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Abstract— A complex-valued signal is improper if it is corre-
lated with its complex conjugate. The dimension of the improper
signal subspace, i.e., the number of improper components in a
complex-valued measurement, is an important parameter and is
unknown in most applications. In this letter, we introduce two ap-
proaches to estimate this dimension, one based on an information-
theoretic criterion and one based on hypothesis testing. We also
present reduced-rank versions of these approaches that work for
scenarios where the number of observations is comparable to
or even smaller than the dimension of the data. Unlike other
techniques for determining model orders, our techniques also
work in the presence of additive colored noise.

Index Terms— Circularity coefficients, hypothesis tests, im-
proper signal subspace, information theoretic criteria, model
order selection, sample-poor scenario.

I. INTRODUCTION

A
COMPLEX-VALUED random vector x is proper if it

is uncorrelated with its complex conjugate x
∗, and

otherwise improper. While propriety is a common assumption,

improper signals arise in numerous areas in engineering such

as communications and also in applied sciences such as

oceanography and biomedicine [1]–[3]. Detecting the number

of improper signal components in a measurement is often a

prerequisite before performing further steps like estimating

the direction of arrival (in array processing) or blind source

separation [4]–[7].

This detection problem can be solved as part of the more

general problem of partitioning the observation space into

signal and noise subspaces. The standard approach to achieve

this partition is based on principal component analysis (PCA)

and information theoretic criteria (ITC) [8]. However, this

approach is suboptimal when some or all the signals in the

observed data are improper. This is because this technique

only takes into account the statistics of the covariance matrix

Rxx = E[xxH ] and ignores the complementary covariance

matrix R̃xx = E[xxT ]. The covariance and complementary

covariance matrices are both required to characterize the

second-order characteristics of x [1].

Noncircular PCA (ncPCA) introduced in [9] improves on

PCA by also taking into account the information about im-

propriety contained in the complementary covariance matrix.

Based on ITC, [9] determines the dimensions of both the
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proper and improper signal subspaces from noisy observations.

However, in some applications, we might only be interested

in the dimension of the improper subspace, for instance, when

we know that all signal components are improper [6]. This is

the problem we solve in this letter. Even though the technique

in [9] can be used for this scenario as well, it is to be expected

that a specialized technique works better than a more general

one. Indeed, by determining the number of improper signal

components only, we are able to reduce the number of required

samples and relax the assumption on the noise structure. We

only need to assume that the noise is proper, but unlike typical

PCA-based methods, it does not have to be white.

We introduce two alternative approaches: one that is based

on the minimum description length (MDL) ITC (see Section

III), and one that is based on a sequence of generalized

likelihood ratio (GLR) tests (see Section IV). The proposed

approaches are designed specifically for applications with

high-dimensional data but small number of samples. They

build on a more general technique, which we introduced in

[10], that determines the dimension of the signal subspace

correlated between two different data sets. The present letter

specializes [10] to the case where the two data sets are x

and its complex conjugate x
∗. This, however, is not straight-

forward and requires special care when counting the number

of free parameters in the ITC and deriving the approximating

distributions in the hypothesis tests.

II. PROBLEM FORMULATION

Consider a linear signal-plus-noise model for the generation

of the observed data vector x ∈ Cm

x = As+ n, (1)

where s ∈ Cd+f is a zero-mean complex Gaussian source

vector, A ∈ Cm×(d+f) is an unknown but fixed mixing matrix

with full column rank, and n ∈ Cm is a zero-mean complex

Gaussian noise vector independent from the source vector. The

following additional assumptions are made:

• The source vector contains d improper and f proper

signal components. This means that

rank(E[ssH ]) = d+ f,

rank(E[s(s∗)H ]) = rank(E[ssT ]) = d. (2)

We also allow f = 0, i.e., all the signal components may

be improper. All signal components are independent, and

the dimensions d and f are unknown with d+ f < m.
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• The noise vector n is proper and possibly colored with an

arbitrary covariance matrix Rnn. This is a more general

noise model than the one used in [9] where the noise

vector is assumed to be white.

Under the above assumptions, the covariance and the comple-

mentary covariance matrices of x are

Rxx = E[xxH ] = AE[ssH ]AH +Rnn,

R̃xx = E[xxT ] = AE[ssT ]AT . (3)

Let us define the complex augmented vector x = [xT ,xH ]T

obtained by stacking x on top of its complex conjugate x
∗.

The covariance matrix of x is the augmented covariance matrix

[1]

Rxx = E[xx
H ] =

[
Rxx R̃xx

R̃
∗

xx R
∗

xx

]
, (4)

which is a convenient way of keeping track of both Rxx

and R̃xx. In this letter, we are interested in estimating the

dimension of the improper signal subspace d, which is equal

to the rank of R̃xx.

In practice, the true covariance matrices are unknown

and have to be estimated from samples. We consider M
independent and identically distributed (i.i.d.) samples of

x, arranged as the M columns of the data matrix X =[
x(1),x(2), . . . ,x(M)

]
, where x(i) denotes the ith sample of

x. When R̃xx is estimated from X, its rank, in general, will

not be equal to d. In Sections III and IV we will introduce two

ways of estimating d, which are both based on the circularity

coefficients of x [1]. These are the canonical correlations

between x and x
∗, which can be computed as the singular

values of the coherence matrix C = R
−1/2
xx R̃xxR

−T/2
xx . The

circularity coefficients are normalized to take values between

0 and 1, and they measure the degree of impropriety of each

signal component. A maximally improper component leads to

a circularity coefficient of 1, and a proper component to a

zero circularity coefficient. When working with samples, the

following complication arises. Unless the number of samples is

significantly greater than the dimension of the data, the sample

circularity coefficients are significantly greater than the (true)

population circularity coefficients. As we would like to be able

to handle the sample-poor scenario, this requires the use of a

dimension-reducing preprocessing step.

Note: Another term common in complex-valued signal pro-

cessing is circularity, which is a stronger version of propriety.

For the Gaussian distribution, propriety implies circularity and

noncircularity implies impropriety. As we have assumed x to

be zero-mean Gaussian, the improper signal subspace is the

noncircular signal subspace. However, in general noncircular-

ity does not imply impropriety [1].

III. APPROACH BASED ON INFORMATION THEORETIC

CRITERION

For a given set of observations and a family of models, the

ITCs introduced by Akaike [11], Schwarz [12] and Rissanen

[13] select the model that best fits the observation data, while

also making sure that the model does not overfit the data. The

goodness-of-fit is measured by the likelihood function for M
samples of x ,which is parameterized by Rxx:

f(X|Rxx) =
M∏

i=1

1

πm
√
detRxx

exp

[
− x

H(i)R−1
xxx(i)

2

]
.

(5)

The ITC score is

ITC(d) = − ln f(X|R̂xx) + α(M)C, (6)

where R̂xx is the maximum likelihood estimate of Rxx (which

is simply the sample augmented covariance matrix), and the

second term in (6) is a penalty function that penalizes complex

models. In our case, the model order is the number of improper

signals, d. Both terms in the sum of (6), i.e. the quality of the

fit and the complexity penalty, depend on d. In the penalty

term, C is the number of free parameters in the parameter

space of the model, i.e., in Rxx. The term α(M) depends on

the chosen ITC. We use the MDL criterion as it leads to a

consistent estimator of d [8], for which α(M) = ln(M)
2 . The

MDL-ITC chooses the d that minimizes (6), that is

d̂ = argmin
d=0,...,m−1

ITC(d). (7)

The ITC expression in (6) can be simplified as follows.

Model Fit Score: The maximization of the log-likelihood

is performed under the constraint that rank(R̃xx) = d. The

maximum log-likelihood is [1]

− ln f(X|R̂xx) ∝
M

2
ln

d∏

i=1

(1− k̂2i ), (8)

where k̂i are the sample circularity coefficients of x.

Number of Free Parameters: Since only the complementary

covariance matrix of x, R̃xx, depends on d, only R̃xx instead

of the entire Rxx is considered when calculating the number

of free parameters. To do this, we perform the Takagi factor-

ization for complex symmetric matrices [14] given as

R̃xx = FKF
T . (9)

Here, F is a complex unitary matrix, which contains the sin-

gular vectors, and K = diag(k1, k2, . . . , kd, 0, . . . , 0) contains

the d non-zero circularity coefficients. Since rank(R̃xx) = d,

there are 2md and d free parameters in F and K, respectively.

However, not all of these parameters are freely adjustable.

There are d and d(d − 1) constraints on the elements of

the singular vectors in F due to normality and orthogonality,

respectively. Therefore,

C = 2md+ d− (d+ d(d− 1)),

= 2md− d2 + d. (10)

The simplified MDL-ITC expression is thus given as

ITC(d) =
M

2
ln

d∏

i=1

(1− k̂2i ) +
lnM

2
(2md− d2 + d). (11)
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A. Sample Poor Scenario

Unless the number of samples M is significantly larger than

the dimension of the observation m, the number of improper

components d cannot be correctly estimated using (7) because

the sample circularity coefficients k̂i are significantly larger

than the population circularity coefficients. Moreover, when

M < 2m, at least 2m−M sample circularity coefficients are

1 independently of the underlying model generating them [15].

This calls for rank reduction before or alongside the estimation

of d.

One of the most common rank-reduction methods is PCA.

The rank-r PCA description of x is

x = U
H
r x, (12)

where Ur denotes the matrix containing as its columns the first

r principal eigenvectors of Rxx. Of course, PCA only retains

the signal components that have maximum variance within the

data. These do not necessarily correspond to the most improper

signals, which have maximum covariance between x and x
∗.

Nevertheless, following our approach in [10] we can choose

r large enough to include all the improper signals, while

eliminating much of the noise and those proper components

whose variance is smaller than that of the weakest improper

component. This can be done based on the following reduced-

rank version of the ITC expression in (11):

ITC(d, r) =
M

2
ln

d∏

i=1

(1 − k̂2i (r))+
lnM

2
(2rd−d2+d). (13)

The circularity coefficients k̂i(r) are computed from the rank-

r PCA description (12) of the data and thus depend on the

rank r. They can change significantly depending on how r
is chosen. The optimal rank is the one that includes all the

improper signal components, but not more than that. “Detector

3” in [10] allows us to jointly choose the optimum rank r and

estimate the number d of improper components. The decision

rule for d is 1

d̂ = max
r=1,...,rmax

argmin
s=0,...,r−1

ITC(d, r), (14)

and the r that leads to d̂ is the chosen PCA rank. This

decision rule can be motivated as follows. The min-step, which

corresponds to the traditional MDL-ITC, generally will not

overestimate d because MDL is consistent. However, if r is

not chosen large enough, the reduced-rank description will not

capture all the improper signals and d could be underestimated.

Because the min-step will not overfit, we can simply take

the maximum over all r from 1 to rmax. Here, rmax is the

maximum allowable rank and is chosen to be sufficiently

smaller than M (typically M/3) [10]. This is a much more

relaxed condition than requiring m to be sufficiently smaller

than M .

1While the decision rule (14) corresponds to “Detector 3” in [10], the
expression for ITC(d, r) in this letter differs from [10] because the number
of free parameters are different when analyzing correlation between x and
x
∗ rather than two different data sets.

IV. APPROACH BASED ON HYPOTHESIS TESTING

The problem of order selection can also be solved by

performing a series of binary hypothesis tests [16], [17].

Starting with improper signal counter s = 0, each binary test

is:

H0 : d = s

H1 : d > s (15)

If H0 is rejected, s is incremented and another test of H0 vs.

H1 is run. This is repeated until H0 is not rejected or s reaches

its maximum possible value. Each binary test is a likelihood

ratio test. Since the unknown parameters are replaced by their

maximum likelihood estimates, this leads to a generalized

likelihood ratio test (GLRT). The GLR for the hypothesis test

is

η =
f(X|R̂xx, d = s)

f(X|R̂xx, d > s)
, (16)

where f(X|R̂xx, d = s) and f(X|R̂xx, d > s) are the likeli-

hood functions under the null and the alternative hypothesis,

respectively. From (6) and (16), it can be seen that the GLRT

and ITC are related to each other. This has also been shown

in [18].

Since the parameter space for d = m is sufficient to

parametrize all the possibilities when d > s, we have

f(X|R̂xx, d > s) ∝
( m∏

i=1

(1 − k̂2i )

)−
M

2

, (17)

and thus

η =

{ m∏

i=s+1

(1 − k̂2i )

}M

2

. (18)

According to Wilks’ theorem, under H0 the statistic

W (s) = −2 ln η is asymptotically χ2-distributed with degrees

of freedom (d.f.) equal to the difference between the numbers

of free parameters under H1 and H0 [19]. Under H0, the d.f.

are given by (10). Under H1, the d.f. are obtained from (10)

by setting m = d. Hence, for M → ∞, W (s) is χ2 with

(m− d)(m − d+ 1) d.f.

A. Sample Poor Scenario

As discussed in Section III-A, sample poor scenarios require

rank reduction to correctly estimate the number of improper

signals. A reduced-rank version of the test statistic W (s) is

the Box statistic [20]

B(s, r) = −(M − r) ln

r∏

i=s+1

(
1− k̂2i (r)

)
, (19)

which is approximately χ2-distributed with (r− 1)(r− d+1)
d.f. The correction term (M − r) introduced in [21] provides

a better approximation by the χ2-distribution than the Wilks

statistic for much smaller number of samples. It can be

shown numerically that B(s, r) approximately follows a χ2-

distribution as long as r is large enough to capture all the

improper components and is also sufficiently small compared
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to M (as in Section III, r < M/3 seems to work well). A

decision rule can thus be formulated as

d̂ = max
r=1,...,rmax

min
s=0,...,r−1

{s : B(s, r) < T (s, r)}, (20)

where T (s, r) is the threshold chosen to maintain a specified

probability of false alarm Pfa, which can be obtained from the

χ2-approximation. This is “Detector 1” from [10] specialized

to the case of detecting the number of correlated components

between x and x
∗. The motivation behind it is similar to the

that of (14). While [10] uses a Bartlett-Lawley approximation

of the test statistic W (s), the fact that here we are analyzing

correlations between x and x
∗ means that the Box statistic

with different d.f. needs to be used instead [20].

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

detectors based on ITC and GLRT for the application of sensor

array processing. We consider the case when f = 0, i.e.

the entire signal subspace is improper. This is the scenario

used in [5], [6], [22], [23], which show that utilizing the

complementary covariance matrix for direction-of-arrival esti-

mation can lead to significant performance improvement when

improper signals such as BPSK-modulated sources impinge on

the sensor array. DOA estimation techniques typically assume

that the dimension of the signal subspace is known. In practice,

this is not the case. If it is known a priori that all sources

are improper, then our technique can be employed to find the

number of sources.

The simulation setup is as follows. We use a uniform linear

array with m = 60 sensors with half-wavelength inter-sensor

spacing. There are 4 far-field, narrowband Gaussian sources

that impinge on the array at angles Θ = [10◦, 15◦, 20◦, 25◦].
The qth column of A matrix is [1, exp (j π

2 cos(θq)), . . . ,
exp (j π

2 (m− 1) cos(θq))]
T for q = 1, . . . , 4. Each source has

variance 5 and the circularity coefficients for the sources are 1,

0.9, 0.8, and 0.6. Two scenarios are presented: a) the additive

noise is white and Gaussian distributed with unit variance; b)

the noise is filtered through an autoregressive (AR) filter of

order 4 and filter coefficients [1/2
√
7/4 1/2 1/4]. The variance

of noise components before filtering is 1/4.

We compare the performance of our proposed detectors

in (14) and (20) with the ncPCA detector in [9]. Figure

1 shows the probability of detection as a function of the

number of samples for both scenarios. For each data point, we

ran 500 independent Monte Carlo trials. The results for the

detector based on a sequence of hypothesis tests are shown

for two different values of probability of false alarm, Pfa.

For the white noise case, all the detectors perform well for a

sufficiently large number of samples, but our detectors reach

their best performance for smaller number of samples than the

ncPCA detector. It is not surprising that the performance of

the detector based on hypothesis testing depends on the Pfa

value. The detector with Pfa = 0.005 performs better than the

one with Pfa = 0.001 when the number of samples is low.

However, when there are enough samples, the detector with

smaller Pfa performs better. The variation in performance is

due to the fact that a detector with larger Pfa generally tends

50 100 150 200 250
0

0.2

0.4
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0.8

1
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0.6
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(b)

Fig. 1: Probability of correctly detecting d = 4 improper signal

components for the proposed detectors and the ncPCA detector

in [9] when a) the additive noise is white Gaussian b) the

additive noise is colored AR(4).

to overfit, while a detector with smaller Pfa tends to underfit.

This requires the right trade-off, which is done automatically

in the ITC-based detector.

In the case of colored noise shown in Figure 1b, the ncPCA

detector fails while our detectors continue to work well. This

is because the ncPCA detector detects both the proper and

improper signal subspaces, and hence must assume white noise

in order to distinguish between signal and noise. Since we only

identify improper signal components, we only need to assume

proper noise, but it does not have to be white.

VI. CONCLUSION

We have presented two techniques, based on ITC and

hypothesis testing, for detecting the dimension of the improper

signal subspace in high-dimensional complex data with ad-

ditive noise. There is no assumption made on the structure

of the covariance matrix of the noise, and we have shown

using simulations that the proposed detectors work well even

in the presence of colored noise. We have introduced reduced-

rank detectors, which work reliably even for small number of

samples.
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