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Abstract—The large-scale of the recently demanded biometric
systems has put a pressure on creating a more efficient, accurate,
and private biometric solutions. Iris biometrics is one of the
most distinctive and widely used biometric characteristics. High
performing iris representations suffer from the curse of rotation
inconsistency. This is usually solved by assuming a range of
rotational errors and performing a number of comparisons over
this range, which results in a high computational effort and
limits indexing and template protection. This work presents
a generic and parameter-free transformation of binary iris
representation into a rotation-invariant space. The goal is to
perform accurate and efficient comparison and enable further
indexing and template protection deployment. The proposed
approach was tested on a database of 10,000 subjects of the
ISYN1 iris database generated by CASIA. Besides providing a
compact and rotational-invariant representation, the proposed
approach reduced the equal error rate by more than 55% and
the computational time by a factor of up to 44 compared to the
original representation.

Index Terms—Biometrics, iris recognition, rotation-invariance.

I. INTRODUCTION

The iris is a thin circular ring-shaped region positioned
between the black pupil and the white sclera of the human
eye. It is responsible for the amount of light reaching the
retina by controlling the diameter of the pupil [1]. Essentially
it consists of randomly generated characteristics that results
in very complex and temporally constant patterns. Due to
its rich texture information like spots, rifts, colors, filaments,
minutia and other details it has about 1072 possible pattern
[2]. This makes it very unique and generally results in one
of the smallest false-matching rate of all biometric traits [3].
These properties make the iris an outstanding candidate for
biometric recognition.

Different feature extraction approaches were previously
proposed. The most widely used is the one proposed by
Daugman [4]. A more recent feature extraction method is
the ordinal measures proposed by Sun and Tan [5] aiming
at being robust to image variations while maintaining high
accuracy. These approaches, as many others, suffer from the
sensitivity to eye tilt and thus not rotational-invariant. When
performing comparison between a pair of iris feature vectors
(codes), this rotation sensitivity is dealt with by performing
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multiple comparison between the vector pair at different shifts.
This results in a high computational load, depending on
the expected shift range and database size, especially when
performing identification.

A compact, accurate, and rotation-invariant representation
enables the development of advanced indexing, template pro-
tection, and fast search biometric solutions. Previous works
tried to achieve this goal by extracting rotation-invariant fea-
tures [6] or apply transformations [7]. However, these solutions
suffered from low accuracy, computational complexity, or the
requirement of parameter training.

This work presents a computationally efficient generic
transformation into a rotational-invariant representation space
of iris features while maintaining high accuracy. This was
demonstrated by decreasing the equal error rate by a factor of 2
to 2.5 in comparison to the benchmark solution, while cutting
the computational time by a factor of 14 to 44 in different
settings.

In Section II a detailed look into related works is presented.
Section III discusses the solution presented in this work. The
experiment setup and the achieved results are detailed in
Sections IV and V. Finally a conclusion is drawn in Section
VI.

II. RELATED WORK

One of the most widely used approaches to extract iris
features is based on a method proposed by Daugman [4].
The iris is modeled with consideration to pupil dilatation,
contraction, size inconsistencies and, non-concentric pupil
displacement. However, it does not compensate rotational
inconsistencies. The given iris is encoded using Gabor filters
into a binary feature vector (iris code). These features have a
virtually variable size for different iris images (because of the
different region of interest defined by an image specific mask),
which limits the possibilities of further transformations.

With a focus on robustness to intraclass variations and com-
putational efficiency, Sun and Tan presented ordinal measures
(OM) as a new type of iris features [5]. Ordinal measures
describe a quality measurement related to the relative ordering
of several quantities. Given two distinct image regions, the
ordinal measure between these regions is encoded by the
inequality of the average intensities. With multilobe differ-
ential filters (MLDFs) the OM features can additionally be
extracted with flexible interlobe and intralobe parameters, such
as location, scale (intra), orientation and distance (inter). The
challenge still facing iris features such as OM is the rotation
inconsistency of the resulting iris code. Ordinal measures
feature extraction approach will be considered as a basis for
the rotation-invariant representation presented in this work.

The discussed iris representations (codes) are sensitive to
eye tilt and thus are not rotation-invariant. Therefore, to
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compensate for that, comparison process usually includes
shifting the templates against each others to calculate a dis-
tance (similarity) at different shifts. Based on the amount
of shifts performed (usually limited to 7-8 bits [4][7]), this
process amounts to a large number of comparison operations,
especially in identification tasks.

Regarding previous attempts at rotation-invariant iris repre-
sentation, some works focused on extracting rotation-invariant
features from iris images [6][8]. Du et al. [6] calculated first
moments of the iris line histograms to extract iris features.
While Ives et al. [8] exploited iris histograms to extract
rotational-invariant features. However, the performance of
these approaches were unsatisfactory for realistic iris recog-
nition implementations. Another feature extraction method
focusing on the rotation-invariance property used a bank of
non-separable orthogonal wavelet filters to capture iris details
and then model the output as a fourth-order Gaussian Markov
random field with its parameters forming the feature vector [9].
However, this approach requires parameter training as well as
a large number of matrix multiplications.

Konrad et al. [10] aimed at reducing the computational costs
of rotation-invariant iris recognition by using a serial classi-
fier combination to join spatially-based rotation invariant iris
recognition with local-feature based schemes. However, this
approach might be effected by a changing database size and
requires parameter tuning. A transformation approach based
on bloom-filters was proposed by Rathgeb et al. [7] achieving
good accuracy but faces the possibility of misalignment at
filter block boundaries and requires parameter tuning.

In this work, different aspects of previous works are targeted
by presenting a generic, accurate, and computationally efficient
solution that requires no parametrization.

III. ROTATION-INVARIANT REPRESENTATION

The ordinal measures offer properties including robustness,
uniqueness and efficiency. However, the resulting iris codes
suffer from rotation inconsistencies, which leads to heavy
computational load when dealing with large databases. In this
section, a rotation-invariant representation based on transform-
ing ordinal measures is introduced to tackle this problem.

The transformation: initially, two basic transformations û
and v̂ are discussed. These transformations lead to the relative
distance transformation T satisfying the claimed rotation-
invariant property.

In order to discuss the basic transformations, it is essential
to keep the following basic functions in mind. First of all, this
section deals with a distance function within a given vector,
called relative distance. This distance, d(i, j), between the ith

and jth location of a vector v ∈ {0, 1}n is defined as

d(i, j) = min
{
|i− j| , n−|i− j|

}
(1)

which considers the rotational property of iris codes.
The second important function for the transformation is the

common Kronecker delta, which is used in two fashions.

δi,j =

{
1 if i = j

0 if i 6= j
δ(n) =

{
1 if n = 0

0 if n 6= 0
(2)

The two basic transformations û(v) and v̂(v) already depict
a solution to the above mentioned rotation problem. Given a
binary iris code v ∈ {0, 1}n of length n, the functions û(v)
and v̂(v) are called basic transformations of v and defined
component-wise as follows:

ûk(v) =
∑
i<j

δ(d(i, j)− k) δvi,0 δvj ,0 (3)

=
∑
i<j

vi,vj=0

δ(d(i, j)− k), ∀ k ∈

{
1, 2, . . . ,

⌊
n

2

⌋}
(4)

v̂k(v) =
∑
i<j

δ(d(i, j)− k) δvi,1 δvj ,1 (5)

=
∑
i<j

vi,vj=1

δ(d(i, j)− k), ∀ k ∈

{
1, 2, . . . ,

⌊
n

2

⌋}
(6)

It can easily be seen that ûk describes how many pairs of
0’s have a distance of k, while v̂k specifies the same for pairs
of 1’s. Furthermore, these transformations are static as they
lost the property of rotation inconsistency due to the use of
relative distances and histograms.

Even though each of the basic transformations alone per-
forms poorly, which means that too much essential information
is lost during the transformation, a simple linear combination
offers the required properties for the biometric comparison
task. Therefore, a transformation T(v) is defined as a linear
combination of û and v̂ and is given component-wise as

Tk(v) = ûk(v) + v̂k(v) =
∑
i<j

δ(d(i, j)− k) δvi,vj . (7)

Here, the kth component of T(v) describes the number of
same labeled pairs with a distance of k within v. The result
of this transformation T(v) is the proposed rotation-invariant
representation and is noted here as RIR.

Error behavior: the reason behind the transformation suc-
cess lies in its noise robustness. To understand this, the error
behavior of each feature is analyzed in the following. The
basic transformations in Equations 3 and 5 are rewritten as

ûk(v) =
∑
N0

δ(d(i, j)− k) |N0| =
(
n0
2

)
(8)

v̂k(v) =
∑
N1

δ(d(i, j)− k) |N1| =
(
n1
2

)
(9)

with sums over N0 and N1 that describe sets of all locations
pairs in v, N0 is for pairs of 0’s and N1 is for pairs of 1’s. The
cardinalities are given by binomial coefficients where n0 and
n1 identify the number of 0’s and 1’s in v. Considering the
case in which some errors |e| are applied on v, resulting in a
vector ve = v+e, where e ∈ {0, 1}n is an error vector added in
modulo-2 algorithmic. Furthermore, only two types of errors
are assumed. Errors occurring only on 0’s are denoted as e0→1

and errors on 1’s are denoted as e1→0. The differences between
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the basic transformations of v and ve show the following
properties

∆ûk(v, ve) = ûk(v)− ûk(ve) =

{
> 0 if e0→1

< 0 if e1→0

(10)

∆v̂k(v, ve) = v̂k(v)− v̂k(ve) =

{
< 0 if e0→1

> 0 if e1→0

(11)

since δ(n) ≥ 0 and for the location pair sets of ve:

if e0→1 : |N0| > |N e
0 | , |N1| < |N e

1 | (12)
if e1→0 : |N0| < |N e

0 | , |N1| > |N e
1 | (13)

It can be observed that v̂ and û behave completely antisymmet-
rical according to the different error types. For the assumption
that the errors of the different types occur roughly the same
number of times, the addition of the difference between the
transformed vectors is small. Therefore, for û + v̂, there are
less variations in each feature caused by errors.

∆ûk(v, ve) + ∆v̂k(v, ve) ≈ 0 (14)

Demonstrating error behavior: Figure 1 presents the error
behavior of T(v). Here, ‖T(v)−T(ve)‖2 was plotted over the
number of errors |e|. For each |e|, a vector v was generated
randomly and applied to get ve, then the L2-distance is
computed. This procedure was performed 200 times for each
|e| value. In Figure 1, the dark line describes the mean of the
distances while the shadowed area around it represents 95%
of its variations. The same procedure was done for the basic
transformations and the resulted error behavior is plotted in
Figure 2.

In Figures 1 and 2, the problem facing the basic trans-
formation can be seen. A certain L2-distance in the basic
transformation (v̂ or û) can correspond to a large range of
errors. However, in the T(v) transformation, a certain distance
points to a specific and relatively narrow range of errors
and thus it is more informative for a comparison operation
using distance calculations, such as required by biometric
comparisons. However, the mentioned specific range can be
seen on two ends of the plot. This is due to the fact that
the T(v) transformation tends to be more similar when the
number of errors in the original vector |e| is far beyond n

2 ,
because it just considers same labeled pairs but does not
distinguish between them. However, this is irrelevant to iris
comparison. 100 million OM features comparisons examined
had a maximum of 470 iris code bits differences (< n

2 ), out of
1024 bits. These different bits corresponds in Figures 1 and 2
to the number of errors, and thus only the error range [0, 512]
is relevant here.

In the next section, deploying and evaluating the proposed
transformation are discussed under different settings.

IV. EXPERIMENTAL SETUP

This work utilized the ISYN1 iris synthetic images database
[5][11][12][13][14] generated by CASIA [15] using its syn-
thetic generator software [14]. In this work, 10,000 reference
and 10,000 probe left iris images were used to evaluate the
proposed approach.

Fig. 1. Error behavior of T(v) transformation.

Fig. 2. Error behavior of basic transformation û (or v̂).

From these images, the OM were extracted as described by
Sun and Tan [5] with lobe size of 5x5 and σ=1.7. Furthermore,
the rotation invariant transformation T (as described in Section
III) was applied to generate a rotation invariant feature repre-
sentation of the iris codes (RIR). In addition, each element in
the RIR vectors was normalized using z-score normalization,
so that each element has a zero mean and a variance of one.

Five different solutions were evaluated under a verification
scenario. Two are based directly on OM features to benchmark
the performance. The first does not consider the rotation-
inconsistency properties of the features and only compare
the iris codes using hamming distance (noted here as OM-
HD). The other considers a minimum hamming distance over
a shift range of 10 bits in both directions to capture most
errors induced by the rotation invariance (noted here as OM-
minHD10). The usually used shifting range is 7-8 bits [4],
[7], however a shift range of 10 bits was considered here to
capture a larger range of possible errors.

Another three solutions are based on our proposed RIR.
Two are based on different distance measures between the
RIR of the reference and the probe irises, Cosine similarity
(RIR-Cosine) and Euclidean distance (RIR-L2). This aims at
investigating the effect of different similarity measures. The
third evaluated solution binarizes the RIR vectors and perform
the comparison using hamming distance (BRIR-HD). The
binarization is performed by threshold each feature value by its
mean. It aims at creating even a more compact representation
and allow for computationally light comparison.

Each of the five solutions was used to calculate a similarity
score between every possible pair of the reference and probe
irises. The resulted scores were analyzed to create a perfor-
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mance comparison presented in the next section.

V. RESULTS

The achieved results under different experiment settings are
presented as receiver operating characteristic (ROC) curves
and EER values. ROC curves plots the false acceptance rate
(FAR) and the true acceptance rate (TAR) at different oper-
ational points (thresholds) and presents the tradeoff between
the two rates. The EER is the common value of the false
acceptance rate (FAR) and false rejection rate (FRR) at the
operational point (decision threshold) where both rates are
equal. In contrast to the ROC curves, which provides a
wider insight into the verification performance at all possible
operational points, the EER value provides a more general
measure of the verification performance.

Figure 3 presents the ROC curves achieved by the different
evaluated solutions. The OM-HD achieved a relatively much
lower performance due to the rotation problem, and thus its
relative curve lies much lower in the graph and would not
appear in the plot at the presented ranges of interest. It is clear
that the RIR-Cosine solution achieve the best performance
with the highest TAR at the lowest FAR. This was followed
by the BRIR-HD (with the lowest computational complexity)
and RIR-L2. The benchmark OM-minHD10 achieved lower
performance than the different evaluation settings related to
our proposed RIR.

Fig. 3. ROC curves achieved by the different evaluated settings. The
performance superiority of our proposed RIR approach is demonstrated.

Table I presents the EER values and computational time (per
comparison) for each of the evaluation settings (running on an
Intel R©CoreTMi5-4590 3.30 GHz CPU). The enhancement in
the EER values are clear in the solutions based on the proposed
RIR. The very high EER achieved by the OM-HD setting is
a clear representation of the rotation inconsistency problem.

The effect of the proposed RIR solution is clear both on the
accuracy (EER) and computational complexity. Comparing the
standard OM-minHD10 setting to the RIR-Cosine, the EER
value drops by more than 2.5 times while the computational
time required for a comparison is reduced by more than 14
folds. In the more efficient BRIR-HD setting, the computa-
tional time is reduced by a factor of 44 while reducing the
EER to less than a half compared to the OM-minHD10.

Previous works focusing on feature extraction reported ei-
ther low accuracy (EER>10% [8], 1-Rank IR<90% out of 105

TABLE I
ACHIEVED EER AND COMPARISON COMPUTATION TIME.

Evaluated solution EER (%) Comparison time (µs)
OM-HD 21.027 3.1
OM-minHD10 2.709 67.1
RIR-L2 1.730 4.7
RIR-Cosine 0.646 4.6
BRIR-HD 1.213 1.5

TABLE II
COMPARISON BETWEEN THE IMPROVEMENT INDUCED BY OUR APPROACH

AND THE BLOOM-FILTER TRANSFORMATION [7].

Evaluated Reported EER w.r.t. Comparison time w.r.t
solution EER (%) baseline (%) baseline (%)

Bloom filter [7]
(top accuracy) 1.14 95.80 23.57
Our approach
(top accuracy) 0.646 23.85 6.56
Bloom filter [7]
(top efficiency) 12.17 770.25 3.48
Our approach
(top efficiency) 1.213 44.78 2.45

irises [6]), or high comparison computation time (>4.5ms)
[9]. To put our results in a broader prospective, a comparison
is built between the effect (on accuracy and efficiency) of
our proposed approach and the transformation approach based
on bloom filters [7], which uses baseline features [16][17] of
similar structure to OM. Table II lists the absolute values of the
achieved EER of our most accurate and most efficient settings
and the respective ones reported in [7]. However, to build a
comparison, the reduction in the EER and comparison time
with respect to the pre-transformation approaches (baseline)
are reported. Our top accurate solution (RIR-Cosine) scores
an EER of 23% of the pre-transformation (OM-minHD10)
EER while reducing the comparison time to 6.56% of the
pre-transformation time, these ratios were 95.8% and 23.56%
respectively for the approach in [7]. The advantage of our
proposed transformation is also clear when comparing the
most efficient settings of both approaches.

The proposed RIR transformation not only enhance the
accuracy and computational efficiency, but also enables further
solutions for iris database indexing and template protection
because of its compact and rotation-invariant properties.

VI. CONCLUSION

Iris biometrics is one of the most accurate and widely used
biometric characteristics on the large-scale. There is a need
for a rotation-invariant iris representation that would allow
for more efficient comparisons, besides enabling different
indexing and template protection techniques. In response to
this need, this work presented a generic and parameter-free
transformation approach of binary iris code into a rotation-
invariant space. This transformation was rationalized by dis-
cussing its behavior in response to simulated errors. The pro-
posed rotation-invariant representation improved the original
baseline solution by reducing the iris verification equal error
rate by more than a half and the comparison computational
time by a factor of 14 to 44 in different evaluation settings.
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