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Non-Convex Weighted ¢, Minimization based
Group Sparse Representation Framework for Image
Denoising

Qiong Wang, Xinggan Zhang, Yu Wu, Lan Tang and Zhiyuan Zha

Abstract—Nonlocal image representation or group sparsity has
attracted considerable interest in various low-level vision tasks
and has led to several state-of-the-art image denoising techniques,
such as BM3D, LSSC. In the past, convex optimization with
sparsity-promoting convex regularization was usually regarded
as a standard scheme for estimating sparse signals in noise.
However, using convex regularization cannot still obtain the
correct sparsity solution under some practical problems including
image inverse problems. In this paper we propose a non-convex
weighted ¢, minimization based group sparse representation
(GSR) framework for image denoising. To make the proposed
scheme tractable and robust, the generalized soft-thresholding
(GST) algorithm is adopted to solve the non-convex ¢, mini-
mization problem. In addition, to improve the accuracy of the
nonlocal similar patch selection, an adaptive patch search (APS)
scheme is proposed. Experimental results demonstrate that the
proposed approach not only outperforms many state-of-the-art
denoising methods such as BM3D and WNNM, but also results
in a competitive speed.

Index Terms—Image denoising, group sparsity, weighted ¢,
minimization, generalized soft-thresholding algorithm, adaptive
patch search.

I. INTRODUCTION

HE goal of image denoising is to restore the clean image

X from its noisy observation Y as accurately as possible,
while preserving significant detail features such as edges and
textures. The degradation model for the denoising problem can
be represented as: ¥ = X + V, where V is usually assumed to
be additive white Gaussian noise. Image denoising problem
is mathematically ill-posed and image priors are exploited
to adjust it such that meaningful solutions exist. Over the
past few decades, numerous image denoising methods have
been developed, including total variation based [!, 2], sparse
representation based [3, 4], nonlocal self-similarity based [5—

] and deep learning based ones [9, 10, 38], etc.

Early models mainly consider the priors on level of pixel,
such as total variation (TV) regularization methods [I, 2].
These methods actually assume that natural image gradients
exhibit heavy-tailed distributions, which can be fitted by
Laplacian or hyper-Laplacian models [I1]. Since the TV
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model favors the piecewise constant image structures, it often
damages the image details and tends to over-smooth the
images.

As an alternative, another significant property of natural
images is to model the prior on patches. The most representa-
tive work is sparse representation based scheme [3, 4], which
encodes an image patch as a sparse linear combination of the
atoms in an over-complete redundant dictionary. The dictio-
nary is usually learned from natural images [12]. The seminal
of KSVD dictionary [4] has not only confirmed promising
denoising performance, but also extended and successfully
exploited it in various image processing and computer vision
tasks [13, 14]. However, patch-based sparse representation
model usually suffers from some limits, such as dictionary
learning with great computational complexity and neglecting
the relationships among similar patches [7, 15, 16].

Motivated by the observation that nonlocal similar patches
in a natural image are linearly correlated with each other,
this so-called nonlocal self-similarity (NSS) prior was initially
employed in the work of nonlocal means denoising [5],
which has become the most effective priors for the task of
image restoration [17, 18]. Due to its favorable reconstruction
performance, a large amount of further developments have
been proposed [6-8, 15, 16, 19, 41]. For instance, a very
popular scheme is BM3D [6], which groups similar patches
into 3D array and disposes these arrays by sparse collaborative
filtering. Marial et al. [7] proposed the learned simultaneous
sparse coding (LSSC) to improve the denoising performance
of K-SVD [4] via group sparse coding. Gu et al. [19, 20]
proposed the weighted nuclear norm minimization (WNNM)
model, which turned the image denoising into the problem
of low rank matrix approximation of noisy nonlocal similar
patches. Lately, deep learning based techniques for image
denoising have been attracting considerable attentions due to
its impressive denoising performance [9, 10, 38].

Traditional sparse representation based image denoising
methods exploit the ¢;-norm based sparsity of an image and
the resulting convex optimization problems can be efficiently
solved by the class of surrogate-function based methods [21,

]. However, using convex regularization cannot still obtain
the correct sparsity solution under some practical problems
including image inverse problems [39].

Inspired by the success of ¢, (0 < p < 1) sparse
optimization [23-25, 40] and our previous work [39], this
paper proposes a non-convex weighted £, minimization based
group sparse representation (GSR) framework for image de-



noising. To make the proposed scheme tractable and robust, the
generalized soft-thresholding (GST) algorithm is adopted to
solve the non-convex ¢, minimization problem. Moreover, we
propose an adaptive patch search (APS) scheme to improve the
accuracy of the nonlocal similar patch selection. Experimental
results show that the proposed approach not only outperforms
many state-of-the-art denoising methods such as BM3D and
WNNM, but also results in a competitive speed.

II. GROUP-BASED SPARSE REPRESENTATION

Recent advances have suggested that structured or group
sparsity can offer powerful performance for image restoration
[7, 8, 16]. Since the unit of our proposed sparse representation
model is group, this section will give briefs to introduce how
to construct the groups. More specifically, image X with size
N is divided into n overlapped patches x; of size vVdx \/d,i =
1,2, ...,n. Then for each exemplar patch x;, its most similar m
patches are selected from an L x L sized searching window to
form a set §;. Since then, all the patches in §; are stacked
into a matrix X; € R¥™, which contains every element
of S; as its column, ie., X; = {x;1,%2,...,%;.m}. The
matrix X; consisting of all the patches with similar structures
is called as a group, where x;,, denotes the m-th similar
patch (column form) of the i-th group. Finally, similar to
patch-based sparse representation [3, 4], given a dictionary
D;, which is often learned from each group, such as DCT,
PCA-based dictionary [32], each group X; can be sparsely
represented as o; = D; *X; and solved by the following /o-
norm minimization problem,

]
Q; = arg min . (f||X1—an,H%—l-)\ZHa,HO) (1)
o i=1"92

where || o ||% denotes the Frobenious norm and ); is the
regularization parameter. || e ||o is fp-norm, counting the
nonzero entries of ;.

In image denoising, each noise patch y; is extracted from
the noisy image Y. We search for its similar patches to
generate a group Y, ie., ¥; = {y;1,¥;9,-Y;m}. Thus,
image denoising is translated into how to reconstruct X; from
Y; by using group sparse representation,

e 1
ai:arglglnzizl(iHYi_DiaiH%“’)\iHaiHO) (2)

Once all group sparse codes {e;} are obtained, the latent
clean image X can be reconstructed as X = Do, where the
group sparse code « includes the set of {c;}.

However, since the ¢y, minimization is discontinuous op-
timization and NP-hard, solving Eq. (2) is a difficult com-
binatorial optimization problem. For this reason, it has been
suggested that ¢y minimization can be replaced by its convex
{1 counterpart,

e 1
az‘:arglgmzi:l(gﬂyi—Diaz‘||§?+>\i||ai||1) 3)

However, ¢; minimization is hard to achieve the desired
sparsity solution in some practical problems, such as image
denoising, image compressive sensing [26, 27], etc.

III. NON-CONVEX WEIGHTED ¢, MINIMIZATION BASED
GROUP SPARSE REPRESENTATION FRAMEWORK FOR
IMAGE DENOISING

Conventional convex optimization with sparsity-promoting
convex regularization is usually regarded as a standard scheme
for estimating sparse signals in noise. However, using convex
regularization cannot still obtain the correct sparsity solution
under some practical problems including image inverse prob-
lems [39]. This section introduces a non-convex weighted ¢,
minimization based group sparse representation framework for
image denoising. To make the optimization tractable, the gen-
eralized soft-thresholding (GST) algorithm [25] is adopted to
solve the non-convex ¢, minimization problem. To improve the
accuracy of the nonlocal similar patch selection, an adaptive
patch search scheme is proposed.

A. Modeling of Non-convex Weighted £, Minimization

Inspired by the success of ¢, (0 < p < 1) sparse opti-
mization [23-25, 40] and our previous work [39], to obtain
sparsity solution more accurately, we extend the non-convex
weighted ¢, (0 < p < 1) penalty function on group sparse
coefficients of the data matrix to substitute the convex /¢;
norm. Specifically, instead of Eq. (3), a non-convex weighted
£, minimization based group sparse representation framework
for image denoising is proposed by solving the following
minimization,

1
o; :argnémzizl(inyvi*DiaiH%+ ||Wiai||P) “4)

where W, is a weight assigned to each group Y. Each weight
matrix W; will enhance the representation capability of each
group sparse coefficient o;. In addition, one important issue
of the proposed denoising approach is the selection of the
dictionary. To adapt to the local image structures, instead of
learning an over-complete dictionary for each group Y; as in
[7], we learn the principle component analysis (PCA) based
dictionary [32] for each group Y;. Due to orthogonality of each
dictionary D;, and thus, based on the orthogonal invariance,
Eq. (4) can be rewritten as

. no 1
o =min " (Ll - el (W)
' N (&)
. n 1 N o
=min) (5117 = all3 + [Widull,)

where Y; = D;~,. o, 7; and w; denote the vectorization of
the matrix o;, «; and W;, respectively.

B. Solving the Non-convex Weighted (,, Minimization by the
Generalized Soft-thresholding Algorithm

To achieve the solution of Eq. (5) effectively, in this
subsection, the generalized soft-thresholding (GST) algorithm
[25] is used to solve Eq. (5). Specifically, given p, 7, and w;,
there exists a specific threshold,

GST (5 Y = (290 (1 — D)) 55 0 (20 < (1 —p)) 55
T (Wig) = (2w ;(1—p))Z=> +wi ;jp(2w; ;(1—p))==> (6)
where 7;;, &;; and w;; are the j-th element of 7,, &;

_ . ez GST (= ~ _
and w;, respectively. Here if 7;; < Tp (Wi 5), Guj; =



0 is the global minimum. Otherwise, the optimum will
be obtained at non-zero point. According to [25], for any

Fij € (1957 (Wiz),+00), Eq. (5) has one unique minimum
T gST(’yi’ 73 Wi j), which can be obtained by solving the follow-

ing equation,
- - _ S -1
T (3i,:Wig) — Fig + Wigp (TS Figiig))’ =0 ()
The complete description of the GST algorithm is exhibited

in Algorithm 1. For more details about the GST algorithm,
please refer to [25].

Algorithm 1: Generalized Soft-Thresholding (GST) [25].
Input: &i,j,ﬁ/i’j,p, J.

_1 . . p=1
Lo 708y ) = (24,5 (1 — p)) 2P + Wy jp(23,5(1 — p)) >=7;
20 B |F | < TP (wig)
3. T3 (34,53 Wi,5) = 0;
4. else
_(k _

5. k:07041(,j> = %i,51:
6. Iterate on £k = 0,1, ..., J

~ (k41 - - ~(k)\P1L
7. ag,j )= 1,51 — Wi 5P (az(,j)> ;
8. k+—k+1;
9. TG (Fi,55Wi,5) = sen(Fi, )&y ;3
10. End

Input:: TG (35 55 Wi 5).

C. Adaptive Patch Search

k Nearest Neighbors (KNN) method [28] has been widely
used to nonlocal similar patch selection. Given a noisy refer-
ence patch and a target dataset, the aim of kNN is to find the &k
most similar patches. However, since the given reference patch
is noisy, kNN has a drawback that some of the £k selected
patches may not be truly similar to given reference patch.
Therefore, to obtain an effective similar patches index via
kNN, an adaptive patch search scheme is proposed. We define
the following formula,

¢ = SSIM(8, X"y — ss1M(0, 1) @®)

where SSIM represents structural similarity [29], @ is pre-
filtering ! denoised image and b'e represents the ¢-th iteration
denoising result. We empirically define that if ¢ < p, X is
regarded as target image to fetch the k similar patch indexes
of each group, otherwise 0 is regarded as target image. p is a
small constant.

For the weight W; of each group sparse coefficient o;, large
values of each «; usually represent major edge and texture
information. Therefore, we should shrink large values less,
while shrinking smaller ones more [30]. Inspired by [31], the
weight W; of each group Y is set as w; = [W; 1, W; 2, .., Wi 5],
where w; ; = cx2y/202 /o, o; denotes the estimated variance
of &;, and ¢ is a small constant.

In addition, we could execute the above denoising pro-
cedure for better results after several iterations. In the ¢-th
iteration, the iterative regularization strategy [33] is used to
update the estimation of noise variance. Then the standard
divation of noise in ¢-th iteration is adjusted as (of) =

% \/(02 —|Y - Xt||§), where ¢ is a constant. The proposed
denoising procedure is summarized in Algorithm 2.

IThis paper BM3D is chosen as a pre-filtering.

Algorithm 2: The Proposed Denoising Algorithm.
Input: Noisy image Y.
Initialization: X = Y,0,c,d,m,L,J, o, P, 0, A
Fort=1,2,..,K do
Tterative regularization Y¢+1 = X+ AY — Xt);
If t=1
Similar patch selection based on 6.
Else
If SSIM(Y!*+! 9) — SSIM(Yt,0) < p
Similar patches index selection based on Y¢+1.
Else
Similar patches index selection based on 6.
End if
End if
For each patch y; do
Find a group Y;*t! via kKNN.
Constructing dictionary D;*t1 by ¥; by PCA operator.
Generating the group sparse coefficient v,*t1 by D; ~1Y;.
Update W;*+1 computing by #; ; = ¢ * 2v/202/o;.
Update c;*T1 computing by Algorithm 1.
Get the estimation X;t+1! =D,;tt1 ot 11,
End for

. St+1
Aggregate X;*+1 to form the recovered image X' 1.

End for
Output: )A(Hl.

Fig. 2. Denoising images of plants by different methods (¢ = 50). (a)
Original image; (b) Noisy image; (c) BM3D [6] (PSNR=28.11dB); (d) LINC
[34] (PSNR=27.96dB); (e¢) AST-NLS [35] (PSNR=28.04dB); (f) MSEPLL
[36] (PSNR=28.09dB); (g) WNNM [20] (PSNR=28.23dB); (h) Proposed
(PSNR=28.60dB).

IV. EXPERIMENTAL RESULTS

To demonstrate the efficacy of the proposed denoising al-
gorithm, in this section, we compare it with recently proposed
state-of-the-art denoising methods, including BM3D [6], LINC
[34], AST-NLS [35], MSEPLL [36] and WNNM [20]. The
experimental images are shown in Fig. 1. The Matlab code
can be downloaded at: https://drive.google.com/open?id=
0BOwKhHwcknCjM0doVFhIREIXWjg.

The parameter setting of proposed approach is as follows:
the searching window L x L for similar patches is set to be
30 x 30. The searching matched patches m is set to be 60.
The size of each patch v/d x v/d is set to be 6 x 6 and 7 x 7


https://drive.google.com/open?id=0B0wKhHwcknCjM0doVFhlRElXWjg
https://drive.google.com/open?id=0B0wKhHwcknCjM0doVFhlRElXWjg

TABLE I
DENOISING PSNR (dB) RESULTS BY DIFFERENT DENOISING METHODS.

o =20 o =30
Images BM3D | LINC | AST-NLS | MSEPLL | WNNM | Proposed BM3D | LINC | AST-NLS | MSEPLL | WNNM | Proposed
House 33.77 33.82 33.87 33.27 34.04 34.08 32.09 32.26 32.26 31.71 32.52 32.65
lin 32.83 33.04 33.84 32.80 33.00 33.08 30.95 31.03 30.83 30.96 31.07 31.14
flower 30.01 30.30 30.28 30.10 33.34 30.48 27.97 28.13 28.20 28.05 28.26 28.36
foreman 34.54 34.76 34.55 34.09 34.72 34.86 32.75 32.93 32.79 32.34 33.00 33.31
plants 32.68 32.83 32.75 32.58 33.04 33.09 30.70 30.67 30.65 30.66 30.94 31.05
Miss 33.71 33.64 33.64 33.68 33.70 33.80 31.89 31.75 31.72 31.92 31.93 32.04
Average 32.92 33.07 32.99 32.80 33.14 33.23 31.06 31.13 31.08 30.93 31.29 31.42
o =40 o =50
Images BM3D | LINC | AST-NLS | MSEPLL | WNNM | Proposed BM3D | LINC | AST-NLS | MSEPLL | WNNM | Proposed
House 30.65 31.00 30.91 30.47 31.31 31.49 29.69 29.87 30.13 29.47 30.32 30.52
lin 29.52 29.94 29.39 29.68 29.80 29.89 28.71 28.85 28.50 28.69 28.83 28.90
flower 26.48 26.79 26.75 26.64 26.85 26.90 25.49 25.47 25.77 25.56 25.80 25.88
foreman 31.29 31.31 31.29 31.05 31.54 32.08 30.36 30.33 30.46 30.04 30.75 31.03
plants 29.14 29.09 29.05 29.25 29.28 29.70 28.11 27.96 28.04 28.09 28.23 28.60
Miss 30.50 30.29 30.19 30.56 30.53 30.78 29.48 29.22 29.26 29.55 29.34 29.70
Average 29.59 29.74 29.60 29.61 29.88 30.14 28.62 28.59 28.69 28.57 28.88 29.10
for 0 < 20 and 20 < o < 50, respectively. (p, ¢, A, d, p, J) are TABLE IV

set to (1, 0.3, 0.1, 0.5, 2e-4, 2), (0.85, 0.3, 0.2, 0.8, 2e-4, 2),
(0.8, 1.2, 0.1, 0.4, 6e-4, 2) and (0.75, 1.6, 0.1, 0.4, 2e-4, 2)
for 0 < 20,20 < 0 £ 30,30 < ¢ <40 and 40 < ¢ < 50,
respectively.

TABLE II
AVERAGE PSNR (dB) RESULTS OF ADS AND NO-ADS ON 6 TEST
IMAGES.
o 20 30 40 50
No-APS | 33.10 | 31.23 | 29.94 | 28.80
APS 33.23 | 31.42 | 30.14 | 29.10

We first evaluate the proposed approach and the competing
algorithms on 6 test images. Table I shows the PSNR results. It
can be seen that the proposed approach performs competitively
compared to other methods. The proposed approach achieves
0.42dB, 0.34dB, 0.39dB, 0.51dB and 0.18dB improvement
on average over the BM3D, LINC, AST-NLS, MSEPLL and
WNNM, respectively. Fig. 2 shows the denoised image of
plants by the competing methods. It can be seen that BM3D,
LINC, AST-NLS, MSEPLL and WNNM still generate some
undesirable artifacts and some details are lost. In contrast,
the proposed approach not only preserves the sharp edges,
but also suppresses undesirable artifacts more effectively than
other competing methods.

TABLE III
AVERAGE RUN TIME (s) WITH DIFFERENT METHODS ON THE 6 TEST
IMAGES (SIZE: 256 X 256).

Methods
Average Time (s)

LINC
263

AST-NLS
300

MSEPLL
182

WNNM
172

Ours
82

Second, to verify the proposed adaptive patch selection
(APS) scheme effectively, we compare it with No-APS
scheme. The average PSNR results of APS and No-APS
schemes on 6 test images are shown in Table II. One can
observe that the PSNR results of APS scheme are better
than No-APS. Thus, under the task of image denoising, the
proposed APS scheme can enhance the accuracy of nonlocal
similar patch selection.

AVERAGE PSNR (dB) RESULTS WITH DIFFERENT METHODS ON BSD200
DATASET [37].

o | BM3D | LINC | AST-NLS | MSEPLL | WNNM | Ours
20 | 29.86 | 29.92 29.98 29.95 30.11 30.14
30 | 27.93 27.94 28.02 28.02 28.17 28.15
40 | 26.58 26.61 26.68 26.73 26.88 26.89
50 | 25.71 25.64 25.80 25.84 25.96 25.97

Third, to evaluate the computational cost of the competing
algorithm, we compare the running time on 6 test images with
different noise levels. All experiments are conducted under
the Matlab 2012b environment on a machine with Intel (R)
Core (TM) i3-4150 with 3.56Hz CPU and 4GB memory. The
average run time (s) of the competing methods is shown in
Table III. It can be seen that the proposed approach clearly
requires less computation time than other methods. Note that
the run time of the proposed approach includes the pre-filtering
process.

Finally, We also comprehensively evaluate the proposed
method on 200 test images from the BSD dataset [37].
Table IV shows qualitative comparisons of the competing
denosing methods on four noise levels (o = 20, 30, 40, 50).
It can be seen that the proposed approach achieves very
competitive denoising performance compared to WNNM.

V. CONCLUSION

Different from the conventional convex optimization, this
paper proposed a non-convex weighted £, minimization based
group sparse representation (GSR) framework for image de-
noising. To make the proposed scheme tractable and robust, we
adopted the generalized soft-thresholding (GST) algorithm to
solve the non-convex £, minimization problem. Moreover, we
proposed an adaptive patch search (APS) scheme to boost the
accuracy of the nonlocal similar patch selection. Experimental
results have verified that the proposed approach outperforms
many state-of-the-art denoising methods such as BM3D and
WNNM, and results in a competitive speed.
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