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Detecting the Presence of ENF Signal in Digital
Videos: a Superpixel based Approach

Saffet Vatansever, Ahmet Emir Dirik, Nasir Memon

Abstract—ENF (Electrical Network Frequency) instanta-
neously fluctuates around its nominal value (50/60 Hz) due to
a continuous disparity between generated power and consumed
power. Consequently, luminous intensity of a mains-powered light
source varies depending on ENF fluctuations in the grid network.
Variations in the luminance over time can be captured from video
recordings and ENF can be estimated through content analysis
of these recordings. In ENF based video forensics, it is critical to
check whether a given video file is appropriate for this type of
analysis. That is, if ENF signal is not present in a given video,
it would be useless to apply ENF based forensic analysis. In this
work, an ENF signal presence detection method is introduced
for videos. The proposed method is based on multiple ENF
signal estimations from steady superpixels, i.e. pixels that are
most likely uniform in color, brightness, and texture, and intra-
class similarity of the estimated signals. Subsequently, consistency
among these estimates is then used to determine the presence
or absence of an ENF signal in a given video. The proposed
technique can operate on video clips as short as 2 minutes and
is independent of the camera sensor type, i.e. CCD or CMOS.

Index Terms—ENF, electric network frequency, video forensics,
multimedia forensics, ENF detection, superpixel.

I. INTRODUCTION

ENF (Electrical Network Frequency) is a time varying
signal fluctuating continuously around its nominal value

(50/60 Hz) due to the instantaneous imbalance between power
consumption and power generation [1]. For each time instance,
ENF fluctuation is almost the same across the entire intercon-
nected power grid network [2]. Accordingly, electric frequency
measured at any location connected to a particular mains
power can be used as a reference ENF signal for the whole area
covered by that power network for the relevant time period [3].
This property of electric frequency, as well as the ability to
extract it from multimedia files, has led to the exploitation
of ENF in digital media forensics in recent years. It can be
used for a variety of forensic and anti-forensic applications
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including audio/video authentication [4], [5], [6], time stamp
verification [7], [8], [9], and power grid identification [10].

An ENF signal is embedded in audio recordings made in
settings where the electromagnetic field or acoustic mains hum
exists and it can be estimated from these recordings with time-
domain or frequency-domain approaches [2], [7], [11], [12],
[13]. Recently, it was found that ENF can also be estimated
from video captured under illumination of a light source
powered by mains grid [3]. The intensity of illumination
from any light source connected to the mains power varies
depending on ENF variations in the grid network. Although
the human eye cannot perceive, ENF can be estimated by
analysis of subtle illumination variations in steady content
along subsequent video frames.

Two different ENF estimation methods for ENF based
forensic analysis of digital video have been proposed in the
literature: a method tailored to videos recorded by CCD sensor
[3] and a technique for videos captured by CMOS sensor [3],
[9], [14]. While the former is based on averaging all the steady
pixels in each frame along the video, the latter processes steady
pixels based on a rolling shutter sampling mechanism [14],
[15], [16], [17].

In ENF based video forensics, it is important to test whether
a video contains any traces of ENF before moving on to further
analysis. For instance, if a video does not contain any ENF
signal it would be useless to search in existing ENF databases
for video time-stamp or region-of-recording verification. More
importantly, a substantial amount of computational load and
time can be saved if a quick test can establish the absence of
an ENF signal. To the best of our knowledge, none of the work
in the literature presents an approach that can automatically
detect the presence of an ENF signal in a video regardless of
the imaging sensor type, e.g. CCD or CMOS.

In this letter, a superpixel based ENF signal presence de-
tection technique is proposed. The proposed method performs
multiple “so-called ENF” signal estimations from different
steady object regions having very close reflectance properties,
i.e. superpixels [18]. Our motivation to use superpixels is
that each pixel in a superpixel region is almost uniform
in brightness, color and texture, and hence has uniform re-
flectance characteristics. Working on such a region provides
the possibility of estimating ENF from videos taken by not
only CCD camera but also by CMOS camera, which uses
rolling shutter mechanism. In the proposed algorithm, a “so-
called ENF signal” is estimated from each steady superpixel
separately. The reason we use the term “so-called ENF” is
because the estimated signal is initially unknown to be actually
an ENF signal. Depending on the similarity of the estimated
signals from each steady superpixel, it can be decided whether
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any ENF signal is present in the test video or not. It should
be noted that the proposed method does not require any
verification against a reference ENF database.

II. ENF POWER MODEL

Instantaneous power grid voltage can be modeled as fol-
lows:

V (t) =
√

2V0 cos(φ(t))

=
√

2V0 cos(2πfnt+ θ(t) + α)

=
√

2V0 cos(2πfnt+ 2π

∫ t

0

fe(τ)dτ + α)

(1)

where fn is nominal frequency (50/60Hz), V0 is effective
mains voltage and α is initial phase offset [1]. fe(t) repre-
sents instantaneous fluctuations from nominal frequency and
θ(t) denotes instantaneous phase which varies depending on
supply-demand power imbalance. From the above equations,
the instantaneous mains power frequency at time t can be
expressed as

f(t) =
1

2π

dφ(t)

dt
= fn + fe(t) (2)

As fn is constant, electric network frequency alters depending
on fe(t) variations. By benefiting from the model in [1], fe(t)
can be written as

fe(t) =
fn
2H

(Ps(t)− Pd(t)) (3)

where Ps(t) denotes supplied power, Pd(t) is total demanded
power with losses and H represents an inertia constant.
Accordingly, for each time instance, fe(t) and f(t) change
depending on the instantaneous difference between generated
and consumed power.

III. ENF ESTIMATION FROM VIDEO

A. Light Source Flicker and ENF

Intensity of illumination from any light source connected
to the mains power varies depending on ENF variations in
grid network. As light source flickers at both the positive
and negative cycles of AC current, the illumination frequency
becomes double the mains power frequency. Accordingly, the
illumination signal can be treated as the absolute form of the
cosine function in (1). For example in Europe, nominal ENF
in any region is 50 Hz, thus frequency of illumination varies
around 100 Hz. According to the Nyquist Sampling Theorem,
a sampling rate of at least 200 Hz is needed in order to
extract illumination frequency accurately from sampled data.
Although most consumer cameras are unable to provide such
high frame sampling rates, it is still possible to estimate
illumination frequency from its alias frequency. Let fs be
the camcorder sampling frequency and fl be the frequency
of light source illumination. Then fa the aliased frequency of
illumination is obtained as follows [19]:

fa = |fl − k · fs| <
fs
2
, ∃k ∈ N (4)

Accordingly, when a light source illumination signal in 100 Hz
is sampled with 29.97 fps camera, the base alias frequency of
ENF is obtained as 10.09 Hz.

Fig. 1. A sample image with superpixels.

B. Superpixel based ENF Estimation

In this section, a superpixel based ENF estimation method
for video is proposed. Unlike available methods in the liter-
ature [3], [9], we propose to estimate ENF from only steady
superpixels, rather than all steady pixels along video frames.
The SLIC (Simple Linear Iterative Clustering) segmentation
algorithm [18] is used to compute superpixel regions in
the experiments. A sample image segmented with the SLIC
algorithm and its superpixels is given in Fig. 1. The underlying
idea of the proposed ENF estimation is that each pixel in a
superpixel region/set is assumed to have uniform reflectance
characteristics.

The amount of illumination at any pair of pixel coordinates
x, y, received by a camera at any moment n can be written as
[20]:

I(x, y, n) = is(x, y, n) · r(x, y) (5)

where r(x, y) denotes the amount of reflected illumination and
is(x, y, n) is instantaneous light source illumination. For a
point light source, is(x, y, n) can be expressed in terms of
mains electricity voltage approximately as:

is(x, y, n) ≈ β

ds(x, y)2
·
∣∣V (n)

∣∣ (6)

where β is a transform factor for voltage to luminance
conversion and ds(x, y) is the distance between the spatial
position (x, y) and the light source. The reason V (n) is in
absolute form is that light source produces illumination in both
positive and negative cycles of electrical power grid voltage.
In a superpixel region, the reflectance factor r(x, y) can be
assumed to be constant. Similarly, the distance of any pixel in
a superpixel S to the light source ds(x, y) can be considered
constant as well. Thus, for kth steady superpixel Sk, (5) can
be rewritten in the following form:

Ik(x, y, n) ≈ β · rk
d2k
·
∣∣V (n)

∣∣ , (x, y) ∈ Sk (7)

where rk denotes a constant reflectance factor for pixels
belonging to kth steady superpixel region (Sk), k ∈ {1, ..., L}.
L is the number of steady superpixels, dk is the approximate
distance of superpixel Sk to the light source. As it can be seen
from (7), Ik(x, y, n) is directly proportional to V (n), which
means that the frequency of power grid voltage V (n) can
be directly estimated from Ik(x, y, n). Illumination variations
at any superpixel region S can be estimated by averaging
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the steady pixels in S, resulting in L illumination vectors.
From each of the illumination vectors, ENF variations can
be estimated using any of the frequency or time domain
approaches discussed in [9], [11]. In this paper, ENF is
estimated from local intensity variations using STFT (Short
Time Fourier Transform) and quadratic interpolation. In order
to compute STFT we have used 20 sec. time windows with 19
sec. overlapping resulting 1-second temporal ENF resolution
[21]. It is important to note the content of the superpixel region
should be unchanged all along the consecutive video frames,
in order to estimate ENF successfully. This will be addressed
in the next section.

IV. DETECTION OF ENF SIGNAL PRESENCE

In this section, a superpixel based ENF presence detector
for digital video files is presented based on multiple ENF
signal estimations from steady superpixel regions. The main
steps of the proposed technique are illustrated in Table I.
According to the table, one frame, e.g. the middle frame Fr,
in a selected video shot C is segmented into regions having
similar pixel characteristics, i.e. superpixels. Then, within each
superpixel region, the points that are steady throughout all
frames, i.e. non-moving pixels are located. Superpixels having
a low number of steady pixels (ml < τ ) are not used in ENF
estimation. In this study, the value of τ has been determined
empirically as 30×30 pixels. For each steady superpixel Sk

and each video frame Fn, the average intensity Yk(n) is
computed from steady pixels of region Sk. From each intensity
variation vector Yk, a “so-called” ENF vector Ek is estimated
along all the subsequent video frames of the given shot. As
stated in introduction, the reason we use the prefix “so-called’
is that it is initially unknown to be actually ENF or not.

Next, the similarity of estimated ENF vectors is analyzed to
decide whether ENF signal is present or not in the test video.
For this purpose, a representative ENF vector Er is computed
by means of element-wise mean or median operation of all the
estimated ENF vectors. Next, Pearson correlation coefficients
between each estimated Ek and the representative vector Er

are calculated as follows:

ρ(k) = corr(Ek, Er) =
< Ek − Ēk, Er − Ēr >

‖ Ek − Ēk ‖ ‖ Er − Ēr ‖
(8)

where ‖ · ‖ denotes L2 (Euclidean) norm and < · > is the
dot product. The sample mean is denoted with overline. After-
wards, a decision metric is computed based on the following
operations: f1 = max(ρ), f2 = mean(ρ), f3 = median(ρ),
f4 = corr(Ei, Ej), where Ei and Ej are the vectors yielding
the greatest ρ values (top two closest vectors to Er). If the
decision metric is greater than a predefined decision threshold
value, the video is labeled as having an ENF signal.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

In this section, the performance of the proposed method
is evaluated by conducting experiments on partially-moving-
content videos captured in various indoor and outdoor settings
in Turkey, where nominal ENF frequency is 50 Hz. ENF

TABLE I
ALGORITHM: DETECTION OF ENF SIGNAL PRESENCE

Step Description
1 Pick any video shot C. Let Fn be the nth frame in C, where

n ∈ {1, ..., N}.
2 Let the middle frame Fr be the representative frame in C, where

r = bN/2c.
3 Compute superpixel regions for the representative frame. Let Ωl

be the lth superpixel in Fr , l ∈ {1, ..., P}. P is the total number
of the superpixels.

4 Let Φ be the set of all steady pixels in which the video content
do not change with time in Fr .

5 Compute the number of steady pixels ml in each Ωl using the
steady pixel set Φ.

6 Compute steady superpixel set S from {Ωl}: S = {Ωl | ml >
τ}, where τ is a pre-defined threshold for the minimum number
of non-changing pixels in a superpixel region.

7 For each steady superpixel Sk and each frame Fn, compute the
average intensity Yk(n), only from steady pixels of region Sk .
k ∈ {1, ..., L}, and L is the total number of steady superpixels.

8 Estimate ENF variation signal Ek from local intensity variations
Yk for each superpixel Sk .

9 Place all Ek(i) into a matrix M such that M(k, i) = Ek(i),
where i ∈ {1, ..., t} and t is the ENF vector length. Let Er be
the representative ENF vector computed by means of element-
wise median or mean operation of all Ek vectors, where nth
sample of Er is computed as:
Er(i|mean) = mean

k
{M(k, i)}

Er(i|median) = median
k

{M(k, i)}

10 Compute similarity of each Ek with Er by Pearson correlation,
ρ(k).

11 Compute mean, median, maximum, and similar statistics of ρ
vector as decision metrics.

12 If the computed metric is greater than a predefined decision
threshold, the presence of ENF signal in the video is confirmed.

signal presence was searched in a total of 160 videos, one
half of which were recorded by PowerShot SX230HS (CMOS
sensor) and the other half were recorded by Canon PowerShot
SX210IS (CCD sensor). For CMOS, the Canon PowerShot
SX230HS model camcorder was intentionally picked as it has
been used in most ENF related works [9], [14], [15] and [17].
The CCD equivalent of the same camera brand and model
was picked so as to do a fair comparison of the algorithm
according to the sensor type. Out of 80 videos for each
sensor-camera type, one-quarter was captured at night under
illumination of various mains-powered light sources such as
LED, fluorescent tube, CFL, tungsten halogen, sodium-vapor
lamp, street light. A second quarter were recorded under
illumination of mains-powered light sources but in daylight
settings such as in a room with an opened window or next
to a lamp on the balcony in the sunset afternoon. The third
quarter were taken under illumination of non-mains-powered
light sources in daylight settings and the last quarter were
captured at night under illumination of non-mains-powered
light sources such as moonlight, vehicle headlight, candle,
projector torch, smart-phone torch and laptop screen. Hence,
each video is initially known to contain an ENF signal or
not. All the videos were created in 640×480 resolution with a
sampling frequency of 29.97 fps. The camera was fixed during
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Fig. 2. ROC curves of ENF presence detection for videos recorded by both
CCD and CMOS sensors, 160 videos. Er computed with mean operation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

f1 (max. coeff.)
f2 (mean coeff.)
f3 (median coeff.)
f4 (corr. of best 2 ENF)

Fig. 3. ROC curves of ENF presence detection for videos recorded by
both CCD and CMOS sensors, 160 videos. Er computed with the median
operation.

recording and it was ensured that each video has some steady
content in addition to moving content. When sampled with
29.97 fps, the peak alias of 100 Hz can be computed as 10.09
as discussed in section III-A. Therefore, 10.09 Hz frequency
band was utilized for ENF signal estimation from the relevant
video files. Although the videos were in a variety of lengths
between 2 minutes and 15 minutes, a 2-minute clip of each
video was used for ENF detection experiment. It is also notable
that the representative frame for each video was segmented
into about 48 superpixel regions, which corresponds to about
6400 (80× 80) pixels per superpixel for a frame of 640×480
pixels resolution.

B. Experimental Results

In this section, the accuracy of the proposed ENF detection
algorithm is tested on the video dataset described in Section
V-A by computation of a Receiver Operating Characteristics
(ROC) curve and area under the curve (AUC). For this
purpose, the following binary hypotheses are defined:

TABLE II
ENF DETECTION PERFORMANCE (AUC) BASED ON MEAN BASED

REPRESENTATIVE ENF

Sensor Type # Videos f1 f2 f3 f4

CCD 80 0.836 0.896 0.895 0.813

CMOS 80 0.760 0.883 0.866 0.700

Any (Mixed) 160 0.798 0.886 0.881 0.761

TABLE III
ENF DETECTION PERFORMANCE (AUC) BASED ON MEDIAN BASED

REPRESENTATIVE ENF

Sensor Type # Videos f1 f2 f3 f4

CCD 80 0.985 0.947 0.931 0.960

CMOS 80 0.959 0.942 0.941 0.944

Any (Mixed) 160 0.973 0.939 0.931 0.952

H0 : The video does not contain ENF signal
H1 : The video contains ENF signal
Under these hypotheses, f1, f2, f3 and f4 decision metrics,
introduced in Section IV, were computed for each video. Each
decision metric was computed with the use of both mean-based
representative ENF and median-based representative ENF,
respectively and was assigned to the corresponding hypothesis,
H0 or H1. Fig. 2 provides ROC curves obtained for decision
metrics which are formed via mean based representative ENF
computation. Whereas Fig. 3 illustrates ROC curves obtained
for decision metrics that are calculated based on the utilization
of median based representative ENF. From the ROC curves in
Fig. 2 and Fig. 3, a significant enhancement in the detection
performance can explicitly be observed for all metrics when
the decision metrics are formed with the use of median-based
representative ENF. Table II and III provides the area under
the ROC curves (AUC) in Fig. 2 and Fig. 3, respectively
as well as AUC values for each sensor type, separately. The
computed AUC values in Table III are considerably higher not
only for mixture of sensor types but also for each sensor type
independently. According to the Fig. 3, the detection metric
f1 outperforms other metrics when testing a mixture video
dataset whose source sensor type is unknown.

VI. DISCUSSION AND CONCLUSION

In this paper, a superpixel based ENF detection algorithm
for video is presented. The proposed method is able to work
on short video clips of about 2 minutes-length and can be used
to detect and differentiate the videos that are appropriate for
ENF based forensic analysis from ENF free videos on a disk
under investigation or in social media. By doing this, ENF
free videos are not exposed unnecessarily to the execution of
entire ENF based analysis; hence a substantial amount of time
and computational load can be saved. The algorithm is able
to operate independently of the source camera sensor type,
CCD or CMOS and achieves a very high ENF signal presence
detection accuracy for videos captured by both sensor types.
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