
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Weak RIC Analysis of Finite Gaussian Matrices for Joint Sparse Recovery / Elzanaty, Ahmed; Giorgetti,
Andrea; Chiani, Marco. - In: IEEE SIGNAL PROCESSING LETTERS. - ISSN 1070-9908. - ELETTRONICO. -
24:10(2017), pp. 7984835.1473-7984835.1477. [10.1109/LSP.2017.2729022]

Published Version:

Weak RIC Analysis of Finite Gaussian Matrices for Joint Sparse Recovery

Published:
DOI: http://doi.org/10.1109/LSP.2017.2729022

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/620806 since: 2018-11-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/LSP.2017.2729022
https://hdl.handle.net/11585/620806


This	is	the	post	peer-review	accepted	manuscript	of:		

A.	 Elzanaty,	 A.	 Giorgetti,	 and	 M.	 Chiani,	 "Weak	 RIC	 Analysis	 of	 Finite	 Gaussian	
Matrices	 for	 Joint	Sparse	Recovery,"	 IEEE	Signal	Processing	Letters,	vol.	24,	no.	10,	
pp.	1473-1477,	Oct.	2017.The	published	version	is	available	online	at:		

https://doi.org/10.1109/LSP.2017.2729022	

	

©	2017	IEEE.	Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	other	
uses,	 in	 any	 current	 or	 future	 media,	 including	 reprinting/republishing	 this	 material	 for	 advertising	 or	
promotional	purposes,	creating	new	collective	works,	for	resale	or	redistribution	to	servers	or	lists,	or	reuse	
of	any	copyrighted	component	of	this	work	in	other	works.	

	

	

	



ACCEPTED FOR PUBLICATION ON IEEE SIGNAL PROCESSING LETTERS 1

Weak RIC Analysis of Finite Gaussian Matrices for
Joint Sparse Recovery

Ahmed Elzanaty, Student Member, IEEE, Andrea Giorgetti, Senior Member, IEEE, and

Marco Chiani, Fellow, IEEE

Abstract—This letter provides tight upper bounds on the weak
restricted isometry constant for compressed sensing with finite
Gaussian measurement matrices. The bounds are used to develop
a unified framework for the guaranteed recovery assessment of
jointly sparse matrices from multiple measurement vectors. The
analysis is based on the exact distribution of the extreme singular
values of Gaussian matrices. Several joint sparse reconstruction
algorithms are analytically compared in terms of the maximum
support cardinality ensuring signal recovery, i.e., mixed norm
minimization, MUSIC, and OSMP based algorithms.

Index Terms—Compressed sensing, weak restricted isometry
constants, multiple measurement vectors, joint sparse recovery,
row sparse matrices, mixed norm minimization, MUSIC, OSMP.

I. INTRODUCTION

Compressed sensing (CS) [1]–[13] for multiple measure-
ment vectors (MMV) is a signal processing technique for
efficiently recovering an s-row sparse matrix X ∈ Rn×ℓ with
support S (i.e., only s ≪ n rows of X indexed by S are
nonzero) from Y ∈ Rm×ℓ linear measurements

Y = AX (1)

where A ∈ Rm×n is the measurement matrix and m < n
[14]–[27]. There exists a unique s-row sparse matrix sat-
isfying (1) under the sufficient and necessary condition
m ≥ 2s+ 1− rank(X) [25]. This matrix can be found by
minimizing the ℓ0 quasi-norm of X, but this problem has been
shown to be NP-hard [28]. Nevertheless, for the special full
rank case with ℓ ≥ s, X can be recovered from the same
minimum sufficient measurements, s+ 1, via the polynomial
time algorithm MUSIC [18], [29], [30].

Regarding the rank defective case ℓ < s, X can be uniquely
recovered, from a larger number of measurements, using
greedy algorithms [18]–[24] or via the following mixed ℓ2,1-
minimization program

minimize∥X∥2,1 subject to AX = Y (2)

where ∥X∥2,1 =
∑n

j=1 ∥xj∥ with ∥xj∥ indicating the ℓ2
norm of the jth row of X [15]–[17]. Sufficient conditions
for joint sparse recovery in terms of the restricted isometry
constant (RIC) are provided in [23], [24]. The RIC indicates
how well a linear transformation preserves distances between
sparse vectors [1], [7]–[11].1 Unfortunately, the RIC based
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1The RIC has been analyzed for asymptotically large matrices in [7], [8]
using the bound on the eigenvalues distribution provided in [31].

approach provides a worst case analysis, which does not
depend on ℓ. Therefore, it cannot explain the advantage due to
the availability of multiple measurements. Instead, an average
case guarantee was proposed in [17], where the probability of
recovery failure is exponentially small in ℓ when a condition
on the so-called weak restricted isometry constant (WRIC) is
satisfied. For instance, considering AS as the submatrix of
A with columns indexed by the matrix support S, the WRIC
tells how close is the column space of AS to that spanned by
another disjoint set of columns with cardinality r [6].2

In fact, sufficient recovery conditions for various reconstruc-
tion methods are based on the WRIC, e.g., ℓ2,1-minimization
[17], SA-Music [18], and OSMP [19]. The WRIC for Gaussian
matrices has been bounded using concentration of measure
inequalities and the union bound [17]–[19]. However, this
approach results in a large overestimation of the WRIC leading
to an underestimation of the maximum achievable s.

This letter provides a probabilistic analysis of the WRIC for
finite Gaussian matrices. The proposed approach relies on the
exact distribution of the extreme eigenvalues for Wishart ma-
trices or on its gamma approximation based on Tracy-Widom
(TW)’s laws. In particular, we derive a tight lower bound on
the cumulative distribution function (CDF) of the WRICs and
on the probability of satisfying an arbitrary recovery condition,
much tighter than those based on the concentration inequal-
ities. Moreover, we propose a unified framework to quantify
the recovery limits of joint sparse reconstruction algorithms
with WRIC based sufficient conditions, for both noiseless and
noisy measurements. More precisely, the analysis estimates
the maximum support cardinality of row sparse matrices,
such that a target probability of recovery is assured. Then,
the unified approach is applied to theoretically assess the
reconstruction through three algorithms, i.e., ℓ2,1, SA-Music,
and OSMP. Finally, we provide sufficient conditions in terms
of the asymmetric WRICs permitting recovery with higher s,
compared to those obtained through the symmetric WRIC.

Throughout the letter, | · | denotes the cardinality of a
set, ∥ · ∥ indicates the ℓ2-norm of a vector or the spectral
norm of a matrix, ak is the kth column of a matrix A,
P (a, x)=1/Γ(a)

∫ x
0 ta−1e−tdt is the regularized lower in-

complete gamma function, (·)† is the pseudoinverse, and PX

denotes the projection matrix on the subspace X.

II. WRIC AND EIGENVALUES STATISTICS

In this section, we describe the problem and provide the
mathematical tools needed to analyze the WRICs. In particular,

2The WRIC and RIC, while apparently similar, are distinct in the definition,
meaning, and provided recovery guarantee (average vs worst case) [1], [6].
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a generalization of the WRIC considering lower and upper
asymmetric constants is reported below.

Definition 1 (The asymmetric WRICs [6], [18]). Let A be
an m × n matrix, S ⊂ Ω ! {1, 2, ..., n} be a set of indexes
with |S| = s, the lower WRIC (LWRIC) and upper WRIC
(UWRIC), δr(A, S) and δr(A, S), are the smallest constants
such that the inequalities

1− δr(A, S) ≤
∥Av∥2

∥v∥2
≤ 1 + δr(A, S) (3)

are satisfied for all v ∈ Rn with support S∪T where T ⊂ Ω/S
is any set with |T | ≤ r. The symmetric WRIC defined as
δr(A, S) ! max{δr(A, S), δr(A, S)} simultaneously satis-
fies both inequalities.

We aim to upper bound the WRICs of Gaussian measure-
ment matrices, so that joint sparse recovery is guaranteed
with predefined probability. Hence, the statistics of WRICs
should be calculated. Let us start from the Rayleigh quotient
inequality for the ratio in (3), for a fixed set T

λmin(A
T
ZAZ) ≤

∥AZ vZ∥2

∥v∥2
≤ λmax(A

T
ZAZ) (4)

where Z ! S∪T , AZ is the m×z submatrix with z ! |Z| =
s+r, and λmin(AT

ZAZ) and λmax(AT
ZAZ) are the minimum

and maximum eigenvalues of the Wishart matrix, respectively.
Therefore, from (4) and accounting for all possible sets of T ,
the asymmetric WRICs can be

δr(A, S) = 1− min
T,|T |=r

λmin(A
T
ZAZ) (5)

δr(A, S) = max
T,|T |=r

λmax(A
T
ZAZ)− 1. (6)

The WRICs of Gaussian matrices are functions of the extreme
eigenvalues of the corresponding Wishart matrices, and thus
are themselves random variables (r.v.s).

In order to study the exact distribution of extreme eigen-
values we use the framework developed in [32]. Hereafter,
we consider A with i.i.d. entries drawn from a zero-mean
Gaussian distribution with variance 1/m. The exact CDFs of
the extreme eigenvalues of AT

ZAZ are calculated as

P
{
λmin(A

T
ZAZ) ≤ x

}
= 1− ψ (mx,∞) (7)

P
{
λmax(A

T
ZAZ) ≤ x

}
= ψ (0,mx) (8)

where ψ(a, b) is the probability that all eigenvalues of a
Wishart matrix are within the interval (a, b), computed by
Algorithm 1 in [32]. The exact expressions (7) and (8) are
computationally easy for moderate matrix dimensions (we
used them up to m = 2 · 104). For larger dimensions, the
exact CDFs can be approximated, based on TW’s laws [33],
by shifted and scaled gamma distributions [32]

P
{
λmin(A

T
ZAZ) ≤ x

}

≃ ψ̃lower(x) ! 1− P

(

k,
(α− (ln(mx)− v)/τ )+

θ

)

(9)

P
{
λmax(A

T
ZAZ) ≤ x

}

≃ ψ̃upper(x) ! P

(

k,
(α+ (mx− µ)/σ)+

θ

)

(10)

where k = 46.446, θ = 0.186, α = 9.848, µ = (
√
m+

√
z)

2
,

σ=
√
µ(1/

√
z+1/

√
m)1/3, x+ = max{x, 0}, and

τ =

(
(z − 1/2)−1/2 − (m− 1/2)−1/2

)1/3
√
m− 1/2−

√
z − 1/2

v = 2 ln
(√

m− 1/2−
√
z − 1/2

)
+ τ2/8 .

Alternatively, since the TW distribution can also be approx-
imated by its asymptotic tail expansion [34], P (k, z) in (9)
and (10) can be replaced by

P̃ (z) ! 1−
1

4
√
π
(zθ − α)

3

4 e−
2

3
(zθ−α)

3
2 for z >

α

θ
whenever simpler expressions for WRICs are preferable.

It can be verified from the exact distributions that the ex-
treme eigenvalues asymmetrically deviate from unity. Hence,
the asymmetric analysis leads to more accurate description of
the WRICs, as previously noticed for the RIC in [7]–[12].

III. WRIC ANALYSIS FOR GAUSSIAN MATRICES

We derive at first lower bounds on the CDFs of the WRICs
using the exact distributions of the extreme eigenvalues and
their gamma approximation. Then, we deduce the WRIC
thresholds which are not exceeded with a target probability.

Specifically, the CDF of the LWRIC is lower bounded from
(5) and (7) by3

FLWRIC(x) ! 1−
(
n− s

r

)[
1− ψ (m (1− x) ,∞)

]
(11a)

≃ 1−
(
n− s

r

)
ψ̃lower(1− x) (11b)

where the binomial coefficient is from the union bound to
account for all possible sets T with |T | = r, and (11b) is
based on (9). Let us define the LWRIC threshold, δ∗r(s, ϵ),
such that

P{δr(A, s) ≤ δ∗r(s, ϵ)} ≥ 1− ϵ (12)

is satisfied. Then, from (11) and (12), it can be estimated as

δ∗r(s, ϵ) = ψ−1
mz,lower

(

1−
ϵ(n−s
r

)

)

(13a)

≃ 1−
1

m
exp

(

τ

[

α− θP−1

(

k, 1−
ϵ(n−s
r

)

)]

+v

)

(13b)

where ψ−1
lower(y) is the inverse of ψ(m(1 − x),∞).

Similarly, the CDF of the UWRIC is lower bounded by

FUWRIC(x) ! 1−
(
n− s

r

)
[1− ψ (0,m(1 + x))] (14a)

≃ 1−
(
n− s

r

)
[1− ψ̃upper(1 + x)]. (14b)

Accordingly, the UWRIC threshold is

δ
∗
r(s, ϵ) = ψ−1

mz,upper

(

1−
ϵ(n−s
r

)

)

−1 (15a)

≃
σ

m

[

θ P−1

(

k, 1−
ϵ(n−s
r

)

)

− α

]

+
µ

m
− 1 (15b)

3The set S is replaced by s in the notation, as the WRICs of i.i.d. random
matrices statistically depend on the cardinality rather than the set itself.



ELZANATY et al.: WEAK RIC ANALYSIS OF FINITE GAUSSIAN MATRICES FOR JOINT SPARSE RECOVERY 3

where ψ−1
mz,upper(y) is the inverse of ψ(0,m(1 + x)).

Analogously, the CDF of the symmetric WRIC can be lower
bounded by

FWRIC(x)! 1−
(
n−s

r

)[
1− ψ (m(1−x),m(1+x))

]
(16a)

≃ 1−
(
n−s

r

)[
1+ψ̃lower(1− x)−ψ̃upper(1 + x)

]
(16b)

where for (16b) we applied the union bound to 1 − ψ(a, b).
Following the same reasoning, the symmetric WRIC threshold
can be derived as δ∗r (s, ϵ) = F−1

WRIC(ϵ).

IV. UNIFIED FRAMEWORK FOR RECOVERY ASSESSMENT

In this section, the WRIC thresholds are used to quantify
the maximum s, denoted ŝ, permitting recovery with a target
probability. Let us consider the recovery of a random row
sparse matrix X with support cardinality s, acquired through
a random measurement matrix A. In general, for a given A, if
a sufficient condition stated usually in the form [6], [17]–[19]

fc

(
δ1(A, s) , δ1(A, s)

)
< 1 (17)

is fulfilled, then recovery is guaranteed with probability Pr|c

depending on the distribution of X.4 Since A is random, the
sufficient condition (17) is satisfied with some probability P A

c ,
and recovery is ensured with probability at least

Pr = Pr|c P
A

c . (18)

In order to find ŝ satisfying Pr ≥ η for a given Pr|c, we need
to ensure that P A

c ≥ η/Pr|c. Hence, we propose to substitute
the WRICs in (17) with the WRIC thresholds (13) and (15).
Then, ŝ can be calculated as the maximum s compatible with
fc(δ

∗
1(A, s, ϵ), δ

∗
1(A, s, ϵ)) < 1, where ϵ is derived to meet the

required P A

c . By exploiting the monotonicity of fc(·, ·) and the
union bound, 1− P A

c can be upper bounded by

P

{
fc

(
δ1(A, ŝ), δ1(A, ŝ)

)
≥fc

(
δ∗1(ŝ, ϵ), δ

∗
1(ŝ, ϵ)

)}

≤P

{
δ1(A, ŝ)≥δ∗1(ŝ, ϵ)

}
+ P

{
δ1(A, ŝ)≥δ∗1(ŝ, ϵ)

}
≤ 2ϵ.

So the goal Pr ≥ η is fulfilled for

ϵ = ϵ
(
η, Pr|c

)
= 1/2− η/(2Pr|c). (19)

In the following, we investigate the performance of three
reconstruction methods (i.e., ℓ2,1-minimization, SA-Music,
and OSMP), when X is a sparse Gaussian matrix and A is
Gaussian with normalized columns [17]–[19].5

A. Perfect Recovery from Noiseless Measurements

The first example considers the reconstruction via ℓ2,1-
minimization program, for which it has been proved that if

∥∥∥A†
S ak

∥∥∥ < α < 1, ∀k /∈ S (20)

4Note that fc

(
δ
1
, δ1

)
is a non-decreasing function in both δ

1
and δ1.

5For large m, the ℓ2-norm of each column of A is approximately one.

then the matrix X can be recovered via (2) with probability
at least Pr|c(α) ! 1 − n exp(−ℓ(α−2 + 2 logα)/2 − 1) [17].
Condition (20) is expressed in terms of the WRIC as [17]

δ1(A, s)

1− δ1(A, s)
< α. (21)

We propose relaxing condition (21) to a milder one (i.e., easily
satisfied for larger s). Applying properties of the spectral norm
to (20) and considering (5), we get

∥∥∥A†
S ak

∥∥∥ ≤ δ1(A, s)
∥∥∥(A∗

SAS)
−1
∥∥∥ ≤

δ1(A, s)

λmin(A∗
SAS)

≤
δ1(A, s)

1− δ0(A, s)
< α. (22)

Since δ0(A, s) ≤ δ1(A, s) ≤ δ1(A, s), the left hand side of
(22) is less than that of (21), leading to higher estimates of ŝ.

Now, following the outlined procedure, the maximum s
satisfying the sufficient condition

δ∗1
(
A, s, ϵ

(
η, Pr|c(α)

))

1− δ∗0
(
A, s, ϵ

(
η, Pr|c(α)

)) < α

denoted by s̆(α), can be found for a given α. Finally, a tighter
upper bound on the maximum support cardinality is obtained
by maximizing over α as

ŝ = max
0<α<1

s̆(α).

B. Robust Support Estimation from Noisy Measurements

In the presence of noisy measurements, (1) becomes

Y = AX+ Z (23)

where Z represents the noise. Approximate recovery of X

may consist of a joint support estimation followed by signal
reconstruction through the resulting overdetermined system.

For example, the support can be estimated via SA-Music
algorithm given that a sufficient condition on WRICs, on the
form of (17), is satisfied [18]. More precisely, denoting the

signal subspace by X, let R̂ and X̂ be ℓ̂-dimensional subspaces
of Rm and X, respectively, with ∥P

R̂
−P

X̂
∥ ≤ κ.6 Then,

SA-Music applied to R̂ recovers the support if

√
1− δ1(A, s)

1 + δ1(A, s)

√
ℓ̂/s
√
1− δ1(A, s)−

√
δ1(A, s)

2 +
√
ℓ̂/s
√
1− δ1(A, s)−

√
δ1(A, s)

> κ.

(24)
Alternatively, if support estimation is performed via OSMP,

the sufficient condition is [19]

δ1(A, s) < 1−max

{
4 κ(1− κ),

[
1

1 + ℓ̂/s

(
2κ
√
ℓ̂/s+

√
1 + ℓ̂/s− 4 κ2

)]2}
. (25)

Note that the probability of exact support recovery via
SA-Music and OSMP is greater than the probability of satisfy-
ing (24) and (25), respectively (i.e., Pr|c = 1). We would like

6∥P
R̂
−P

X̂
∥ is bounded with high probability for Gaussian noise [18].
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Fig. 1. Upper bounds on the probability of recovery failure using the
proposed approaches and concentration bound for various algorithms, with
n =2m=6000, ℓ = 20, and κ = 0.

to note also that (24) and (25) relax the recovery conditions in
[18] and [19] by utilizing the asymmetric WRICs. The original
formulas in [18] and [19] can be obtained by substituting
δ1(A, s) and δ1(A, s) with δ1(A, s).

V. NUMERICAL RESULTS

In this section, numerical results are presented to investigate
the WRICs and the estimated maximum joint support cardi-
nality for various recovery algorithms. Note that the analysis
based on the exact extreme eigenvalue statistics (7) and (8)
will be referred as the exact eigenvalues distribution (EED).

Fig. 1 shows upper bounds on the probability of reconstruc-
tion failure derived from the concentration of measure in [18,
Proposition 6.1], along with the EED bound and gamma and
TW tail expansion based approximations. The analysis is based
on the sufficient recovery conditions via SA-Music and OSMP
and via ℓ2,1-minimization (21). It results that the proposed
methods provide tighter bounds compared to the concentration
inequalities (many orders of magnitude). Also, the gamma
and TW approximations well describe the exact eigenvalues
based analysis (overlapped for 1 − Pr ≥ 10−10). Moreover,
the theoretical performance of SA-Music and OSMP are
coincident, as they have the same condition for the noiseless
case.7 Additionally, they have better performance for small s,
while the ℓ2,1-minimization is superior at higher s.

Fig. 2 plots the contours of the UWRIC thresholds calcu-
lated by means of the EED and gamma approximation (15).
As can be seen the gamma approximation is quite accurate,
and provides tight upper bounds on the UWRIC thresholds for
small values, relevant to sparse recovery.

Finally, the normalized maximum joint support cardinality,
ŝ/m, for various recovery algorithms is shown in Fig 3. In par-
ticular, ŝ has been estimated using the associated asymmetric
and symmetric conditions, where the WRICs are calculated
by the EED, for various noise parameters κ and probability of
correct support estimation at least 0.999.8 As can be noticed,

7Note that both the conditions in (24) and (25) reduce to
δ1(A, s)≤ℓ/(s+ ℓ) in the noiseless case (κ = 0, ℓ̂ = ℓ).

8Support estimation is sufficient for perfect recovery in the noiseless case.
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Fig. 2. Level sets of the UWRIC threshold δ1(A, s, 10−3)∈ {0.3, . . . , 0.9}
using the EED (solid) and gamma approximation (dashed), for m = 3000.
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ŝ
/
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Optimization (22), κ = 0, ℓ/s = 1

OSMP (25), κ = 0, ℓ/s = 1

OSMP (25), κ = 0.05, ℓ̂/s = 0.7

SA-Music (24), κ = 0.05, ℓ̂/s = 0.7

SA-Music (24), κ = 0, ℓ/s = 1

×10−2

Fig. 3. The normalized ŝ via the three recovery methods through asymmetric
(solid) and symmetric (dashed) conditions, with Pr ≥ 0.999 and m = 3000.

OSMP allows recovery of less sparse signals, compared to
SA-Music, for noisy measurements. In the noiseless case, for
the set of chosen parameters, the mixed norm minimization
indicates lower ŝ. Additionally, it is evident that the proposed
asymmetric conditions provide higher estimates of ŝ compared
to the symmetric ones (up to 100% increase in s).

VI. CONCLUSION

We have studied the weak restricted isometry constant
of Gaussian matrices, which is particularly important for
MMV problem arising in many applications, e.g., localization,
imaging, and multivariate regression. The proposed analy-
sis provides tighter bounds on the probability of recovery,
several orders of magnitude compared to the concentration
bounds. Additionally, the suggested framework allows com-
paring various joint sparse recovery algorithms in terms of the
maximum allowable support cardinality. Finally, the analysis
indicates that the derived asymmetric WRIC based conditions
are preferable over those based on WRIC, as they result in
better performance bounds.
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