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Abstract

We study rank-1 L1-norm-based TUCKER2 (L1-TUCKER2) decomposition of 3-way tensors, treated as a

collection of N D ×M matrices that are to be jointly decomposed. Our contributions are as follows. i) We prove

that the problem is equivalent to combinatorial optimization over N antipodal-binary variables. ii) We derive the

first two algorithms in the literature for its exact solution. The first algorithm has cost exponential in N ; the second

one has cost polynomial in N (under a mild assumption). Our algorithms are accompanied by formal complexity

analysis. iii) We conduct numerical studies to compare the performance of exact L1-TUCKER2 (proposed) with

standard HOSVD, HOOI, GLRAM, PCA, L1-PCA, and TPCA-L1. Our studies show that L1-TUCKER2 outperforms

(in tensor approximation) all the above counterparts when the processed data are outlier corrupted.

Index Terms

Data analysis, L1-norm, outliers, robust, TUCKER decomposition, tensors.

I. INTRODUCTION AND PROBLEM STATEMENT

Introduced by L. R. Tucker [1] in the mid-1960s, TUCKER decomposition is a fundamental method n-way

tensor analysis, with applications in a wide range of fields, including machine learning, computer vision [2], [3],

wireless communications [4], biomedical signal processing [5], and social-network data analysis [6], [7] to name

a few. Considering that the n-way tensor under processing is formed by the concatenation (say, across the n-th

mode, with no loss of generality) of a number of coherent (same class, or distribution) (n − 1)-way coherent

tensor measurements, then TUCKER decomposition simplifies to TUCKER2 decomposition. TUCKER2 strives to

jointly decompose the collected (n−1)-way tensors and unveil the low-rank multi-linear structure of their class, or

distribution. Higher-Order SVD (HOSVD) and Higher-Order Orthogonal Iteration (HOOI) algorithms [8] are well-

known solvers for TUCKER2 (and TUCKER) decompositions. A detailed presentation of TUCKER, TUCKER2,
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and the respective solvers is offered in [9]–[11]. Note that both types of solvers can generally only guarantee a

locally optimal solution.

For n = 2, TUCKER/TUCKER2 take the familiar form of Principal-Component Analysis (PCA). Thus, similar to

PCA, TUCKER/TUCKER2 are sensitive against outliers within the processed tensor [12]–[14]. On the other hand,

L1-Principal-component Analysis (L1-PCA) [15]–[17], substituting the L2-norm in PCA by the outlier-resistant L1-

norm, has illustrated remarkable outlier-resistance. Extending this formulation to tensor processing, one can similarly

endow robustness to TUCKER and TUCKER2 decompositions by substituting the L2-norm in their formulations

by the L1-norm. Indeed, an approximate algorithm for L1-norm-based TUCKER2 (L1-TUCKER2) was proposed in

[12]. However, L1-TUCKER2 remains to date unsolved. In this work, we offer for the first time the exact solution

to L1-TUCKER2 for the special case of rank-1 approximation, and provide two optimal algorithms. A formal

problem statement follows.

Consider a collection of N real-valued matrices of equal size, X1,X2, . . . ,XN ∈ RD×M . For any rank d ≤

min{D,M}, a TUCKER2 decomposition strives to jointly analyze {Xi}Ni=1, by maximizing
∑N

i=1 ‖U>XiV‖2F
over U ∈ RD×d and V ∈ RM×d, such that U>U = V>V = Id; then, Xi is low-rank approximated as

UU>XiVV>. The squared Frobenius norm ‖ · ‖2F returns the summation of the squared entries of its matrix

argument. Among other methods in the tensor-processing literature, TUCKER2 coincides with Multilinear PCA

[18] (for zero-centered matrices) and the Generalized Low-Rank Approximation of Matrices (GLRAM) [19]. Clearly,

for N = 1, TUCKER2 simplifies to the rank-d approximation of matrix X1 ∈ RD×M , solved by means of the

familiar singular-value decomposition (SVD) [20]; i.e., the optimal arguments U and V are built by the d left-hand

and right-hand singular vectors of X1, respectively.

To counteract against the impact of any outliers in {Xi}Ni=1, in this work, we consider the L1-norm-based

TUCKER2 reformulation

L1-TUCKER2: maximize
U∈RD×d; U>U=Id
V∈RM×d; V>V=Id

N∑
i=1

‖U>XiV‖1, (1)

where the L1-norm ‖ · ‖1 returns the summation of the absolute values of its matrix argument. The problem in (1)

was studied in [12] under the title L1-Tensor Principal-Component Analysis (TPCA-L1).1 Authors in [12] presented

an approximate algorithm for its solution which they employed for image reconstruction. To date, (1) has not been

solved exactly in the literature, even for the special case of rank-1 approximation (i.e., d = 1). In this work,

we deliver, for the first time, the exact solution to L1-TUCKER2 for d = 1, by means of two novel algorithms.

In addition, we provide numerical studies that demonstrate the outlier-resistance of exact L1-TUCKER2, and its

1 In this work, we refer to the problem as L1-TUCKER2, so as to highlight its connection with the TUCKER2 formulation (instead of
the general TUCKER formulation).
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superiority (in joint-matrix decomposition and reconstruction) over L2-norm-based (standard) TUCKER2, GLRAM,

TPCA-L1, PCA, and L1-PCA.

II. EXACT SOLUTION

A. Reformulation into combinatorial optimization

For rank d = 1, L1-TUCKER2 in (1) takes the form

maximize
u∈RD×1; v∈RM×1; ‖u‖2=‖v‖2=1

N∑
i=1

|u>Xiv| (2)

First, we focus on the absolute value in (2) and notice that, for any a ∈ RN ,
∑N

i=1 |ai| =
∑N

i=1 sgn (ai) ai =

sgn (a)> a = maxb∈{±1}N b>a, where sgn (·) returns the {±1}-sign of its (vector) argument. In view of the

above, Lemma 1 follows.

Lemma 1. For any given u ∈ RD and v ∈ RM , it holds that

N∑
i=1

|u>Xiv| = max
b∈{±1}N

u>

(
N∑
i=1

biXi

)
v. (3)

The maximum in (3) is attained for b = [sgn
(
u>X1v

)
, sgn

(
u>X2v

)
, . . . , sgn

(
u>XNv

)
]>. �

In addition, the following well-known Lemma 2 derives by the matrix-approximation optimality of SVD [20].

Lemma 2. For any given b ∈ {±1}N , it holds that

max
u∈RD×1; ‖u‖2=1
v∈RM×1; ‖v‖2=1

u>

(
N∑
i=1

biXi

)
v = σmax

(
N∑
i=1

biXi

)
(4)

where σmax(·) returns the highest singular value of its matrix argument. The maximum in (4) is attained if u and

v are the left-hand and right-hand dominant singular vectors of
∑N

i=1 biXi, respectively. �

To compact our notation, we concatenate {Xi}Ni=1 into X
·
= [X1,X2, . . . ,XN ] ∈ RD×MN . Then, for any

b ∈ {±1}N , it holds
∑N

i=1 biXi = X(b ⊗ IM ), where ⊗ denotes the Kronecker matrix product [21]. Then, in

view of Lemma 1 and Lemma 2, we can rewrite the L1-TUCKER2 in (2) as

max
u∈RD×1; ‖u‖2=1
v∈RM×1; ‖v‖2=1

N∑
i=1

|u>Xiv| (5)

= max
b∈{±1}N

u∈RD×1; ‖u‖2=1
v∈RM×1; ‖v‖2=1

u> (X(b⊗ IM ))v (6)

= max
b∈{±1}N

σmax (X(b⊗ IM )) . (7)
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It is clear that (7) is a combinatorial problem over the size-2N feasibility set {±1}N . The following Proposition

1 derives straightforwardly from Lemma 1, Lemma 2, and (5)-(7) and concludes our transformation of (2) into a

combinatorial problem.

Proposition 1. Let bopt be a solution to the combinatorial

maximize
b∈{±}N

σmax(X(b⊗ IM )) (8)

and denote by uopt ∈ RD and vopt ∈ RM the left- and right-hand singular vectors of X(bopt ⊗ IM ) ∈ RD×M ,

respectively. Then, (uopt,vopt) is an optimal solution to (2). Also, bopt = [sgn
(
u>optX1vopt

)
, . . . , sgn

(
u>optXNvopt

)
]>

and
∑N

i=1 |u>optXivopt| = u>opt(X(bopt⊗ IM ))vopt = σmax (X(bopt ⊗ IM )). In the special case that u>optXivopt = 0,

for some i ∈ {1, 2, . . . , N}, [bopt]i can be set to +1, having no effect to the metric of (8). �

Given bopt, (uopt,vopt) are obtained by SVD of X(bopt ⊗ IM ). Thus, by Proposition 1, the solution to L1-

TUCKER2 for low-rank d = 1 is obtained by the solution of the combinatorial problem (8) and a D-by-M SVD.

B. Connection to L1-PCA and hardness

In the sequel, we show that for M = 1 and d = 1, L1-TUCKER2 in (2) simplifies to L1-PCA [15]–[17].

Specifically, for M = 1, matrix Xi is a D × 1 vector, satisfying Xi = xi
·
= vec(Xi), and (2) can be rewritten as

max
u∈RD; v∈R; ‖u‖2=|v|=1

N∑
i=1

|u>xiv|. (9)

It is clear that for every u, an optimal value for v is trivially v = 1 (or, equivalently, v = −1); thus, for X =

[x1,x2, . . . ,xN ] ∈ RD×N , (9) becomes

max
u∈RD; ‖u‖2=1

N∑
i=1

|u>xi| = max
u∈RD; ‖u‖2=1

‖X>u‖1, (10)

which is the exact formulation of the well-studied L1-PCA problem [15]–[17]. We notice also that for M = 1 the

combinatorial optimization (8) in Proposition 1 becomes

max
b∈{±1}N

σmax(X(b⊗ 1)) = max
b∈{±1}N

‖Xb‖2, (11)

since the maximum singular-value of a vector coincides with its Euclidean norm, which is in accordance to the

L1-PCA analysis in [16], [17]. Based of the equivalence of L1-PCA to (11), [16] has proven that L1-PCA of X

is formally NP-hard in N , for jointly asymptotic N and rank(X). Thus, by its equivalence to L1-PCA for d = 1

and M = 1, L1-TUCKER2 is also NP-hard in N , for jointly asymptotic N and rank(X).
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Fig. 1. For ρ = 3 and N = 4, we draw W ∈ Rρ×N , such that WW> = I3 and Assumption 1 holds true. Then, we plot the nullspaces of
all 4 columns of W (colored planes). We observe that the planes partition R3 into K = 2(

(
3
0

)
+

(
3
1

)
+

(
3
2

)
) = 2(1 + 3 + 3) = 14 coherent

cells (i.e., 7 visible cells above the cyan hyperplane and 7 cells below.)

C. Exact Algorithm 1: Exhaustive search

Proposition 1 shows how the solution to (2) can be obtained through the solution to the combinatorial problem

in (8). Our first exact algorithm solves (8) straightforwardly by an exhaustive search over its feasibility set. In

fact, noticing that σmax(·) is invariant to negations of its matrix argument, we obtain a solution bopt to (8) by

an exhaustive search in the size-2N−1 set Bex = {b ∈ {±1}N : b1 = 1}. For every value that b takes in Bex,

we conduct SVD to X(b ⊗ IM ) to calculate σmax(X(b ⊗ IM )), with cost O(min{D,M}DM) [20]. Since it

entails 2N−1 SVD calculations, the cost of this exhaustive-search algorithm is O(2N−1min{D,M}DM); thus, it

is exponential to the number of jointly processed matrices, N , and at most quadratic to the matrix sizes, D and M .

D. Exact Algorithm 2: Search with cost polynomial in N

In the sequel, we focus on the case where N is low-bounded by the constant DM and present an algorithm that

solves (2) with polynomial cost in N . DM < N emerges as a case of interest in signal processing applications

when {Xi}Ni=1 are measurements of a D ×M fixed-size sensing system (e.g., D ×M images). By Proposition 1,

for the optimal solutions bopt and (uopt,vopt) of (8) and (2), respectively, it holds

bopt = [sgn
(
v>optX

>
1 uopt

)
, . . . , sgn

(
v>optX

>
Nuopt

)
]>, (12)

with sgn
(
u>optXivopt

)
= +1, if u>optXivopt = 0. In addition, for every i ∈ {1, 2, . . . , N}, we find that

v>optX
>
i uopt = Tr

(
X>i uoptv

>
opt

)
= x>i (vopt ⊗ uopt). (13)



THIS IS A PREPRINT; AN EDITED/FINALIZED VERSION OF THIS MANUSCRIPT HAS BEEN SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS6

Therefore, defining Y = [x1,x2, . . . ,xN ] ∈ RDM×N , (12) can be rewritten as

bopt = sgn
(
Y>(vopt ⊗ uopt)

)
. (14)

Consider now that Y is of some rank ρ ≤ min{DM,N} and admits SVD Y
svd
= QSW, where Q>Q = WW> =

Iρ and S is the ρ×ρ diagonal matrix that carries the ρ non-zero singular-values of Y. Defining popt
·
= S>Q>(vopt⊗

uopt), (15) can be rewritten as

bopt = sgn
(
W>popt

)
. (15)

In view of (15) and since sgn (·) is invariant to positive scalings of its vector argument, an optimal solution to (8),

bopt, can be found in the binary set

B = {b ∈ {±1}N : b = sgn
(
W>c

)
, c ∈ Rρ}. (16)

Certainly, by definition, (16) is a subset of {±1}N and, thus, has finite size upper bounded by 2N . This, in turn,

implies that there exist instances of c ∈ Rρ that yield the same value in sgn
(
W>c

)
. Below, we delve into this

observation to build a tight superset of B that has polynomial size in N , under the following mild “general position”

assumption [22].

Assumption 1. For every I ⊂ {1, 2, . . . , N} with |I| = ρ − 1, it holds that rank([W]:,I) = ρ − 1; i.e., any

collection of ρ− 1 columns of W are linearly independent.

For any i ∈ {1, 2, . . . , N}, define wi
·
= [W]:,i and denote by Ni the nullspace of wi. Then, for every c ∈ Ni, the

(non-negative) angle between c and wi, φ(c,wi), is equal to π
2 and, accordingly, w>i c = ‖c‖2‖wi‖2 cos (φ(c,wi)) =

0. Clearly, the hyperplane Ni partitions Rρ in two non-overlapping halfspaces, H+
i and H−i [23], such that

sgn
(
c>wi

)
= +1 for every c ∈ H+

i and sgn
(
c>wi

)
= −1 for every c ∈ H−i . In accordance with Proposition 1,

we consider that H+
i is a closed set that includes its boundary Ni, whereas H−i is open and does not overlap with

Ni. In view of these definitions, we proceed with the following illustrative example. Consider some ρ > 2 and two

column indices m < i ∈ {1, 2, . . . , N}. Then, hyperplanes Nm and Ni divide Rρ in the halfspace pairs {H+
m,H−m}

and {H+
i ,H

−
i }, respectively. By Assumption 1,2 each one of the two halfspaces defined by Nm will intersect with

both halfspaces defined by Ni, forming the four halfspace-intersection “cells” C1 = H+
m ∩ H+

i , C2 = H+
m ∩ H−i ,

C3 = H−m ∩ H−i , C4 = H−m ∩ H+
i . It is now clear that, for any k ∈ {1, 2, 3, 4}, [sgn

(
[W]>c

)
]m,i is the same for

every c ∈ Ck. For example, for every c ∈ C2, it holds that [sgn
(
[W]>c

)
]m = +1 and [sgn

(
[W]>c

)
]i = −1.

Next, we go one step further and consider the arrangement of all N hyperplanes {Ni}Ni=1. Similar to our discussion

2If wm and wi are linearly independent, then Nm and Ni intersect but do not coincide.
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above, these hyperplanes partition Rρ in K cells {Ck}Kk=1, where K depends on ρ and N . Formally, for every k,

the k-th halfspace-intersection set is defined as

Ck
·
=
⋂
i∈I+k

H+
i

⋂
m∈I−1

k

H−m, (17)

for complementary index sets I+k and I−k that satisfy I+k ∩ I
−
k = ∅ and I+k ∪ I

−
k = {1, 2, . . . , N} [24], [25]. By

the definition in (17), and in accordance with our example above, every c ∈ Ck lies in the same intersection of

halfpsaces and, thus, yields the exact same value in sgn
(
W>c

)
. Specifically, for every c ∈ Ck, it holds that

[
sgn

(
W>c

)]
i
= sgn

(
w>i c

)
=

+1, i ∈ I+k
−1, i ∈ I−k

. (18)

In view of (18), for every k ∈ {1, 2, . . . ,K} and any c ∈ Ck, we define the “signature” of the k-th cell bk
·
=

sgn
(
W>c

)
. Moreover, we observe that Ck ∩ Cl = ∅ for every k 6= l and that ∪Kk=1Ck = Rρ. By the above

observations and definitions, (16) can be rewritten as

B =

K⋃
k=1

{sgn
(
W>c

)
: c ∈ Ck} = {b1,b2, . . . ,bK}. (19)

Importantly, in [24], [26], it was shown that the exact number of coherent cells formed by the nullspaces of N

points in Rρ that are in general position (under Assumption 1) is exactly

K = 2

ρ−1∑
j=0

(
N − 1

j

)
≤ 2N , (20)

with equality in (20) if and only if ρ = N . Accordingly, per (20), the cardinality of B in (16) is equal to |B| =

2
∑ρ−1

j=0

(
N−1
j

)
. For clarity, in Fig. 1, we plot the nullspaces (colored planes) of the columns of arbitrary W ∈ R3×4

that satisfies both WW> = I3 and Assumption 1. It is interesting that exactly K = 14 < 24 = 16 coherent cells

emerge by the intersection of the formed halfspaces. In the sequel, we rely on (19) to develop a conceptually simple

method for computing a tight superset of the cell signatures in B.

Under Assumption 1, for any I ⊆ {1, 2, . . . , N} with |I| = ρ − 1, the hyperplane intersection VI
·
= ∩i∈INi

is a line (1-dimensional subspace) in Rρ. By its definition, this line is the verge between all cells that are jointly

bounded by the ρ−1 hyperplanes in {Ni}i∈I . Consider now a vector c ∈ Rρ that crosses over the verge VI (at any

point other than 0ρ). By this crossing, the value of [sgn
(
W>c

)
]I will change so that sgn

(
W>c

)
adjusts to the

signature of the new cell to which c just entered. At the same time, a crossing over VI cannot be simultaneously

over any of the hyperplanes in {Ni}i∈Ic , for Ic ·= {1, 2, . . . , N} \ I; this is because, under Assumption 1, it is

only at 0ρ that more than ρ − 1 hyperplanes can intersect. Therefore, it is clear that [sgn
(
W>c

)
]Ic will remain
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Algorithm 2: Polynomial in N

Input: {Xi}Ni=1
0: Y ← [vec(X1), vec(X2), . . . , vec(XN )]
1: (Q,Sd×d,W)← svd(Y), mt ← 0
2: For every I ⊆ {1, 2, . . . , N}, |I| = d− 1
3: Build BI in (21)
4: For every b ∈ BI
5: (U,Σ,V)← svd(X(b⊗ IM ))
6: m← max{diag(Σ)}
7: if m > mt,
8: mt ← m, bt ← b, u← [U]:,1, v← [V]:,1

Output: bopt ← bt, uopt ← u, and vopt ← v

Fig. 2. Algorithm for the exact solution of rank-1 L1-TUCKER2 in (2), with cost O(Nρ+1).

invariant during this crossing and, in fact, equal to [sgn
(
W>v

)
]Ic , for any v ∈ VI with v>c > 0. In view of the

above, for any v ∈ VI \ 0ρ, the set

BI
·
= {b ∈ {±1}N : [b]Ic = [sgn

(
W>v

)
]Ic} (21)

contains the signatures of all sets that are bounded by the verge VI . Moreover, it has been shown (see, e.g., [26])

that, for every cell, there exists at least one such verge that bounds it. Therefore, it derives that the set

Bpol =
⋃

I⊂{1,2,...,N}; |I|=ρ−1

BI (22)

includes all cell signatures and, thus, is a superset of B. We notice that, for every I, BI has size 2ρ−1. Since I

can take
(
N
ρ−1
)

distinct values, we find that Bpol is upper bounded by 2ρ−1
(
N
ρ−1
)
. Thus, both |Bpol| and |B| are

polynomial, in the order of O(Nρ−1).

Practically, for every I, v can be calculated by Gram-Schmidt orthogonalization of [W]:,I with cost O(ρ3).

Keeping the dominant terms, the construction of Bpol costs O(Nρ−1) and can be parallelized in
(
N
ρ−1
)

processes.

Then, testing every entry of Bpol for optimality in (8) costs an additional O(N). Thus, the overall cost of our second

algorithm, taking also into account the O(N) (for constant DM ) SVD cost for the formation of W, is O(Nρ).

The presented algorithm is summarized in Fig. 2.

III. NUMERICAL STUDIES

Consider {Xi}14i=1 such that Xi = Ai+Ni ∈ R20×20 where Ai = biuv> and ‖u‖2 = ‖v‖2 = 1, bi ∼ N (0, 49),

and each entry of Ni is additive white Gaussian noise (AWGN) from N (0, 1). We consider that Ai is the rank-

1 useful data in Xi that we want to reconstruct, by joint analysis (TUCKER2-type) of {Xi}14i=1. By irregular

corruption, 30 entries in 2 out of the 14 matrices (i.e., 60 entries out of the total 5600 entries in {Xi}14i=1) have
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Fig. 3. Reconstruction MSE versus corruption variance σ2
c (dB).

been further corrupted additively by noise from N (0, σ2c ). To reconstruct {Ai}14i=1 from {Xi}14i=1, we follow one

of the two approaches below.

In the first approach, we vectorize the matrix samples and perform standard matrix analysis. That is, we obtain the

first (d = 1) principal component (PC) of [vec(X1), vec(X2), . . . , vec(XN )], q. Then, for every i, we approximate

Ai by Âi = mat(qq>ai), where mat(·) reshapes its vector argument into a 20 × 20 matrix, in accordance with

vec(·). In the second approach, we process the samples in their natural form, as matrices, analyzing them by

TUCKER2. If (u,v) is the TUCKER2 solution pair, then we approximate Ai by Âi = uu>Xivv>. For the first

approach, we obtain q by PCA (i.e., SVD) and L1-PCA [16]. For the second approach, we conduct TUCKER2

by HOSVD [3], HOOI [9], GLRAM [19], TPCA-L1 [12], and the proposed exact L1-TUCKER2. Then, for each

reconstruction method, we measure the mean of the squared error
∑14

i=1 ‖Ai − Âi‖2F over 1000 independent

realizations for corruption variance σ2c = 6, 8, . . . , 22dB. In Fig. 3, we plot the reconstruction mean squared error

(MSE) for every method, versus σ2c . We observe that PCA and L1-PCA exhibit the highest MSE due to the

vectorization operation (L1-PCA outperforms PCA clearly, across all values of σ2c ). Then, all TUCKER2-type

methods perform similarly well when σ2c is low. As the outlier variance σ2c increases, the performance of L2-norm-

based TUCKER2 (HOSVD, HOOI) and GLRAM deteriorates severely. On the other hand, the L1-norm-based

TPCA-L1 exhibits some robustness. The proposed exact L1-TUCKER2 maintains the sturdiest resistance against

the corruption, outperforming its counterparts across the board.
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