑
`=0

I [k, `] ejP[k,`]e−2πjm`/N .

By assumption, |x̂1| and |x̂2| are known and therefore
I [k, `] is known as well. Moreover, note that by assumption,
for any fixed k, I [k, `] has at least d(N − 1)/2e consecutive
zeros. Our problem is then reduced to that of recovering
the signal S [k, `] := I [k, `] ejP[k,`] from the knowledge of
Z[k,−m] and I [k, `]. For fixed k, this is a standard phase
retrieval problem with respect to the second variable where
the temporal magnitudes are known. To proceed, we state the
finite-discrete version of Theorem 3.4 from [11]:

Lemma 4. Let t ∈ [0, . . . , N − 1] \ {(N − 1)/2} and let
u ∈ CN be such that u has at least d(N − 1)/2e consecutive
zeros. Then, almost every complex signal u is determined

2Recall that all indices should be considered as modulo N . Hence,
Y [k,−m] is just a reordering of Y [k,m].
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uniquely from the magnitude of its Fourier transform and
|u [N − 1− t]| up to to global phase.

Lemma 4 implies that Z [k,−m] and I [k, `] determine, for
fixed k, almost all P [k, `] up to global phase. So, for all k,
P [k, `] is determined up to an arbitrary function ψ[k]. We
note that while Lemma 4 requires only one sample of I [k, `]
to determine S [k, `] uniquely, I [k, `] does not determine |x̂1|
and |x̂2| uniquely. For this reason, we need the full power
spectrum of the signals in addition to the blind FROG trace.

Next, we will show that

P̃ [k, `] = P [k, `] +ψ[k] (IV.1)
= φ1[k − `] + φ2[`] +ψ[k],

determines φ1,φ2 and ψ up to affine functions. Note that
generally (IV.1) may include additional terms of 2πs[k, `]
for some integers s[k, `] ∈ Z. However, phase wrapping is
physically meaningless since it will not change the light pulse
[21, Section 2].

The relation (IV.1) can be written using matrix notation. Let
P̃vec ∈ RN2

be a column stacked version of P̃ and let

v :=

φ1

φ2

ψ

 ∈ R3N .

Then we obtain the over-determined linear system

P̃vec = Av, (IV.2)

where A ∈ RN2×3N is the matrix that relates v and P̃vec

according to (IV.1).
We aim at identifying the null space of the linear operator

A. To this end, suppose that there exists another triplet
φ̃1, φ̃2, ψ̃ that solves the linear system, i.e.

P̃ [k, `] = φ̃1[k − `] + φ̃2[`] + ψ̃[k],

for all k and `. Let us denote the difference functions by d1 :=
φ1 − φ̃1,d2 := φ2 − φ̃2 and d3 := ψ − ψ̃. Then, we can
directly conclude that for all k, ` we have

d1[k − `] + d2[`] + d3[k] = 0. (IV.3)

Particularly, for k = 0 and ` = 0 we obtain the relations

d1[−`] + d2[`] + d3[0] = 0,

d1[k] + d2[0] + d3[k] = 0.
(IV.4)

Plugging (IV.4) into (IV.3) (and replace −` by `) we have

d1[k + `] = d1[`] + d1[k] + d3[0] + d2[0].

Hence, we conclude that d1 is an affine function of the form
d1[k] = ak − d3[0] − d2[0] for some scalar a. We can also
derive that d2[k] = ak+d2[0] and d3[k] = −ak+d3[0]. This
implies that the null space of A contains those affine functions.
We can compute the phases by v = A†P̃vec, where A† is the
Moore-Penrose pseudoinverse.

To complete the proof, we recall that φi, i = 1, 2, are the
phases of the Fourier transforms of xi. As we can estimate
the phases up to affine functions, we can only determine
x̂i[k] = |x̂i[k]|ej(φi[k]+c1k+c2) for some constants c1 and c2.
This unknown affine function reflects the global phase and

the translation ambiguities. Specifically, the term ejc1k reflects
translation by c1 indices and the ejc2 product by a global
phase. The conjugate-reflectness ambiguity arises from the fact
that both the blind FROG trace and the signals power spectrum
are invariant to this property. This completes the proof.

V. DISCUSSION

In this paper we analyzed the uniqueness of bivariate and
quartic phase retrieval problems. Particularly, we proposed
a uniqueness result showing that given the signals power
spectrum, blind FROG trace determines almost all signals up
to trivial ambiguities for L = 1. Nevertheless, it was shown
experimentally and numerically [30] that stable signal recovery
is possible with L > 1. It is therefore important to investigate
the minimal number of measurements which can guarantee
uniqueness for FROG and blind FROG.

It is worth noting different FROG nonlinearities. Two ex-
amples are third-harmonic generation FROG and polarization
gating FROG. In these techniques, the measured signal is
modeled as the power spectrum of ym[n] = x2[n]x[n−mL]
and ym[n] = x[n]|x[n − mL]|, respectively [32], [20]. It is
interesting to examine the uniqueness of these high polynomial
degree phase retrieval problems in different FROG imple-
mentations. Another important application is the so called
Frequency-Resolved Optical Gating for Complete Reconstruc-
tion of Attosecond Bursts (FROG CRAB), which is based on
the photoionization of atoms by the attosecond field, in the
presence of a dressing laser field. In this setup, the signal is
modeled as the power spectrum of ym[n] = x1[n]e

jx2[n−mL]

[33].
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APPENDIX

Proof of Proposition 1

The proof is based on basic properties of the DFT matrix.
Recall that ym[n] := x1[n]x2[n+mL].

1) Let ψ1, ψ2 ∈ R and define xψ1 := x1e
jψ1 , xψ2 :=

x2e
jψ2 and yψm[n] := xψ1 [n]x

ψ
2 [n+mL]. Hence, yψm =

yme
j(ψ1+ψ2) and it is then clear that Z is independent

of ψ1, ψ2.
2) Let n0 ∈ Z and define ỹm[n] := ym[n− n0]. Then, by

standard Fourier properties we get

(Fỹm) [k] = (Fym) [k] e−2πjkn0/N ,

and consequently |Fỹm| = |Fym|.
3) By standard Fourier properties we have |Fỳm| = |Fym|.
4) Let k0 ∈ Z and define xk01 [n] := x1[n]

−2πjk0n/N ,
xk02 [n] := x2[n]

2πjk0n/N and yk0m [n] := xk01 [n]xk02 [n +
mL]. Then, yk0m [n] = ym[n]e2πjmLk0/N . According to
the global phase ambiguity, Z is independent of k0. This
completes the proof.
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