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Abstract—In this letter, we propose a sparsity promoting feed-
back acquisition and reconstruction scheme for sensing, encoding
and subsequent reconstruction of spectrally sparse signals. In the
proposed scheme, the spectral components are estimated utilizing
a sparsity-promoting, sliding-window algorithm in a feedback
loop. Utilizing the estimated spectral components, a level signal
is predicted and sign measurements of the prediction error are
acquired. The sparsity promoting algorithm can then estimate
the spectral components iteratively from the sign measurements.
Unlike many batch-based Compressive Sensing (CS) algorithms,
our proposed algorithm gradually estimates and follows slow
changes in the sparse components utilizing a sliding-window
technique. We also consider the scenario in which possible
flipping errors in the sign bits propagate along iterations (due to
the feedback loop) during reconstruction. We propose an iterative
error correction algorithm to cope with this error propagation
phenomenon considering a binary-sparse occurrence model on
the error sequence. Simulation results show effective performance
of the proposed scheme in comparison with the literature.

Index Terms—Sparse Signal Acquisition, 1-Bit Compressive
Sensing (CS), Level Comparison (LC) Sign Measurements,
Binary-Sparse Error Correction.

I. INTRODUCTION

S
PECTRUM sparse signals arise in many applications such

as cognitive radio networks, frequency hopping commu-

nications, radar/sonar imaging systems, musical audio signals

and many more. In such cases, the signal components maybe

sparsely spread over a wide spectrum and need to be acquired

without prior knowledge of their frequencies. This is a major

challenge in spectrum sensing that is an essential block in any

spectrum-aware communication system. In this research, we

propose a scheme and the corresponding signal processing

algorithms for acquisition of spectrally sparse signals. The

proposed scheme utilizes tools from the general theory of

Compressive Sensing (CS) [1], [2] to address spectral sparsity.

Several schemes have already been proposed for sparse sig-

nal acquisition. These include the Random Demodulator (RD)

[3], the Multi-coset Sampler [4] and the Modulated Wideband

Converter (MWC) [5]. However, the acquired measurements
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need to be quantized and encoded to bits for subsequent

transmission or processing. This is addressed in the Quantized

Compressive Sensing [6], [7], [8] literature.

The extreme case of 1-bit compressive sensing has been

extensively studied [9], [10], [11], [12], [13], [14] and proved

to be robust against high levels of additive noise on the

measurements [8]. However, the 1-bit measurements acquired

in these works provide no information on the norm of the

sparse signal. Hence in these works, reconstruction is possible

only up to a scale factor.

In the proposed scheme, the input signal is compared with

a level signal [15], [16], [17] and sign measurements of the

error are acquired. The level signal is estimated adaptively in a

feedback loop utilizing a sparse reconstruction algorithm. The

reconstruction algorithm utilizes the previously acquired sign

values to estimate the sparse signal components and predict the

level signal, subsequently. This overcomes the scale ambiguity

of 1-bit CS reconstruction.

The idea of acquiring sign measurements of level compar-

isons was also applied in [18], [19], [20]. Previous studies on

one-bit sigma-delta quantization [21], [22], [23] investigate

how adaptivity in the level values can improve the reconstruc-

tion error bound in terms of the number of measurements.

The approach in [24] achieves exponential decay in the re-

construction error as a function of the number of measure-

ments but requires the levels themselves to be transmitted

for reconstruction. This is in contrast to our proposed scheme

where the adaptive levels are estimated from the sequence of

previously acquired sign measurements themselves. Moreover,

unlike many previously proposed batch-based reconstruction

algorithms, our proposed algorithm applies one iteration on

each sliding window on the input signal using the previous

estimate of the sparse vector as an initial estimate. This not

only can decrease the computational complexity for large

values of batch sizes and iteration counts, but also enables

the proposed algorithm to better follow possible slow changes

in the sparse components along iterations. In Section IV, we

provide performance comparisons with state-of-the-art tech-

niques in [23], [24] and show effective performance of the

proposed scheme by simulations.

In case the acquired sign bits are subsequently transmitted

over a channel, the sign bits available to the receiver may

contain flipping errors. Due to the feedback, these errors will

propagate and make reconstruction unstable. To cope with

this, we propose an iterative algorithm for correcting possible
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sign flip errors assuming a binary-sparse occurrence model

on the error sequence. The iterations for error correction are

performed along iterations of the main sparse component

estimation algorithm at the receiver to gradually estimate

the error sequence and avoid error propagation. Unlike the

previously proposed error-robust 1-bit CS reconstruction tech-

niques [25], [26], [27], our proposed error correction algorithm

alleviates the need for prior knowledge of the number of errors

by applying a binary-sparse occurrence model on the error

sequence.

This paper is organized as follows. In section II we describe

our proposed feedback acquisition and the corresponding

reconstruction scheme. Section III presents the algorithms per-

formed in the main building blocks of our proposed scheme.

Section IV provides the simulation results and finally section

V concludes the paper.

II. THE PROPOSED ACQUISITION AND RECONSTRUCTION

SCHEME

In this research, we adopt the sparse exponential model in

order to accommodate the general class of spectrally sparse

signals that arise in many real world applications. Assuming

that power spectrum of x(t) is sparse, we may approximate

x(t) =
∑

z∈Z sz(t) as the sum of exponential components

for Z = {z1, z2, · · · , zN}, zi ∈ C where each component can

be predicted by szi(t + ǫ) = eziǫszi(t). Also assume that

x(t) is sparse in the sense that only a few of its components

have significant amplitudes |sz(t)| at any time. Note that the

adopted model allows non-equidistant frequencies and hybrid

real/imaginary exponentials.

Fig. 1a shows the block diagram of the proposed feedback

acquisition scheme. In this figure, the complex input signal

x(t) is compared with the level signal ℓ(t) utilizing a simple

comparator. The error signal e(t) goes through the complex

sign 1 block and is then sampled uniformly at t = mτ resulting

the output sequence of sign values bm ∈ {±1 ± 1j}. To

encode the signal more efficiently, ℓ(t) is calculated from bm
in a feedback loop utilizing a sparse component estimation

algorithm followed by prediction.

In many cases, the acquired signal needs to be subsequently

transmitted over a channel. In these cases, the sign bits

available for reconstruction at the receiver experience flipping

errors. These errors cause the receiver to estimate inaccurate

level values. If the levels estimated at the receiver are in-

accurate, the subsequent sign bits received will be wrongly

interpreted which introduces further errors to reconstruction.

In other words, due to the feedback, the error propagates and

may unstabilize the whole reconstruction. To prevent error

propagation, we propose secondary iterations that are applied

along iterations of the main sparse component estimation

algorithm at the receiver to correct the sign-flip errors as

depicted in Fig. 1b.

In the next section, we elaborate the algorithms performed

in the main building blocks of the proposed scheme.

1The complex sign function is defined as csgn(.) = sgn(Re(.)) +

jsgn(Im(.)) where sgn(x) =

{

1, x ≥ 0

−1, x < 0
, j =

√
−1. csgn(.) operates

element-wisely on vectors.

+

csgn

t = mτ

Sparse

Component

Estimation

Predict
&

Hold

x(t) + e(t) bm

−

ℓ(t)

(a) Block diagram for the proposed acquisition scheme.

Sparse

Component

Estimation

Predict
&

Hold

Sparse

Error
Correction

b̂m ℓ̂(t)

(b) Block diagram for reconstruction at the receiver.

III. THE PROPOSED ALGORITHMS

In this section, we first elaborate our proposed algorithm

to be performed in the sparse component estimation block to

reconstruct the spectral components from the sign bits. Then,

we introduce our proposed sparsity-promoting algorithm to

correct sign-flip errors at the receiver.

A. Sparse Component Estimation

Consider a sliding window on the input samples as Xm =
[x(mτ), x((m−1)τ), · · · , x((m−M+1)τ)]T in which τ is the

sampling period. Moreover, denote the corresponding level and

sign values by Lm = [ℓ(mτ), ℓ((m − 1)τ), · · · ℓ((m −M +
1)τ)]T and Bm = [bm, bm−1, · · · , bm−M+1]

T , respectively.

Utilizing this vector notation, we get Bm = csgn(Xm−Lm).
Now define Sm = [sz1(mτ), sz2 (mτ), · · · , szN (mτ)]T as the

state vector for the observed signal x(t), we can write Xm =
ΦSm, where Φ is a Vandermond matrix defined by

Φ =











1 1 · · · 1
e−z1τ e−z2τ · · · e−zNτ

...
...

. . .
...

e−z1(M−1)τ e−z2(M−1)τ · · · e−zN (M−1)τ











. (1)

The exponential modeling szi(t+ ǫ) = eziǫszi(t) simplifies

to a one step predictor as Sm = P ⊙ Sm−1 where P =
[ez1τ , ez2τ , · · · , ezNτ ] and ⊙ is element wise multiplication

of two vectors. To estimate and update the sparse state vector

Sm, we propose to iteratively minimize

Ŝm = argmin
S

‖B̂m − csgn(ΦS − Lm)‖22 (2)

+ λ1‖S − PŜm−1‖
2
2 + λ2

N
∑

i=1

gσ([S]i),

where Ŝm and Ŝm−1 represent estimates of the vector of

sparse components for the sliding windows corresponding to

t = mτ and t = (m − 1)τ , respectively, and [Sm]i denotes



3

the ith element of the vector Sm. Note that B̂m is the vector

of observed sign bits and is different from the true Bm in

the sense that it may contain bit-flip errors. The first term of

the cost function in (2) enforces consistency with the encoded

sequence of sign values, the second term guarantees smooth

update of the solution and the last term promotes sparsity.

For the sparsity promoting term, we set gσ(s) =
arctan(σ|s|)
arctan(σ)

[28], [29], [30]. It is easy to show that limσ→∞

∑

i gσ([S]i) =
‖S‖0 and limσ→0

∑

i gσ([S]i) = ‖S‖1. Thus, by starting from

a small σ value and increasing it along the iterations, we

migrate from the convex ℓ1 to the non-convex l0 norm gradu-

ally. Similarly, for ease of calculating the gradient, we replace

the sign function with an S-shaped, infinitely differentiable

function [31], [32], [33]. We set fδ(s) = 2
π
arctan(δs), for

some δ > 0 which is differentiable with the derivative f ′(s) =
d
ds
f(s) = 2

π
δ

1+δ2s2
. It is obvious that limδ→∞ fδ(s) = sgn(s)

and hence we increase δ value exponentially along the itera-

tions. Making these substitutions we get (3) 2

Ŝm = argmin
S

C(S) (3)

= argmin
S

‖B̂m − cf(ΦS − Lm)‖22

+ λ1‖S − PŜm−1‖
2
2 + λ2

∑N

i=1 arctan(σ|[S]i|)

arctan(σ)
.

To solve (3), we shall find the roots of ∂
∂S

C(S) = 0. In

order to decrease the computational cost, we apply only one

iteration on each sliding window but gradually increase the σ

and δ parameters along temporal iterations. Utilizing a sliding-

window approach also enables following possible changes in

the spectral components along iterations. We get,

2ΦHcf ′(ΦS − Lm)⊙ (cf(ΦS − Lm)− B̂m) (4)

+ 2λ1(S − PŜm−1) +
λ2

arctan(σ)
G⊙ S = 0,

where

[G]i =
1

|[S]i|(1 + σ2|[S]i|2)
, for i = 1, · · · , N. (5)

To solve this non-linear equation, we approximate the first

term in (4) by its value at the prior state estimate and denote

Ym−1 = 2λ1PŜm−1− 2ΦHf ′(ΦŜm−1−Lm)⊙ (f(ΦŜm−1−
Lm)− B̂m), we get (6)

(2λ11N +
λ2

arctan(σ)
G)⊙ S = Ym−1, (6)

where 1N = [1, · · · , 1] ∈ RN . The elements of 2λ11 +
λ2

arctan(σ)G are 2λ1 +
λ2

arctan(σ)|[S]i|(1+σ2|[S]i|2)
, which are all

real positive values, therefore, from (6) we obtain

∠[S]i = ∠[Ym−1]i, (7)

2λ1|[S]i|+
λ2

arctan(σ)(1 + σ2|[S]i|2)
= |[Ym−1]i|. (8)

2For a function f : R 7→ R, we denote cf(.) = f(Re(.)) + jf(Im(.)).

By denoting β = λ2

arctan(σ) and αi = |[Ym−1]i|, we can

rewrite (8) as a cubic polynomial equation in terms of ri =
|[S]i| given by

2λ1σ
2r3i − αiσ

2r2i + 2λ1ri + (β − αi) = 0. (9)

The coefficients of the cubic polynomial (9) are real. Hence (9)

has either three real roots or a single real root and a complex

conjugate pair. To enforce sparsity, coefficients with smaller

amplitudes are encouraged and hence (3) is minimized by

choosing the smallest non-negative real root of (9). We propose

to solve (9) as follows

Case 1 All roots of (9) are real: The sum of the three roots
αiσ

2

2λ1σ2 = αi

2λ1

> 0 is always positive and hence there

exists at least a positive root. The smallest positive root

is feasible for the algorithm.

Case 2 One of the roots is real and the other two are a

complex conjugate pair: If the product of the roots is pos-

itive, i.e., αi−β
2λ1σ2 > 0, the real root is positive and hence

feasible. Hence we must enforce β = λ2

arctan(σ) < αi

or equivalently increase σ such that σ > arctan(λ2

αi
).

Note that σ is already increased along the iterations,

hence if this situation happens, σ is further increased till

σ > arctan(λ2

αi

) holds.

As described above, the magnitude and phase of [Ŝm]i are

given by the solution of (9) and (7), respectively.

Using the state estimate Ŝm, the predict & hold block cal-

culates the next level value as ℓ((m+1)τ) =
∑N

i=1[P ⊙ Ŝm]i.
Finally, to get ℓ(t) from its samples, each ℓ(mτ) is holded by

this block at the output for as long as the sampling period τ .

B. Sparse Error Correction

Let us define the real and imaginary error vectors Er
m

and Ei
m with elements erm, eim ∈ {0, 1}. Define erm = 1 if

Re(bm) is flipped and erm = 0, otherwise. Hence, we get

Re(bm) = Re(b̂m)(1−2erm) and Im(bm) = Im(b̂m)(1−2eim).
Note that for ease of calculations, we consider the real and

imaginary error vectors separately and provide our algorithm

for the real part. The imaginary part is similar. It is obvious that

Er
m itself, is a sparse vector with elements in {0, 1}. Hence, we

propose secondary iterations to update and estimate Er
m along

the primary iterations of the sparse component estimation

algorithm. Let us denote
ˆ̂
Er

m−1 = S(Êr
m−1), in which the

S(.) operator denotes sliding the estimated error vector for

one sample and inserting a zero as the initial estimate of its

new element. Now to estimate Er
m−1, we solve the following

Êr
m = argmin

E
h(E) + θ

M
∑

i=1

[E]i (10)

s.t. ‖E −
ˆ̂
Er

m−1‖2 ≤ ǫ, [E]i ∈ [0, 1],

where the range for [Er
m]i is relaxed to be the convex interval

[0, 1] and the second term of the cost function is the l1 norm

which promotes sparsity in Er
m since the elements of Er

m are

non-negative. h(E) = ‖Re(B̂m)⊙ (1−2E)− sgn(Re(ΦŜm−
Lm))‖22 is a quadratic convex term with regard to E.
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TABLE I: The MSE Values (dB) Achieved by the Proposed

Scheme

k = 2.5% k = 5% k = 10% k = 20%

p = 0 -19.9 -19.6 -17.9 -10.4

p = 0.0125
w/o EC -16.3 -12.1 -10.3 -6.3
w/ EC -19.4 -18.3 -14.5 -7.8

p = 0.025
w/o EC -10.2 -8.7 -4.6 F
w/ EC -18.2 -17.4 -12.5 -7.1

p = 0.05
w/o EC -4.1 -2.3 F F
w/ EC -17.8 -16.5 -10.2 -5.8

To solve (10), we use the gradient descent algorithm fol-

lowed by projection onto [0, 1] and stochastic rounding [34],

[35] to {0, 1}. Note that both the projected gradient and

stochastic rounding techniques have convergence guarantees

for the convex case as in (10). The gradient descent step is

given by

Tm =
ˆ̂
Er

m−1 − ǫ
D

‖D‖2
, (11)

where ǫ is an small step-size and

D =− 4Re(B̂m)⊙ (Re(B̂m) ⊙ (1− 2
ˆ̂
Er

m−1) (12)

− sgn(ΦŜm − Lm)) + θ1M ,

The projection and stochastic rounding are performed by

[Em]i =

{

0, [Tm]i ≤ u

1, [Tm]i > u,
, (13)

where u is generated as a uniformly distributed random

variable over the interval [0, 1].

IV. SIMULATION RESULTS

To numerically evaluate the performance of our proposed

scheme, we generate random spectrally sparse signals accord-

ing to the model presented in Section II with N = 500,

M = 50, τ = 5×10−4 sec, and Z = {1j, 2j, · · · , 500j}×ω0,

ω0 = 10 rad/sec. The non-zero spectral components are

selected uniformly at random and the corresponding ampli-

tudes come from a N (0, 1) distribution. For comparisons, the

final normalized reconstruction Mean Square Error (MSE =

10 log10(
‖S−Ŝ‖2

2

‖S‖2

2

)) values averaged over 100 runs are reported

in Table I for different sparsity factors. The sparsity factor

k is defined as the ratio of the number of nonzero spectral

components over the total number of components N . The

algorithm parameters are experimentally optimized for the best

performance as δm = 1.01 × δm−1, σm = 1.1 × σm−1.In

this table, p denotes the rate at which sign-flip errors occur,

”w/ EC” and ”w/o EC” represent the results with and without

the proposed error correction (EC) iterations and the letter

”F” shows divergence of the proposed algorithm (MSE>-5dB)

due to the error propagation phenomenon. As shown, EC is

necessary to avoid error propagation.

Next, we investigate the general scenario in which x(t) both

contains frequencies that do not lie on any of the quantized

frequencies Z = {1j, 2j, · · · , 500j} × 10 rad/sec (the off-

grid problem) and may also have stable real exponential

parts. Note that exp(γt + j(Kω0 + ∆ω)t) = exp((γ +

TABLE II: MSE Comparisons (dB) between our Proposed

Scheme and the Literature

M = 50 M = 100 M = 200
[23] -13.34 -18.54 -25.88

[24] -15.76 -29.61 -57.21

This Work -16.12 -29.73 -56.96
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Fig. 2: MSE vs. Iteration for the Off-Grid Scenario (k = 0.05).

j∆ω)t) × exp(jKω0t), γ ∈ R− which is the grid frequency

exp(jKω0t) with an amplitude that varies with time according

to exp((γ + j∆ω)t). Hence, if γ and ∆ω are small, the

algorithm will still be able to converge and follow the smooth

changes in the component amplitudes. To investigate this, we

generate x(t) with a sparsity factor of k = 0.05 that contains

components on ω = j214.8× 10,−1.5 + j442.1× 10 rad/sec

and provide the MSE curves versus iteration in Fig. 2. These

curves confirm effective performance of the proposed algo-

rithm to follow smooth changes in the component amplitudes.

Finally in Table II, we compare the performance of our

proposed algorithm with state-of-the-art techniques in [23],

[24] for different values of the window length M where

k = 5%, p = 0 and the other simulation parameters are

fixed as previously. This table provides the final normalized

reconstruction MSEs (dB) achieved by the three acquisi-

tion/reconstruction schemes averaged over 20 runs when there

exists an additive zero-mean Gaussian pre-quantization noise

with standard deviation 0.1 and [24] is applied in a hard

thresholding scheme. As observed in this table, both our

proposed algorithm and [24] outperform [23] especially for

larger values of M . This is due to an exponential error decay

bound for our proposed algorithm and [24] in comparison with

a root exponential decay bound for the Σ∆ scheme in [23].

Our proposed scheme shows a slightly improved performance

in comparison with [24] for smaller values of M which may

be due to improved robustness to noise by the proposed error

correction algorithm.

V. CONCLUSION

In this letter, we proposed a feedback acquisition scheme for

encoding of spectrally sparse signals to a stream of 1-bit mea-

surements. We proposed a sparsity promoting reconstruction

algorithm to predict comparison levels in a feedback loop to

facilitate more efficient 1-bit measurements of the input signal.

We also proposed a sparse error correction technique to cope

with possible sign flip errors during transmission. Finally, we

reported simulation results to confirm effective performance

of the proposed scheme and algorithms.
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