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Abstract—In this letter, a novel time-domain implementation

of robust first-order Differential Microphone Arrays (DMAs),

based on Wave Digital Filters, is presented. The proposed

beamforming method is extremely efficient, as it requires at most

two multipliers and one delay for each filter, where the necessary

number of filters equals the number of physical microphones

of the array, and it avoids the use of fractional delays. The

update of the coefficients of the filters, required for reshaping the

beampattern, has a significantly lower computational cost with

respect to the time-domain methods presented in the literature.

This makes the proposed method suitable for real-time DMA

applications with time-varying beampatterns.

Index Terms—Differential Microphone Arrays, Wave Digital

Filters, Beamforming

I. INTRODUCTION

D

IFFERENTIAL beamforming methods [1]–[4] applied
to small-size microphone arrays, e.g. arrays of MEMS

microphones [5], are attractive for spatial filtering of broad-
band audio signals, such as speech signals, e.g. in hands-
free [6] and automotive [7] communication systems, as they 
exhibit almost frequency invariant beampatterns [1]. Earliest 
implementations of First Order DMAs (FODMAs) involved 
only a pair of physical omnidirectional microphones, whose 
fractionally delayed output signals were subtracted and then 
low pass filtered [8]–[10]. Robust DMAs [11], [12] are a 
generalization of such implementations, as they include an
arbitrary number M � 2 of physical microphones in the 
acoustic model and are characterized by better SNR w.r.t.
traditional DMAs. Robust DMAs theorized in [11] are based 
on the Taylor series approximation of the exponentials in the 
steering vector, while those in [12] are based on the Jacobi-
Anger expansion of the same exponentials. Robust DMAs in
[11] can be implemented more efficiently than the ones in 
[12], as the latter require the tabulation and/or approximation
of Bessel functions. However, the models presented in [12] are 
more accurate when distances between microphones pairs are
increased. The majority of the recently proposed DMA models 
are provided in the frequency domain [1], [11], [12], ready to
be implemented using Short-Time Fourier Transform (STFT) 
filtering. However, as outlined in [13], time-domain imple-
mentations of DMA would be highly desirable, especially in
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applications in which small delays are required, such as real-
time communication systems. Moreover, filtering in the time
domain is more efficient than using STFT, when the number of
filter taps is sufficiently small. Finally, time-domain filtering
does not suffer from undesired edge effects typical of methods
based on the STFT. For these reasons, in [13] a closed-form
solution for broadband time-domain FODMAs for any given
number of sensors M � 2 is provided. A drawback of the
approach in [13] is that the derivation of filter coefficients
implies the inversion of a multi-dimensional linear system,
which is computationally costly.

In the light of the above considerations, in this letter, we
will propose a novel time-domain FODMA implementation.
Firstly, the frequency-domain FODMA model presented in
[11] is resumed and an electrical equivalent representation of
it, never appeared in the literature, is presented. In particular,
the FODMA will be represented with M separated simple
electric circuits, where M is the number of physical micro-
phones. Starting from the derived reference circuits, we will
show how to design the corresponding Wave Digital Filters
(WDFs) [14]–[16]. Each WDF will be characterized by an
explicit input-output function in closed form, where the input
signal will be the signal sensed by the corresponding physical
microphone. The global output of the beamformer will be the
sum of the output signals of the M WDFs. We will show that
the proposed time-domain filtering method based on WDFs
requires less computational operations than the one presented
in [13] and no fractional delays to be designed. Moreover, the
computational cost for updating the filter coefficients is dra-
matically reduced w.r.t. [13]. This makes the proposed method
suitable for DMAs in which the beampattern is required to
change over time; e.g. when the directivity of the beampattern
needs to be frequently regulated on the fly or when the position
of its nulls needs to be adjusted for attenuating a moving
interference. We will also show that, at speech frequencies,
the White Noise Gain and the Directivity Factor of the derived
FODMA based on WDFs are almost coincident to the same
SNR measures in the continuous case, even using relatively
low audio sampling rates (e.g. Fs = 16 kHz).

II. CIRCUIT REPRESENTATION OF ROBUST FODMAS

A. Background: Signal Model and Beampattern Definition

Let us consider a linear microphone array with M uniformly
spaced omnidirectional sensors [11]; the distance in meters
between consecutive sensors is �. Let us then consider the
2D plane that contains all the sensors and a sound source
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in far field. The source is assumed to emit a plane wave, 
which propagates at the speed of sound, e.g. c = 340 m/s, and 
impinges the microphone array. The wave front of the plane 
wave forms an angle ✓ with the array line; ✓ is the direction 
of arrival of the source. According to [11], the steering vector 
is defined as

d(!, ✓) =
h
1, e�j!⌧0cos ✓, . . . , e�j(M�1)!⌧0cos ✓

iT

where T denotes transposition, j is the imaginary unit, ! =
2⇡f is the analog angular frequency, f > 0 is the temporal
frequency, and ⌧0 = �/c is the delay between two successive
sensors when the source is at the endfire direction ✓ = 0. The
vector of the signals sensed by the M microphones is

y (!) = [Y1 (!) , . . . , YM (!)]T = d (!, 0)X (!) +w (!)

where X (!) is the desired source signal, w (!) is the additive
noise signal vector of dimension M . The mth microphone
signal with 1  m  M is filtered by a properly designed
filter Hm (!). All the filters are collected in the vector h(!) =
[H1 (!) , . . . , HM (!)]T . Then, according to [11], the output
signal of the robust differential beamformer is defined as

Z0 (!) =
MX

m=1

H⇤
m (!)Ym (!) = hH (!)y (!) (1)

where the superscripts ⇤ and H denote the complex conju-
gation operator and the hermitian operator, respectively. The
frequency-independent beampattern of a FODMA is

B (✓) = 1� q + q cos ✓ (2)

where 0  q  1 determines the beam shape [10]. As shown
in [11], the FODMA filters Hm (!) are given by

H1 (!) =
�3q

(2M � 1) j!⌧0
+ 1� q , (3)

Hk (!) =
6 (k � 1)

(2M3 � 3M2 +M) j!⌧0
, k = 2, 3, . . . ,M. (4)

B. Electrical Equivalents of Robust FODMA Filters
In this Subsection we show how robust FODMA described

in [11] can be equivalently represented with a bank of M
circuits, whose suitably chosen output signals are summed for
deriving the global beamformer output signal. Each circuit is
derived considering the mth contribute of the sum (1) as a volt-
age signal, so that the conjugate filters H⇤

m (!) are interpreted
as electric impedances and the signals Ym (!) are assumed to
be generated by ideal current sources. Therefore, formula (1)
can be formally rewritten as Z0 (!) =

PM
m=1 V0m (!) where

V0m (!) = H⇤
m (!)Ym (!) are the aforementioned voltage

signals. It follows that, according to the above electrical
interpretation of the results presented in [11], H⇤

1 (!) can be
represented as the series of a capacitor with capacitance C1

and a resistor with resistance R1. Formally,

H⇤
1 (!) =

1

j!C1
+R1 (5)

where

C1 =
(2M � 1) ⌧0

3q
, R1 = 1� q .
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Fig. 1. Equivalent circuits.

Similarly, H⇤
k (!) can be represented as a capacitor in the form

H⇤
k (!) = � 1

j!Ck
(6)

where k = 2, . . . ,M and the capacitance Ck is expressed as

Ck =

�
2M3 � 3M2 +M

�
⌧0

6q (k � 1)
.

Fig. 1 shows the resulting equivalent circuits; the circuit in
Fig. 1(a) refers to sensor 1, while the circuit in Fig. 1(b) refers
to sensor k, being 2  k  M . The signals y1, v01, yk and
v0k written in lower case are the time-domain versions of the
frequency-domain signals Y1, V01, Yk and V0k, respectively.

III. WAVE DIGITAL FODMA MODEL

Disposing of electrical equivalents of robust FODMAs
makes them particularly suitable to be implemented using
WDFs. The reference circuits in Fig. 1 are stable; therefore,
as WDFs are known to preserve the energetic properties
of the reference analog circuits [14], their WDF realization
will be stable as well and it will exhibit low sensitivity to
parameter variation [17]. In this Section, after a brief recap of
basic WDF theory, we will derive an efficient Wave Digital
implementation of FODMAs with at most two multipliers and
one delay per microphone.

A. Background on WDFs
WDFs are designed starting from a port-wise consideration

of a reference analog circuit, which is then discretized and
implemented in the digital domain using input-output blocks.
Circuit elements and the interconnection topology are modeled
using separated blocks which are then connected in a port-wise
fashion. Each pair of Kirchhoff port variables, i.e. port current
i and port voltage v, of the reference circuit is mapped to a
pair of wave signals, i.e. incident wave a and reflected wave
b, according to the following linear transformation

a = v +R0i b = v �R0i (7)

where R0 is a free parameter called port resistance. Free
parameters are exploited for turning circuit networks into com-
putable input-output digital structures. This is accomplished by
setting the port resistances in such a way that instantaneous
dependencies between wave signals are eliminated. This pro-
cess is called adaptation in WDF theory. For the details on
how adaptation is performed the reader is referred to [14].
Here follows a brief review of the wave mappings for the
circuit elements and topological junctions used in the WDF
implementation in Fig. 2 relative to the circuits in Fig. 1.
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Fig. 2. WDF representation of equivalent circuits in Fig. 1; Fig. 2(a) refers
to Fig. 1(a), while Fig. 2(b) refers to Fig. 1(b).

1) Resistor: Kirchhoff port variables of a linear resistor
with resistance R are related by v = Ri, and the relative wave
mapping is b = [(R�R0) / (R+R0)] a. The resistor can be
adapted by setting R0 = R; in this case the wave mapping
becomes b = 0 and the instantaneous dependence between the
wave signals a and b is eliminated.

2) Capacitor: The constitutive equation of a capacitor with
capacitance C in the Laplace domain is V (s) = I (s) / (sC),
where s = j! is the complex frequency. The continuous-
time signals are discretized performing the bilinear transform
and the wave mapping in the discrete-time domain is derived.
Imposing the adaptation condition R0 = 1/(2FsC), the simple
explicit time-domain wave mapping b[n] = a[n � 1] relative
to the nth sampling step is obtained.

3) Ideal Current Source: The wave mapping of an ideal
current source IG characterized by the constraint i = IG is
b = a� 2R0IG. Ideal sources cannot be adapted in the wave
domain; therefore, we need to adapt the corresponding port of
the topological junction to which they are connected.

4) Series Adaptors: The multidimensional scattering rela-
tion of a N -port series junction is a = SNb =

�
I� ↵N1T

�
b,

where b = [b1, . . . , bN ]T is the vector of wave signals
reflected from the elements and incident to the junction,
a = [a1, . . . , aN ]T is the vector of wave signals incident to the
elements and reflected from the junction, SN is the scattering
matrix, ↵N = 2/

⇣PN
i=1 R0i

⌘
[R01, . . . , R0N ]T , R0i is the ith

port resistance, I is the N ⇥ N identity matrix and 1 is a
column vector of N ones. A port of the junction, e.g. port
1, can be adapted if we set R01 =

PN
i=2 R0i. The resulting

scattering matrices in the 2-port and 3-port cases are

S2 = �

0 1
1 0

�
, S3 =

�1

R02 +R03

2

4
0 R02 +R03 R02 +R03

R02 �R03 R02
R03 R03 �R02

3

5 .

B. Proposed Robust FODMA Implementation

A WDF implementation of the circuits in Fig. 1 can be
easily obtained using the equations provided in the previous
subsection and the implementation schemes in Fig. 2. As
according to the considerations in Section II-B, only v0m with
1  m  M is needed as output signal of the mth circuit the
time-domain implementation of each filter of the beamformer

TABLE I
MULTIPLICATIONS (MUL), ADDITIONS (ADD) AND PAST SAMPLES (MEM)

REQUIRED FOR UPDATING THE FILTER COEFFICIENTS AND FILTERING

WDF Model Model in [13]

Update Filtering Update Filtering

mul 2M 2M ⇡ 3(LhM)3 LhM
add 2 3M � 1 ⇡ 3(LhM)3 LhM � 1
mem 0 M 0 LhM �M

can be simplified. In particular for m = 1, at the sampling
step n we can write


aC1 [n]
v01 [n]

�
=


1 ⌘1
1 �1

� 
aC1 [n� 1]

y1 [n]

�
(8)

where ⌘1 = T/C1, �1 = ⌘1/2 + RC1 and aC1 is the wave
signal incident to the capacitor element C1. Similarly for m =
k with 2  k  M , we can write


aCk [n]
v0k [n]

�
=


1 ⌘k
�1 �k

� 
aCk [n� 1]

yk [n]

�
(9)

where ⌘k = T/Ck, �k = �⌘k/2 and aCk is the wave signal
incident to the capacitor element Ck. The time-domain global
output signal of the beamformer is simply computed as

z0 [n] =
MX

m=1

v0m [n] . (10)

In accordance to equations (8), (9) and (10), the time-domain
signal flow in Fig. 3 shows how to realize the proposed
FODMA implementation.

C. Computational Cost Analysis
The cost, in terms of number of computational operations,

and the number of past samples, required by the proposed
WDF model and the model in [13], for updating the filter
coefficients and filtering, is reported in Table I. As far as
the update is concerned, the WDF approach is far more
efficient, as it requires only 2M multiplications and 2 ad-
ditions. Conversely, the method in [13] involves populat-
ing a 2 (2LD + Lfd + Lh) ⇥ MLh matrix (where LD =
d(M � 1) ⌧0Fse, Lfd is the length of the causal fractional
delay filters and Lh is the length of the M temporal filters)
and the computation of its pseudo-inverse. It follows that the
number of multiplications is a function of M , Lh, LD and
Lfd which, for practical values of such parameters, is roughly
in the order of 3(LhM)3. Similar considerations hold for
additions. As outlined in Table I, also filtering is more efficient
if the proposed WDF approach is adopted, even though the
efficiency gain is less pronounced than in the update phase.

IV. SIGNAL-TO-NOISE RATIO (SNR) ANALYSIS

SNR in DMAs is called White Noise Gain (WNG) Gwn [!],
dealing with spatially white Gaussian noise, typically em-
ployed for modeling sensor noise, or Directivity Factor (DF)
Gdn [!], dealing with diffuse noise [18]. WNG and DF are
defined as [11]

Gwn [!] =
|hH(!)d(!, 0)|2

hH(!)h(!)
, Gdn [!] =

|hH(!)d(!, 0)|2

hH(!)�dn(!)h(!)
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Fig. 3. Detailed signal-flow of the FODMA beamformer implementation based on WDFs.
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Fig. 4. Comparison between SNRs of continuous-time robust FODMA models computed as in [11] and the corresponding SNRs defined for the discrete-time
WDF-based FODMA model with Fs = 8 kHz, Fs = 16 kHz and Fs = 32 kHz. Cases with M = 2 and M = 4 are plotted. The following parameters are
fixed: � = 0.5 cm and q = 0.586 (i.e. the case of the supercardioid is considered, as in [11]).

where the entry at row k and column l of matrix �dn is
computed as [�dn(!)]kl = sinc [! (l � k) ⌧0] [18].

In the discrete-time WDF model described in Section III
continuous-time frequencies are ”warped” by the bilinear
transform. In the light of this, we will define the DF of a
FODMA based on WDF with, for instance, Fs = 8 kHz as

Gdn08 [!d] =
|hH(!)d(!d, 0)|2

hH(!)�dn(!d)h(!)
(11)

where !d is the discrete-time frequency and ! is the
continuous-time frequency, being ! = 2Fstan (!d/ (2Fs)).
The WNG Gwn08 [!d] for Fs = 8 kHz is defined similarly;
the same holds for Gwn16, Gdn16 and Gwn32, Gdn32 which are
the WNG and DF relative to Fs = 16 kHz and Fs = 32 kHz
respectively. Fig. 4 shows how the difference between WNG
in the continuous-time case and WNG in the discrete-time
case is reduced as Fs is increased, both for M = 2 and for
M = 4. Similar considerations hold for the DF. In general, it
is worth noticing that for Fs = 8 kHz the difference between
the continuous-time case and the discrete-time case is small
up to about 2 kHz; while for Fs = 16 kHz and Fs = 32 kHz
such difference becomes practically negligible up to at least
4 kHz. Fig. 5 shows the frequency-independent polar patterns
of a supercardioid and a dipole, along with the corresponding
continuous-time and discrete-time (Fs = 8 kHz) frequency-
dependent beampatterns evaluated at 1 kHz. Similar results
have been obtained for FODMAs with different beampatterns,
e.g. hypercardioids or cardioids.

V. CONCLUSIONS AND FUTURE WORK

In this letter a time-domain implementation of FODMA
based on WDFs more efficient than those presented in the
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Fig. 5. FODMAs with q = 0.586 in Fig. 5(a) (supercardioid)
and q = 1 in Fig. 5(b) (dipole): frequency-independent beampatterns
B (solid line), frequency-dependent continuous-time beampatterns as in
[11], BM (!, ✓) =

PM
m=1 Hm (!) [1 + j (m� 1)!⌧0cos ✓], (dashed

line) and frequency-dependent discrete-time beampatterns obtained by
the proposed WDF model with Fs = 8 kHz, BM08 (!d, ✓) =PM

m=1 Hm (2Fstan (!d/ (2Fs))) [1 + j (m� 1)!d⌧0cos ✓] (line with cir-
cles). Frequency-dependent beampatterns are evaluated at 1 kHz with M = 4
and � = 0.5 cm.

literature has been proposed. Moreover, an accuracy study,
based on the analysis of WNG and DF, has been presented.
Future work will be devoted to the application of the proposed
WDF approach to higher order DMAs; moreover, the use of
nonlinear WDFs [15], [19]–[26], WDF with active junctions
[27], [28] and biparametric WDFs [29] for the design of
arbitrary order DMAs will be explored.
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