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An Adaptive Computation of Contour
Representations for Mode Decomposition

Duong-Hung Pham, and Sylvain Meignen.

Abstract—This letter addresses the problem of the detection
and estimation of the modes of a multicomponent signal using
the reassignment framework. More precisely, we propose a new
algorithm to estimate the ridges representing the time-frequency
(TF) signatures of the modes based on the local orientation of
the reassignment vector (RV), and use them to define the so-
called “basins of attraction” enabling modes’ retrieval. Compared
with previous approaches, this new technique not only enables
reconstruction of AM/FM modes but also Dirac impulses, which
is of great interest in many practical situations. Numerical ex-
periments conducted with both synthetic and real data illustrate
the effectiveness of the technique.

Index Terms—Time-frequency, reassignment, synchrosqueez-
ing, AM/FM, multicomponent signals.

I. INTRODUCTION

IN the signal processing community, multicomponent sig-
nals (MCS), defined as a superposition of amplitude-

and frequency-modulated (AM-FM) modes, have received
considerable attention [1], [2]. Indeed, they enable to very
accurately represent a large class of signals arising from audio
recordings (music, speech), meteorology, structural stability
analysis [3]–[5], or medical data (electrocardiogram, thoracic
and abdominal movement signals) [6], [7]. Linear techniques,
as for instance the short-time Fourier transform (STFT), are
commonly used to characterize them in the TF plane. How-
ever, an inherent limitation of such methods, known as the
“uncertainty principle”, stipulates that one cannot localize a
signal with arbitrary precision both in time and frequency.
Many efforts have been made to cope with this issue and, a
general methodology to sharpen TF representation, coined re-
assignment method (RM) was proposed [8]. RM however does
not allow for mode reconstruction, contrary to another phase-
based technique called synchrosqueezing transform (SST),
introduced in [9]. Unfortunately, this technique cannot deal
with MCS containing modes with strong frequency modulation
and irregular amplitudes or Dirac impulses. Regarding the
frequency modulation, a novel technique, called second order
synchrosqueezing (VSST), was developed in [10] and further
theoretically studied in [11]. Nevertheless, these techniques
assuming the MCS is made of a fixed number of AM/FM
modes, cannot deal with vanishing modes or Dirac impulses.

One key ingredient for mode reconstruction is the estimation
of its TF signature, the knowledge of which enables defi-
nition of plenty different techniques other than those based
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on RM [12], [13]. The type of modes sought conditions of
the technique for TF signatures estimation: some approaches
concentrate on ridge detection for AM/FM modes [14], [15],
while some others, using the properties of the reassignment
vector (RV), can handle a wider class of TF signatures, the
constraints on the modes being less stringent [16] [17]–[19].
In this latter case, the estimated TF signatures are then used to
define basins of attraction (BAs) for the modes enabling their
reconstruction. However, the just mentioned approaches based
on RV fail to assess the TF signature associated with a noisy
Dirac impulse. To improve the behavior of techniques based
on RV on that type of modes while preserving their main
characteristics on AM/FM modes is the aim of the present
paper.

To do so, after having introduced some useful definitions
in Section II, we recall that of RV and existing approaches
based on the latter for TF signature estimation, in Section
III. Then, we introduce, in Section IV, our new TF signature
estimator based on the local orientation of RV, and then show
how to perform mode reconstruction using BAs. Finally, nu-
merical simulations in Section V demonstrate the improvement
brought by the proposed new technique both on a complex
simulated MCS and a real signal.

II. BASIC DEFINITIONS

For a given signal f ∈ L2(R), STFT corresponds to:

V gf (t, ω) =

∫
R
f(u)g(u− t)e−i2πω(u−t) du, (1)

where the window g is assumed to be real-valued. The spectro-
gram is then defined as |V gf (t, ω)|2. When f = δt0 is a Dirac
distribution at t0, the above definition can be extended using
the duality product in the space of distributions as follows:

V gf (t, ω) = 〈δt0 , g(.− t)e
−i2πω(.−t)〉 = g(t0− t)e−i2πω(t0−t).

(2)
Note that, in such a case, the amplitude of STFT is the
same whatever ω. In the sequel, we study MCSs defined as a
superposition of modes:

f(t) =

K∑
k=1

fk(t) with fk(t) = Ak(t)e
i2πφk(t)or fk = Akδtk

(3)
for some finite K ∈ N, a priori unknown. Ak(t) and φk(t)
are respectively instantaneous amplitude (IA) and phase (IP),
φ′k(t) being referred to as the instantaneous frequency (IF) of
mode fk at time t. Note also that, in our context, Ak(t) needs
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not be continuous. Also, we define the TF signature of the
first type of mode as (t, φ′k(t)) while, for the Dirac impulse
at tk, it corresponds to (tk, ω).

III. RV BASED TF SIGNATURE ESTIMATION

A. RV Definition and Illustrations

The key idea of the reassignment method (RM) [8] is to
map a TF representation, as for instance the spectrogram, to
the location corresponding to the TF signature of the nearest
mode. This corresponds to the centroid of the distribution:

τ̂f (t, ω) = t− 1

2π
∂ω

{
arg(V gf (t, ω))

}
ω̂f (t, ω) =

1

2π
∂t

{
arg(V gf (t, ω))

}
, (4)

where arg(Z) is the argument of complex number Z. These
can be computed through [8]:

τ̂f (t, ω) = t+ <

{
V tgf (t, ω)

V gf (t, ω)

}

ω̂f (t, ω) = ω − 1

2π
=

{
V g

′

f (t, ω)

V gf (t, ω)

}
, (5)

where V tgf , V g
′

f are respectively STFTs of f computed with
windows t 7→ tg(t), g′(t) and <{Z} (resp. ={Z}) is the real
(resp. imaginary) part of the complex number Z. With this in
mind, RV is then defined as [16]:

RV (t, ω) =
(
τ̂f (t, ω)− t, ω̂f (t, ω)− ω

)
. (6)

As an illustration, it is easy to see that for f = δt0 ,
RV (t, ω) = (t0−t, 0): it has a component only along the time
axis. Conversely, for a purely harmonic mode, f(t) = ei2πω0t,
one has V gf (t, ω) = ĝ(ω − ω0)e

2iπω0t, where ĝ is the Fourier

transform of g, and thus
V tgf (t, ω)

V gf (t, ω)
= t̂g(ω−ω0)

ĝ(ω−ω0)
which is

an imaginary complex number when g is even. Similarly,

one has
V g′
f (t,ω)

V g
f (t,ω)

= ĝ′(ω−ω0)
ĝ(ω−ω0)

= 2iπ(ω − ω0), so that,
RV (t, ω) = (0, ω0 − ω): it has a component only along
the frequency axis. Another simple case is that of a constant
amplitude linear chirp, whose STFT reads [10]: V gf (t, ω) =

f(t)g(u)eiπφ
′′(t)u2

∧

(ω − φ′(t)). When g(t) = e−σπt
2

, the
following two relations can be easily proven:

V tgf (t, ω) =
1

−2πσ + 2iπφ′′(t)
(g(u)eiπφ

′′(t)u2

)′
∧

(ω − φ′(t))

=
i(ω − φ′(t))
−σ + iφ′′(t)

V gf (t, ω)

V g
′

f (t, ω) = −2πσV tgf (t, ω),

leading to RV (t, ω) = (ω−φ′(t))√
σ2+φ′′(t)2

(−φ′′(t), σ2). The IF of

the mode being a straight line whose orientation is given by
vector (1, φ′′(t)), RV is orthogonal to the ridge corresponding
to the TF signature only if σ = 1 (the window is unitary
in L2). More generally it points to that ridge following the
direction (−φ′′(t), σ2).

(a) (b)

Fig. 1. (a): a close-up of a zero of the spectrogram and its corresponding
contour computed with method M1; (b): STFT of a noisy Dirac impulse (SNR
= 0 dB) along with the first 10 contours computed with method M1, which
clearly point out the failure of the method in detecting the vertical ridge.

B. Definitions of Contour Points

This section reviews two existing approaches to define
contour points, corresponding to the TF signature, based on
the projection of RV in some specific direction. Indeed, we
have just seen that RV points to the ridge associated with the
TF signature of a mode, which means that, when crossing a
ridge, RV undergoes a strong variation in its orientation. To
determine the location of these sudden orientation changes, a
first strategy was developed in [16], and consisted in projecting
RV in a specific direction, given by an angle θ, and then in
determining the location of the sign change of the projection.
Thus, contour points (CPs) were defined as the zeros of
〈RV (t, ω), vθ〉, where vθ is the unit vector in the direction θ,
and 〈., .〉 denotes the inner product. Note that the direction of
projection θ being fixed a priori, the technique does not adapt
well to the determination of CPs corresponding to varying
orientations. To deal with this problem, an improved technique
to compute CPs was proposed in [17], [18]. It first consisted in
remarking that, due to the discrete nature of the studied signals,
RV should be viewed as a displacement on a grid not a vector
of with real coordinates. Indeed, if the signal is supposed to be
defined on 0, · · · ,M−1, the STFT is evaluated at frequencies
p
N , p = 0, · · · , N −1 (N is the number of frequency bins), so
the grid is indexed by (k, p), k denoting one time instant. By
rounding to the nearest integers both in time and frequency the
coordinates of RV, one obtains RVr and then defines a new
set of CPs by projecting this vector as follows:

α(k, p) := 〈RVr(k,
p

N
), vθr(k, p

N ) mod π〉 = 0 (7)

with θr(k,
p
N ) the argument of RVr(k,

p
N ) (we consider

(θr(k,
p
N ) mod π) ∈ [0, π[). This alternative allows to define

a new type of CPs that no longer depends on a fixed angle θ.
However, this technique, called M1 in the sequel, suffers from
some serious limitations [19]. Firstly, special structures are
created in the vicinity of the zeros of the spectrogram since the
mod π computation induces α(k, p) to be zero on horizontal
TF lines crossing the zeros. Secondly, it is not capable of
detecting vertical ridges, still because of the mod π factor,
which generates numerical instabilities. All these phenomena
are respectively illustrated in Figure 1 (a) and (b) (the CPs
are practically chained by considering level zero contours of
α(k, p) using contourc MATLAB function).
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IV. NEW ADAPTIVE DETERMINATION OF CONTOURS
POINTS AND BASINS OF ATTRACTION

A. Contour Estimation Based on Local RV Orientation

The applicability of the just recalled approaches based on
the projection of RVr to compute CPs is hindered by the fact
that the orientation of RVr, in the vicinity of the TF signature
of a mode, fluctuates, and all the more so that the noise level
increases. This section introduces a new adaptive algorithm
that uses a criterion based on a local rather than punctual
orientation of RVr to define a direction of projection. More
precisely, the direction of projection for each RVr is defined
by considering a squared neighborhood centered at the point
of study instead of considering only one single grid point
as introduced [17], [18]. This results in a much more robust
estimation of the TF signature of modes like Dirac impulses,
even at high noise level, while maintaining a good behavior
for AM/FM modes.

We first investigate the impact of viewing RV as a displace-
ment on a grid and not a vector with real coordinates. To do so,
we depict the distributions of the argument of RV or RVr (both
taken modulo π), respectively in Figures 2 (a), (b), when the
signal is a white Gaussian noise. We remark that the argument
of RV (modulo π) is almost uniformly distributed in all
directions while RVr (modulo π) clearly favors four directions:
0, π/4, π/2 and 3π/4. Despite these four orientations are not
informative if one considers the whole TF plane, we are
going to see they are features enabling definition of new local
direction of projection for RVr, called local projection angles
(LPAs). These help improve the performance of the estimator
of TF signatures based on the projection of RV.
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Fig. 2. (a): Histogram of the argument of RV modulo π, for a white
Gaussian noise; (b): Same as (a) but with RV having its coordinates rounded
to the nearest integers both in time and frequency (RVr), prior to histogram
computation.

We define, at each grid point (p, k), LPA as the most
frequent value of θr in a squared neighborhood of size
(2Ts + 1)2 centered at the point of study. We then project
RVr on the direction given by LPA and define the new CPs
as the zeros of the projection, as summarized in the following
algorithm (the mode function returns the most frequent value
in an array):

We are going to show that the direction of projection is sta-
bilized by using the proposed local estimation. Ts, controlling
the size of the neighborhood, should have a great impact on

Algorithm 1 LPA Algorithm
1: Input: RVr
2: θr := mod (arg(RVr), π), [M,N ] := size(RVr)
3: for (k, p) ∈ {0, · · · ,M − 1} × {0, · · · , N − 1} do
4: tmp = θr(max(0, k − Ts) : min(M − 1, k + Ts),
5: max(0, p− Ts) : min(N − 1, p+ Ts))
6: lpa(k, p/N) = mode(tmp)
7: α(k, p) := 〈RVr(k, p/N), vlpa(k,p/N)〉
8: Define CPs as the zeros of α

CPs computation and will be further studied in Section V (
M1 corresponds to Ts = 0).

B. Determination of Basins of Attraction Using RV and Mode
Reconstruction

Using the just estimated modes’ TF signatures, the basin of
attraction (BA) associated with a mode, is defined as in [18],
[19]. Once the BAs are computed, each corresponding mode
fi is reconstructed through:

fi(t) =
1

g(0)

∫
(t,ω)∈Bi

V gf (t, ω)dω, (8)

where Bi ⊂ R2 is the BA associated with mode i.

V. NUMERICAL EXPERIMENTS

This section investigates the properties of the proposed al-
gorithm for mode TF signature identification, signal denoising
and mode reconstruction.

A. Numerical Results
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Fig. 3. (a): spectrogram of the simulated signal (SNR 0 dB); (b): BAs
associated with the first 10 contours computed by method M1; (c): same
as (a) but computed with LPA algorithm (with Ts = 30); (d): reconstructed
signal based on the coefficients contained in the three most energetic BAs
depicted in (c) along with the original noise-free signal.
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Let us first consider a simulated MCS composed of three
components: a Dirac impulse, a cosine chirp, and a purely
harmonic mode. This signal is then contaminated by an addi-
tive white Gaussian noise (Signal-to-Noise Ratio (SNR) 0 dB,
MCS is sampled at a rate N = 1024Hz on [0, 1] and STFT is
computed with the Gaussian window σ = 1). We first display
in Figure 3 (a) the spectrogram of the signal. Then, we depict
respectively in Figures 3 (b) and (c) the basins of attraction
along with the first 10 contours computed with method M1

and the algorithm based on LPA. It is clear that the former
cannot detect the Dirac impulse, whereas the latter manages
to capture the TF structures associated with the three modes.
Finally, we illustrate in Figure 3 (d) the reconstruction of the
signal by selecting the coefficients associated with the three
most energetic BAs (in cyan, orange and blue for decreasing
energy order) displayed in Figure 3 (c). The output SNR
after reconstruction are 9.6, 12.5 and 10.5 dB for the cosine
chirp, Dirac impulse, and purely harmonic mode respectively,
meaning that the algorithm not only estimates the modes but
also performs some kind of denoising.

B. Sensitivity to Parameter Ts of LPA Algorithm
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Fig. 4. (a): Energy contained in the three most energetic BAs computed by
LPA algorithm on Fig.3 (a) for different values of Ts and noise levels; (b):
BAs and the first 10 contours computed by LPA algorithm with Ts = 6.

The issue we now discuss is how to choose an appropriate
parameter Ts for a specific signal so as to compute CPs
efficiently. The measure we use is the energy contained in
the first K most energetic BAs with respect to Ts:

Ef (Ts) =

K∑
i=1

∑
(t,ω)∈BATs

i

|V gf (t, ω)|
2, (9)

where BATs
i is the ith BA. The larger the quantity Ef , the

better the computation of CPs (provided K is meaningful for
the studied signal). In Figure 4 (a), we display Ef (Ts) for
K = 3, for the MCS of Figure 3 (a), and at three different
noise levels (SNR = 0, 5 and 10 dB). We remark that Ef
fluctuates when Ts is small whatever the noise level and then
stagnates when some particular value for Ts is reached. The
reason for such a behavior is that when Ts is small and for
the Dirac impulse, the neighborhood is too small to enable the
determination of a stable direction of projection. As a result,
only part of the contour associated with the Dirac impulse is
taken into account in the first three contours resulting in a
lower Ef . As an illustration, BAs associated with the first 10

contours when Ts = 6 and Ts = 30 are shown in Figure 4 (b)
and Figure 3 (c)), respectively.

C. Application to Real Signal
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Fig. 5. (a): the spectrogram; (b): BAs associated with the first 3 contours
computed with LPA algorithm; (c): three reconstructed modes based on the
coefficients contained in the three most energetic BAs depicted in (b); (d):
reconstructed signal along with the original noise-free signal.

We now illustrate our new technique on a bat echolocation
signal, made of 400 samples recorded at 143 Hz, to which a
white Gaussian noise is added such that the input SNR equals
5.0 dB. The spectrogram of the noisy bat signal is displayed
in Figure 5 (a). Then, it can be seen from Figure 5 (b)
that the BAs corresponding to the three main components of
the echolocation signal are well estimated by LPA algorithm,
enabling the reconstruction of the three detected modes (Figure
5 (c)). Finally, we compare the total resulting signal with
the original noise-free signal. The output SNR of the final
reconstruction is 10.9 dB, which confirms the potential interest
of our new technique for the denoising of real MCSs.

VI. CONCLUSION

In this letter, we have introduced a new technique to
estimate the TF signatures or contours of the modes of multi-
component signals by projecting the reassignment vector along
its local orientation. We then defined basins of attraction as the
set of coefficients associated with these contours and used the
former to reconstruct the modes. The technique proves to be
efficient to reconstruct non AM/FM modes like Dirac impulses
or discontinuous modes even at high noise level and can be
profitably used to denoise real multicomponent signals as, for
instance, bat echolocation calls.
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